
XML Schemata Inference and Evolution

I. Sanz, J. M. P�erez, R. Berlanga and M. J. Aramburu

Departament de Llenguatges i Sistemes Inform�atics

Departament de Ingenieria y Ciencia de los Computadores

Universitat Jaume I, E{12071 Castell�on. Spain.

email:fisanz,martinej,berlanga,aramburug@uji.es

Abstract. This work addresses the automatic generation of conceptual

models for XML-oriented databases, which in many cases have little or

no support for schemata. Our techniques are based on both an incre-

mental clustering algorithm, which groups together the incoming XML

documents according to their structural similarities, and a schema infer-

ence method, which maintains dynamically the schema of each detected

document cluster. Our proposal takes into consideration the schema evo-

lution. For this purpose, we have adapted the Toodor document model

that describes the temporal properties of the XML document types.

Keywords: Schema Inference, Document Clustering, XML Databases.

1 Introduction

The fast-paced adoption of XML as a language for data interchange among

diverse applications and web services, is opening the way towards the real in-

tegration of heterogeneous information sources. In our opinion, the success of

this integration will reside in three key factors. Firstly, it will be necessary to

develop repositories for the massive storage of XML data and documents coming

from several sources (i.e. Web warehouses). Secondly, query languages provid-

ing homogeneous access to these data are also needed. Finally, the availability

of (semi-)automatic methods for the creation, management and integration of

the conceptual schemata that describe the data in XML repositories is also an

important factor.

Regarding the �rst two factors, currently there exist several native XML-

oriented databases, as well as extensions of commercial databases, that allow

for the storage and retrieval of XML data. XQuery [1] and XML-QL [2] are two

relevant proposals of query languages for this type of data. Nevertheless, not

all of these approaches are valid for the integration of repositories in XML. An

important requisite is that they should be exible enough to accept any XML

document, regardless of the existence of an accompanying type de�nition or

schema. It should be taken into account that many XML documents come from

applications that do not provide such de�nitions.

This requisite provides the rationale for the third key factor in the integration

of information sources. The possible lack of typing, or the excessive presence of

2 I. Sanz, J. M. P�erez, R. Berlanga and M. J. Aramburu

di�erent type de�nitions, require the development of new mechanisms for the

automatic de�nition of conceptual schemata. It should be noticed that current

approaches to the semantic integration of data assume the existence of this kind

of conceptual schemata (sometimes an ontology), and apply them to the search

of relationships of equivalence or association; see [3, 4] for some examples.

In this paper we address the issue of the automatic generation of conceptual

schemata by discovering the structural similarities between XML documents,

and their clustering into classes. Our proposal has been implemented over the G

commercial database system [5], which has been designed for the development

of web applications that integrate heterogeneous and highly dynamic informa-

tion sources. The G system transforms the information extracted from di�erent

sources into linked XML documents, which are stored in a native format. The

techniques discussed in this paper obtain, in a dynamic and incremental way,

a conceptual schema for this database, and represents it by means of the XML

Schema Language (XMLS) [6].

The remainder of the paper is organized as follows. Section 2 gives a brief

description of the G system. In Section 3 we de�ne a structural similarity mea-

sure for XML documents, a clustering algorithm based on this measure, and the

XMLS generation mechanism for the classes obtained by the clustering algo-

rithm. Section 4 shows some preliminary results of this approach, and in Section

5 some conclusions are presented.

2 Context of the Work

This work is part of a project with the objective of automatically generating web-

based applications for integrated repositories of XML documents. The system is

called G, and its architecture is shown in Figure 1. The main contribution of this

paper is the Schema Manager module, which is depicted at the right side of the

�gure. This module is in charge of monitoring the input stream of documents

in order to classify them by their structural properties, and of inferring for each

detected class an XML schema.

One relevant feature of this process is that the inferred schemata can evolve

along time so that only the up-to-date schemata must be regarded in the gener-

ation of the database indexes and their applications. The evolution of schemata

is guided by the structural changes detected by the clustering algorithm. On the

other hand, once a schema becomes historical, it will be not considered by the

clustering routine anymore. In this way, the time and space complexity of this

module is reduced considerably.

In the next sections we describe the two components of the Schema Manager

module, namely: the clustering routine and the schema inference and evolution

component.

Mechanisms for the Inference and Evolution of XML Schemata 3

XML DB

Indexes Applications

Generator

Schema Manager

G-Engine

CGI/SOAP/JDBC

CGI/SOAP/JDBC

XML Sources

Client Applications

Clustering

Module

Schemata

Inference
Evolution

Schema Manager

Clusters changes

Updated
schemata

Fig. 1. Architecture of the G system

3 The Clustering Module

The clustering module is in charge of classifying each incoming XML document

according to its structural properties. We assume that this clustering process is

mainly non-supervised, since most XML documents in the web do not provide

a known schema nor DTD. Another important requirement for the clustering

routine is that it must be incremental, that is, for each incoming document the

algorithm must adjust the classes involved according to their structure.

In the next sections we �rst describe the similarity measure used to cluster

documents by their structure, and then the clustering routine.

3.1 Structural Similarity

In the literature there exist several proposals to determine whether two doc-

uments have a similar structure or not. Most of these approaches rely on the

tree edit distance [7] and usually have high complexity costs. In the context of

our application, we need to evaluate this similarity function over a large set of

documents. That is why we need to �nd out a new similarity function with a

lower temporal cost.

Thus we propose a di�erent approach based on the similarity between docu-

ment paths. We consider that each document is represented by the set of all the

paths that go from its root element to each one of its leaves (text or attribute).

Let us denote this set as pathSet(d), where d is an XML document.

We also de�ne the similarity between two paths, p1 and p2 as follows:

pathSim(p1; p2) =
jelements(p1) \ elements(p2)j

max(jelements(p1)j; jelements(p2)j)

where the function elements returns the set of node elements of the given path.

4 I. Sanz, J. M. P�erez, R. Berlanga and M. J. Aramburu

As it would be expected, the more elements the paths share, the higher

value the proposed measure returns. However, this measure does not take into

account the relative order of the elements in the paths. With this simpli�cation

it is possible to return a high similarity value for a pair of incompatible paths

(i.e. if the paths state di�erent orderings for the same pair of elements). This

drawback can be avoided by introducing the following compatibility function:

comp(p1; p2) =

8
>><
>>:

false if 9e1; e2 2 elements(p1) \ elements(p2)
such that match(p1; \==e1==e2==")
^ match(p2; \==e2==e1==")

true otherwise

Here, the function match(p; pe) returns true if the path p matches the path

expression pe.
Starting from these similarity and compatibility functions, we de�ne the fol-

lowing global function to measure the similarity between the structure of two

documents, d1 and d2:

Sim(d1; d2) =

P
pi2pathSet(d1)

maxpj2pathSet(d2)(pathSim(pi; pj))

jpathSet(d1)j

docSim(d1; d2) =

8
<
:
0 if 9p1 2 d1; p2 2 d2;

such that :comp(p1; p2)
Sim(d1;d2)+Sim(d2;d1)

2
otherwise

With this formula, two documents have a similar structure if all their paths

are compatible, and most of their paths are similar.

3.2 Clustering Routine

To describe the clustering routine, the following de�nitions are needed.

{ Each document class C is a set of documents whose structural similarities

with respect to the class representatives are greater than a given threshold

�sim. The class representatives, denoted repSet(C), are themselves docu-

ments of the class. The similarity between two representatives of the class

must not be greater than a given threshold �rep (�rep � �sim). In this way,

each class will represent a set of common structural properties, which are

established by the intersection of all its representatives, as well as a set

of structural particularities, which are stated by its representatives. Con-

sequently, the threshold �sim determines the degree of optionality of the

associated class schema, whereas the number of representatives determines

the degree of heterogeneity of the class schema.

{ A document d structurally subsumes to another document d0 if the path set

of the former includes that of the latter, formally: pathSet(d) � pathSet(d0).
{ The class to which a document d belongs is denoted with class(d).

Mechanisms for the Inference and Evolution of XML Schemata 5

Algorithm 1 Clustering Routine

Require: dnew , �sim, �rep, InvertedFile, Classes

f dnew: new incoming document;

�sim: similarity threshold for documents;

�rep: similarity threshold for representatives;

InvertedFile: inverted �le for document class representatives;

Classes: set of currently detected classes; g
Ensure: Classes, InvertedFile

1: Select from the InvertedFile the representatives whose similarity with dnew is greater

than �sim, and put them into the set Docs.

2: New = ; fAuxiliary class that will contain the union of those classes similar to

dnewg
3: for all d 2 Docs do

4: if New = ; then
5: New = class(d) [fdnewg
6: New:repSet = repSet(class(d))

7: else

8: New = New [class(d)

9: New:repSet = New:repSet [repSet(class(d))

10: end if

11: if 9d0 2 repSet(New) such that dnew subsumes d0 then

12: Remove all the representatives of New subsumed by dnew

13: Add dnew to the set of representatives of New

14: end if

15: Remove the class class(d) from Classes, and all its representatives from the In-

vertedFile.

16: end for

17: if New = ; then
18: Add to Classes the new class fdnewg
19: Update the InvertedFile with dnew
20: else

21: if 6 9d0 2 repSet(New) such that docSim(d0; dnew) > �rep then

22: add dnew to the set of representatives of New

23: end if

24: Add to Classes the updated class New.

25: Add the the representative set of New to InvertedFile.

26: end if

6 I. Sanz, J. M. P�erez, R. Berlanga and M. J. Aramburu

The clustering routine (see Algorithm 1) uses an inverted �le over the repre-

sentatives of the classes in order to eÆciently calculate the structural similarity

of each incoming document. Each entry of the inverted �le represents a path

element, and its associated value is the list of representatives having that path

element.

The algorithm basically updates the inverted �le and the set of current docu-

ment classes according to the structure of each new incoming document. It takes

into consideration the following situations:

{ When the similarity between the new document and several representatives

of di�erent classes is greater than the given threshold �sim, all the involved
classes must be joined into one single class. The variable New is used for

this purpose, which incrementally aggregates the involved classes (lines 3{

16). Additionally, a representative set must be revised for the resulted class

(lines 11{15 and lines 21{23).

{ When the similarity between the new document and all the current represen-

tatives is not greater than the given threshold �sim, the document belongs

to a new class, whose representative is itself.

{ The representative set of a class must be updated in the following two cases:

when the new document structurally subsumes some of its current repre-

sentatives, and when the similarity between the new document and all the

class representatives is not greater than the threshold �rep. In the �rst case,

the new document replaces all the representatives that are subsumed by it.

In the second case, the new document becomes a new representative of the

class.

4 Inference and Evolution of XML Schemata

The second module of the Schema Manager is in charge of inferring a schema

for each document class, and of deciding how an existing schema evolves over

time. This module deals with the small changes produced by the arrival of new

documents into the system, as long as they do not alter the cluster structure. For

instance, the appearance of a new optional attribute will probably not change the

cluster representative set, but it needs to be taken into account when reporting

the current cluster schema. In any case, the Schema Inference and Evolution

component is tightly coupled with the Clustering Routine, since the schemata

need to be refreshed each time some structural change occurs.

The type model we have adopted for schema modelling is an extension of

the XML Schema standard to include the Toodor model (Temporal Object

Oriented Document Organization and Retrieval) [8]. More speci�cally, we have

de�ned an RDF1 notation for expressing the evolution of an XML Schema ac-

cording to the rules of the Toodor model.

Toodor combines a static XML-like type system with a set of temporal

primitives to represent the evolution of schemata. The model de�nes CI as a set

1
http://krono.act.uji.es/toodor.rdfs

Mechanisms for the Inference and Evolution of XML Schemata 7

of class identi�ers, OI as a set of object unique identi�ers and AN as a set of

attribute names. As in other object-oriented data models, Toodor allows class

identi�ers from CI to be used in the de�nition of types, being considered each

class identi�er as an object type. This type system is extended with two types

for time expressions: T ime to denote time instants, and Period to denote time

periods. The document type system is denoted by DOCT YPES , and the domain

of time values is PDAT E .
In Toodor a class is a 4-tuple whose components are as follows:

{ class id 2 CI is the class identi�er,

{ lifespan 2 PDAT E is the time period during which the class is de�ned,

{ h type is a sequence of pairs (pi; Ti) with i � 1, where pi 2 PDAT E and

Ti 2 DOCT YPES ,
{ and �nally, h population is a sequence of pairs (pi; Ii) with i � 1, where

pi 2 PDAT E and Ii is the subset of OI that coincides with the set of the

class's instances created during the time period pi.

4.1 Inference of types and temporal properties

The Schema Manager maintains one Toodor schema for each cluster detected

by the clustering routine. In order to keep these schemata up-to-date as new

documents arrive to the system, the Schema Inference and Evolution component

performs two tasks:

{ The inference of types describing the static structure of the documents within

a class at a given time.

{ The tracking of the schema as it evolves along time, and in particular the

lifespan of each static type.

In order to deal with the changes produced by the incoming documents, we

use a label-relaxation algorithm. We representToodor types as DAGs, in which

nodes are class identi�ers of CI and arcs are labelled to express the composition

relationships between the types they represent. The allowed labels are analogous

to those found in XML DTDSs: 1 (exactly one), ? (zero or one), � (zero or more)

and + (one or more).

The process begins with an initial sample document, usually a representative

chosen by the clustering routine, which is transformed into a labelled DAG.

When new documents are added to a cluster, its schema is modi�ed according

to the label transition rules of Table 1. In order to update the DAG, these rules

take into account the labels in the existing schema plus the multiplicity of the

composition relationships (0, 1 or N) of the new document.

Additionally, the inference routine tries to infer the basic type of the elements

of the class (e.g. numeric, date or string) by applying lexical patterns to their

values.

All these changes are time-stamped and kept into a log. This will allow the

Schema Manager to reconstruct a schema at any given time point. Note that no

8 I. Sanz, J. M. P�erez, R. Berlanga and M. J. Aramburu

Initial label Multiplicity Resulting label

1 0 ?

1 1 1

1 N +

? 0; 1 ?

? N �

+ 0 �
+ 1; N +

� 0; 1; N �
Table 1. Label transition rules

arcs or nodes are ever deleted in this phase, because nodes can only be added,

and arcs only relaxed. Thus, the schema is just made more general.

A schema is considered completely evolved when the clustering routine de-

tects a change in its structure (i.e. its representative set has changed). In this

case the schema can no longer be considered valid, and it needs to be moved to

a new stable state. For this purpose, the following procedure is applied:

{ The schema is marked as obsolete and its associated change logs is closed.

{ A new schema is created for the class according to the changes noti�ed by

the clustering routine.

{ The new schema is initialized with a set of documents that the clustering

routine has identi�ed as belonging to its class. In order to create a schema

that is as relevant as possible, these documents are chosen using a criterion

of temporal closeness, within a temporal window with a length that depends

on the rate of change of the schema (that is, the frequency of changes as

detected by the clustering routine).

{ The resulting schema is stored and marked as current.

Summarizing, no all of the past states of a schema are actually stored in the

database, only the stable states created after each change in the clustering are.

It is possible to reconstruct any intermediate state by following the changes logs,

applying the necessary steps in order to obtain the schema that was current at

the given time.

5 Evaluation

In order to evaluate our automatic validation system for XML document schemata,

various experiments were designed. In this section we explain one of these tests

and how its results prove the e�ectiveness of the system. In this particular test we

start from four di�erent document types whose DTDs are presented in Table 2.

As can be noted, DTDs 1 and 2 are very similar, so they could be integrated

under the same schema. By analyzing DTD 3 we can see that it is incompatible

with the previous two, so they should not be fused together. Finally, DTD 4

Mechanisms for the Inference and Evolution of XML Schemata 9

is completely di�erent from the other three. The objective of the experiment is

to start from a repository of documents with instances of these four DTDs to

check whether our system is able to group them correctly, and to infer the proper

schemata that de�nes their structure. Although our system is also able to infer

XML Schemata, in order to simplify the example, here we prefer to express the

structure of documents by using DTDs.

DTD 1 DTD 2

<!ELEMENT term (code, lecturers)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT lecturers (lecturer+)>

<!ELEMENT lecturer (name, subjects)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT subjects (subject+)>

<!ELEMENT subject (#PCDATA)>

<!ELEMENT term (lecturers)>

<!ELEMENT lecturers (lecturer+)>

<!ELEMENT lecturer (name, subjects)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT subjects (subject*)>

<!ELEMENT subject (#PCDATA)>

DTD 3 DTD 4

<!ELEMENT term (code, subjects)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT subjects (subject+)>

<!ELEMENT subject (lecturers, code)>

<!ELEMENT lecturers (lecturer+)>

<!ELEMENT lecturer (name)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT book (code, authors, title, place,

publisher)>

<!ELEMENT authors (name, address?)+>

<!ELEMENT code (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT place (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (#PCDATA)>

Table 2. DTDs of the input documents

To populate our repository with instances of the previous DTDs, we applied

the IBM XML Generator2. With this tool we generated 20 document instances

of each DTD, so that in this experiment a total of 80 documents constituted the

input of our system.

Table 3 presents the average similarity between the types of documents as

returned by the system. Obviously, the table shows that the similarity rates be-

tween documents of the same DTD are very high. For documents of the DTDs 1

and 2 the returned similarity rates are also high as they share very similar struc-

tures. However, the returned similarity rates for any of the previous documents

and the instances of the DTDs 3 (incompatible) and 4 (completely di�erent) are

null or nearly null.

Finally, the clustering and the schema inference modules were tested with two

di�erent similarity thresholds: �sim = �rep = 0:7 and �sim = �rep = 0:95. With

the threshold of 0.7, the documents of DTDs 1 and 2 were grouped together,

and a new DTD which integrated their schemata was inferred. However, the

documents of DTDs 3 and 4 were not combined with the rest, and their inferred

schemata were equivalent to those initially used for generating the document

instances. In the case of the most restrictive similarity threshold (0.95), the

documents of DTDs 1 and 2 were not grouped together and their schemata were

separately inferred.

2
http://www.alphaworks.ibm.com/

10 I. Sanz, J. M. P�erez, R. Berlanga and M. J. Aramburu

DTD 1 DTD 2 DTD 3 DTD 4

DTD 1 1 0.85 0 0.17

DTD 2 0.85 0.98 0 0.08

DTD 3 0 0 1 0.2

DTD 4 0.17 0.08 0.2 0.98

Table 3. Average similarity between the di�erent types of documents

6 Conclusions

In this work we have presented some mechanisms for the automatic generation

and upkeep of schemata for XML-oriented document repositories. Our approach

assumes that there are no type or schema de�nitions available for the incoming

XML documents, as occurs in many web-based applications. This paper describes

two unsupervised algorithms for both, the Clustering Routine that detects sig-

ni�cant changes in the structure of the repository, and for the Schema Manager

that keeps the schemata up-to-date as new documents arrives to the system. We

have implemented these methods over G, a commercial semi-structured database

system.

We are exploring a number of possibilities for future research. First of all, we

need to assess the eÆciency of the proposed solution; we also need to understand

better how the arrival order of the documents a�ects the performance of the

clustering routine. In addition to this, there are some useful applications that can

be built on top of the foundations presented in this paper, such as the analysis of

the changes in the schemata as they evolve over time. We are also considering the

possibility of enhancing the system by means of semantic relationships de�ned

in ontologies.

References

1. W3C Consortium: XQuery 1.0: An XML Query Language. In:

http://www.w3.org/xquery. (2002)

2. Chamberlin, D., Robie, J., Florescu, D.: Quilt: An XML query language for hetero-

geneous data sources. In: WebDB 2000. (2000) 53{62

3. Cluet, S., Veltri, P., Vodislav, D.: Views in a large scale XML repository. In: VLDB

2001. (2001) 271{280

4. Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.P.: OBSERVER: An approach

for query processing in global information systems based on interoperation across

pre-existing ontologies. Distributed and Parallel Databases 8 (2000) 223{271

5. H�elide: The G Web Applications Platform. In: http://www.helide.com. (2002)

6. W3C Consortium: XML schema. In: http://www.w3.org/XML/Schema. (2002)

7. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees

and related problems. SIAM Journal of Computing 18 (1989) 1245{1262

8. Aramburu, M.J., Berlanga, R.: A temporal object-oriented model for digital libraries

of documents. Concurrency: Practice and Experience 13 (2001)

