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Abstract. We apply tools coming from singularity theory, as Hamburger-Noether ex-
pansions, and from valuation theory, as generating sequences, to explicitly describe order
functions given by valuations of 2-dimensional function fields. We show that these order
functions are simple when their ordered domains are isomorphic to the value semigroup
algebra of the corresponding valuation. Otherwise, we provide parametric equations to
compute them. In the first case, we construct, for each order function, families of error
correcting codes which can be decodified by the Berlekamp-Massey-Sakata algorithm and
we give bounds for their minimum distance depending on minimal sets of generators for
the above value semigroup.

1. Introduction

To treat of laying the foundations of algebraic geometry codes, in [8] was introduced
the concept of order function, which allows to study, in a unique treatment, classical codes
as the duals of one-point geometric Goppa codes or weighted Reed-Muller codes.

Order functions are defined on the so-called order domains and they provide valuation
rings that are included in the quotient field of such an order domains. This fact has
been established in [9] and used to give a non-usual example of an order function, on
a polynomial ring in two indeterminates, which does not correspond to any monomial
ordering. Although, that paper supplies many interesting examples, it does not contain a
systematic development to describe and compute order functions given by valuations.

Furthermore, in [6], the concept of order function has been enlarged in such a way that
the image set of an order function needs not be a subsemigroup of that of the nonnegative
integers but only a well-ordered semigroup. With the help of these order functions, by
using evaluation maps, error-correcting codes, called evaluation codes, can be constructed.
The main achievements of the dual codes of these codes are that bounds for their minimum
distance can be given depending on the order function used for their definition and that
they can be decodified (in an easy and fast manner) by using the Berlekamp-Massey-Sakata
algorithm.

In this paper, we consider valuations of function fields centered at some local ring and
show that the semigroup algebras of their value semigroups are ordered domains. We cen-
ter our study in the 2-dimensional case. We explicitly describe those algebras by regarding
them as graded algebras associated with the valuation. This allows to determine parame-
ters for their corresponding evaluation codes. Furthermore, we see that above valuations
provide, even over domains different from the semigroup algebra, order functions that can
be treated in an algorithmic and very explicit way.
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To do it, we give a deep description of the above cited valuations, focused to a simple
computation of their value semigroups and to easily handle those order functions that they
determine. We consider a refinement of Zariski’s classification of these valuations in the line
given in [10], but presented in terms of the so-called Hamburger-Noether expansions. These
expansions, for curve singularities over algebraically closed fields whose characteristic needs
not be zero, were introduced by Campillo in [1] and we can use the computer algebra
system SINGULAR [7] to compute them. More explicitly, we consider valuations of the
quotient field K of a 2-dimensional Noetherian local regular domain R, centered at R,
called plane valuations and a classification for these ones in terms which allow us to
explicitly manipulate them. We also assume that R has an algebraically closed coefficient
field k of arbitrary characteristic.

By using the above classification and the concept of generating sequence of a valuation
(Definition 4.1), we shall show that for all plane valuations ν but those of type A and some
of type B, k[S], S being the value semigroup of ν, can be regarded as a graded algebra
relative either to ν and R or to o := −ν and to a subring of K. (Note that when the
valuation is of type A or B-I, the semigroup S coincides with the semigroup of a germ of
irreducible curve and it is a numerical one). The advantages of the above construction
are that it allows to determine generators for S, the defining ideal of k[S] (that ideal
I of some polynomial ring A such that k[S] ∼= A/I) and to see how o works over k[S].
Furthermore, we can decide when the associated order function (which is of a particular
type called weight function) is not of monomial type. Since we can describe this semigroup
algebra, bounds for the minimum distance of the associated codes can be provided. As a
consequence, we are able to explicitly construct evaluation codes (with information about
their parameters) over domains whose quotient field is a function field of transcendence
degree two. For more general cases, we also prove in Proposition 6.2 that evaluation codes
can be constructed.

Finally, we provide ordered domains included in K whose order function is o and we
show how to compute o(h) for any element h ∈ K.

Section 2 of the paper is introductory, it shows that the value semigroups of order
functions and valuations satisfy analogous properties, and it also gives conditions to that
valuations provide weight functions. The concept of Hamburger-Noether expansion of a
valuation, the classification and parametric equations to compute plane valuations (and
so, weight functions) are presented in Section 3, while the types of valuations which give
rise to weight functions and a subring of K whose graded algebra is isomorphic to k[S] are
provided in Section 4. Section 5 describes the value semigroup of a plane valuation, the
defining ideal of k[S], and how to use this information to give bounds for the minimum
distance of the codes associated with k[S]. In Section 6, we explain how to compute
order functions and their ordered domains with a unique input: the Hamburger-Noether
expansion of a valuation. In some cases we use other existing algorithms for treating curve
singularities. We conclude it by giving several examples.

2. Weight functions and valuations

First at all, we give some definitions for semigroups. Denote by α, β, γ arbitrary elements
in a commutative semigroup Γ with zero. Then Γ is called cancellative if α + β = α + γ
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implies β = γ. An order ≤ on Γ is said to be admissible if, whenever 0 ≤ α it holds that
α+ γ ≤ β + γ whenever α ≤ β.

Throughout this paper, unless otherwise stated, Γ will denote a cancellative well-ordered
commutative with zero semigroup, where the order is admissible. Let Γ be as above and
denote by Γ−∞ the semigroup Γ ∪ {−∞}, which is ordered as Γ and −∞ is a minimal
element. Denote by k an algebraically closed field of arbitrary characteristic, k∗ = k \ {0}
and by T a k-algebra.

Definition 2.1. An order function on T is a mapping o from T onto Γ−∞ such that for
f, g ∈ T , it must be satisfied the following statements:

• o(f) = −∞ iff f = 0;
• o(af) = o(f) for all nonzero element a ∈ k∗;
• o(f + g) ≤ max{o(f), o(g)};
• If o(f) = o(g), then there exists a nonzero element a ∈ k∗ such that o(f − ag) <
o(g).

An order function such that it also satisfies o(fg) = o(f)+o(g) is called a weight function.

Definition 2.2. A valuation of a field K is a mapping

ν : K∗(:= K \ {0}) → G,

where G is a totally ordered group such that it satisfies
• ν(u+ v) ≥ min{ν(u), ν(v)};
• ν(uv) = ν(u) + ν(v)

for u, v ∈ K∗.

Let ν a valuation of K. The subring of K, Rν := {u ∈ K∗ | ν(u) ≥ 0} ∪ {0} is called
the valuation ring of ν. Rν is a local ring whose maximal ideal is mν := {u ∈ K∗ | ν(u) >
0} ∪ {0}. We shall call the rank of the valuation ν (rk(ν)) the Krull dimension of the ring
Rν .

From now on, we shall assume that (R,m) is a Noetherian local regular domain. We
say that a valuation ν of the quotient field of R, which in the sequel will be denoted
by K, is centered at R if R ⊆ Rν and R ∩ mν = m. In this case, the ideals which are
contractions to R of ideals in Rν are called valuation ideals or ν-ideals. Finally, the subset
of G, ν(R \ {0}), is called the semigroup of the valuation ν (relative to R).

Proposition 2.1. The value semigroup S of a valuation ν of a field K, centered at R, is
a cancellative, commutative, free of torsion, well-ordered semigroup with zero, where the
associated order is admissible. Moreover, F = {Pα}α∈S, where

Pα := {f ∈ R \ {0} | ν(f) ≥ α} ∪ {0}
is the family of ν-ideals (in R) of the valuation ν.

Proof. We shall prove that S is free of torsion, F is the family of ν-ideals and, finally,
that S is well-ordered. The remaining properties are clear.

Assume that ν(u) 6= 0, u ∈ K \ {0}, then either ν(u) > 0 or ν(u−1) > 0, so either
u ∈ mν or u−1 ∈ mν and therefore either up ∈ mν or u−p ∈ mν , p being a positive
integer. Thus ν(up) 6= 0 and the group spanned by S, G(S) (which is that satisfying that
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there exists a semigroup homomorphism η : S → G(S) such that if H is a commutative
group and ξ : S → H a semigroup homomorphism, then there exists a unique semigroup
homomorphism g : G(S) → H such that g ◦ η = ξ) is free of torsion. This proves that S
is also.
R is a Noetherian ring and then rk(ν) < ∞ (see [12, App. 2]). So, each ν-ideal I is

finitely generated. Consider a finite set of generators for I and set α the minimum of the
values (by ν) of these generators, then it is straightforward that I = Pα and so I ∈ F .

Finally, S is well-ordered because the family of ν-ideals F is also [12, App. 3].

We have just proved that the value semigroup relative to a valuation satisfies the same
properties as those relative to order functions. Note that the fact that S is free of torsion
can also be deduced from the fact that S has an admissible and total well-order.

The following result shows how to get ordered domains from certain valuations.

Proposition 2.2. Let K be the quotient field of a Noetherian local regular domain R.
Let ν : K∗ → G be a valuation of K which is centered at R and denote by S its value
semigroup. Also assume that the canonical embedding of the field k := R/m into the field
Kν := Rν/mν is an isomorphism.

Denote by o the mapping o : K∗ → G given by o(u) = −ν(u) and let A ⊆ K∗ be a
k-algebra satisfying that o(A) is a cancellative, commutative, free of torsion, well-ordered
semigroup with zero, Γ, where the associated order is admissible. Then, o : A→ o(A)−∞,
o(0) = −∞, is a weight function.

Proof. We only need to show the last condition defining order functions, since the
remaining ones are clear. Firstly, pick α ∈ S and consider its associated ν-ideal (relative
to R) Pα. Set Pα+ := {f ∈ R | ν(f) > α} ∪ {0}, then the k-vector space Pα/Pα+ is
one-dimensional since k ∼= kν .

Consider f, g ∈ A (f 6= 0, g 6= 0) such that o(f) = o(g). Write f = u1/v1 and g = u2/v2,
where ui, vi ∈ R (i = 1, 2). o(f) = o(g) implies ν(u1v2) = ν(u2v1), we denote by α ∈ S
this value. The cosets of u1v2 and u2v1 in Pα/Pα+ are linearly dependent and thus there
exists δ ∈ k such that

ν(u1v2 − δu2v1) > ν(u1v2).
So ν(f − δg) = ν(u1v2 − δu2v1) − ν(u1v2) > ν(u1v2) − ν(v1v2) = ν(u1) − ν(v1), which
concludes the proof.

In the rest of this paper, we only consider valuations of the quotient field K of a
Noetherian local domain of dimension two R, centered at R, which we shall call plane
valuations. We shall introduce a suitable way to compute them. This procedure will allow
us to classify valuations and explicitly compute their value semigroups S.

3. The 2-dimensional case

3.1. Preliminaries. Valuations were introduced by Krull and they have been studied
to treat the desingularization problem in Algebraic Geometry. Zariski in [11] classified
plane valuations by attending classical invariants for them as the rank (which is the Krull
dimension of their valuation ring) or the rational rank (which is the dimension of the
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Q-vector space G⊗Z Q, G being the value group of the valuation and Z (Q, respectively)
the set of integer (rational, respectively) numbers).

By using previous results by Zariski, Spivakovsky in [10] gives the following geometrical
view of plane valuations.

Theorem 3.1. There is a one to one correspondence between the set of plane valuations
(of K centered at R) and the set of simple sequences of quadratic transformations of the
scheme Spec R.

Recall that a quadratic transformation of a 2-dimensional scheme X consists of blowing
it up at a closed point P which means, essentially, replacing the point P by a projective
line called the exceptional divisor. The correspondence in Theorem 3.1 works as follows:
each valuation ν is associated with the sequence

(1) π : · · ·XN+1
πN+1−→ XN −→ · · · −→ X1

π1−→ X0 = X = Spec R,

where πi+1 is the blowing-up of Xi at the unique closed point Pi of the exceptional divisor
Li (that obtained after the blowing-up πi) satisfying that ν is centered at the local ring
OXi,Pi (:= Ri).

Theorem 3.1 allows Spivakovsky to give a classification of plane valuations which im-
proves Zariski’s and it is based in the form of the so-called dual graph of the sequence π.
Note that this graph reflects the relative position of the exceptional divisors of π. More-
over, he notices that the behaviour of plane valuations is similar to that of germs of plane
curves.

However, the dual graph is not useful when we want to get parametric equations for
computing valuations. Furthermore, the classical theory for curves uses, for this purpose,
Puiseux exponents that only work for zero characteristic.

We take an interest in coding theory and, so, we are interested in positive characteristic.
Therefore, we are going to give a classification (which is basically the one given in [10]) but
expressed in terms of the so-called Hamburger-Noether expansions. These expansions have
been used in [5] to study saturation with respect to valuations of 2-dimensional Noetherian
local regular domains.

3.2. Hamburger-Noether expansions and classification of plane valuations. Let
ν be a plane valuation (of K centered at R) and take {u, v} a regular system of parameters
for the ring R. Assume that ν(u) ≤ ν(v). This means that there exists an element a01 ∈ k
such that the set {u1 = u, v1 = (v/u) − a01} constitutes a regular system of parameters
for the ring R1. If, now, ν(u) ≤ ν(v1) holds, then we repeat the above operation and we
keep doing the same thing until we get

v = a01u+ a02u
2 + · · ·+ a0hu

h + uhvh,

where either ν(u) > ν(vh) or ν(vh) = 0, or

v = a01u+ a02u
2 + · · ·+ a0hu

h + · · · ,

with infinitely many steps.
In the last two cases, we have got the Hamburger-Noether expansion for ν, obtaining

Rν = Rh when ν(vh) = 0. Otherwise, set w1 := vh and reproduce the above procedure for
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the regular system of parameters {w1, u} of Rh. As a consequence, we obtain an ordered
family of equalities which have the form

(2) wj−1 =
hj∑
i=1

ajiw
i
j + w

hj

j wj+1.

The procedure could continue indefinitely or we could obtain a last equality like (2) whose
index j will be denoted by z. By simplicity’s sake, we write z ≤ ∞, where z = ∞ means
that there is no last parameter w. Therefore, we can associate to each plane valuation
ν a set of expressions, depending on a regular system of parameters {u, v} of R, which
provides a regular system of parameters for each local ring Ri given by the sequence π
described in Section 3.1.

This set of equations is called the Hamburger-Noether expansion of the valuation
ν in the regular system of parameters {u, v} of the ring R and it has the form

v = a01u+ a02u
2 + · · ·+ a0h0u

h0 + uh0w1

u = wh1
1 w2

...
...

ws1−2 = w
hs1−1

s1−1 ws1

ws1−1 = as1k1w
k1
s1

+ · · ·+ as1hs1
w

hs1
s1 + w

hs1
s1 ws1+1

(3)
...

...
wsg−1 = asgkgw

kg
sg + · · ·+ asghsg

w
hsg
sg + w

hsg
sg wsg+1

...
...

wi−1 = whi
i wi+1

...
...

(wz−1 = w∞z ).

Notice that the family {si}g
i=0 of nonnegative integers is the set of indices corresponding

to those rows (called free rows) of the expression (3) which have some nonzero ajl. It is
clear that 0 < s1 < s2 < · · · < sg ≤ z, g ∈ N ∪ {∞} and kj = min{n ∈ N | asj ,n 6= 0},
where N is the set of non-negative integers.

In accordance to its Hamburger-Noether expansion, we classify plane valuations (of K
centered at R) in the following five types.

• Type A.

A plane valuation ν will be called of type A, whenever its Hamburger-Noether expansion
is finite and its last row has the following shape

wsg−1 = asgkgw
kg
sg + · · ·+ asghsg

w
hsg
sg + w

hsg
sg wsg+1,

where wsg+1 ∈ Rν and ν(wsg+1) = 0. Clearly g <∞, hsg <∞ and z = sg.

• Type B.
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We shall say that a plane valuation is of type B when its Hamburger-Noether expansion
has a last equality associated with an infinite sum like this

wsg−1 =
∞∑

j=kg

asgjw
j
sg
.

It is clear that g <∞, hsg = ∞ and z = sg.
• Type C.

A plane valuation is of type C if its Hamburger-Noether expansion has a last free row like
this

wsg−1 = asgkgw
kg
sg + · · ·+ asghsg

w
hsg
sg + w

hsg
sg wsg+1

and, after, finitely many non-free rows with the shape

wsg = w
hsg+1

sg+1 wsg+2

...
...

wz−1 = w∞z .

Here g <∞, hz = ∞ and sg < z <∞.
• Type D.

A plane valuation will be called of type D, whenever its Hamburger-Noether expansion
has a last free row like this

wsg−1 = asgkgw
kg
sg + · · ·+ asghsg

w
hsg
sg + w

hsg
sg wsg+1

followed by infinitely many rows with the shape

wi−1 = whi
i wi+1,

(i > sg). Clearly, g <∞ and z = ∞.
• Type E.

When the Hamburger-Noether expansion of a plane valuation repeats indefinitely the basic
structure, then the valuation is called to be of type E. That is to say, there exist infinitely
many ordered sets of equalities with the shape

wsi−1 = asiki
wki

si
+ · · ·+ asihsi

w
hsi
si + w

hsi
si wsi+1

...
...

wsi+1−2 = w
hsi+1−1

si+1−1 wsi+1 .

Here g = z = ∞.
Notice that this classification does not depend on the regular system of parameters we

choose on R.
Table 1 relates our classification to that given by Zariski. We have added a new invari-

ant, the transcendence degree (in short tr.deg) of Kν over k, which is important for us as
Proposition 2.2 shows.

Remark. As the table shows, classical invariants provide a refinement of type B valuations.
In the course of the paper, we shall clarify the reason for it. We are not interested in type
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type subtype rk rat. rk tr. deg
A — 1 1 1
B I 2 2 0

II 1 1 0
C — 2 2 0
D — 1 2 0
E — 1 1 0

Table 1. Invariants and classification of plane valuations.

A valuations since its value semigroup is that of a germ of irreducible curve and because
Table 1 shows that its transcendence degree is 1, however for the sake of completeness and,
essentially, because all plane valuations can be regarded as a limit of type A valuations,
we also consider them. The idea, to understand this, is that each divisor appearing in
the sequence π associated with a plane valuation ν, defines a type A valuation νi centered
at R. By bearing in mind that Rν is the directed limit of the sequence of rings Ri, it
can be proved that the valuation ν and the so-called limit valuation of the valuations νi,
limi→∞ νi, are equivalent and so analogous for our purposes. Notice that no valuation
of type A satisfies that the dimension of the k-vector spaces Pα/Pα+ equals one for all
elements α in the value semigroup of ν.

3.3. Parametric equations of a plane valuation. In this Section, we show, case by
case, how to obtain parametric equations for any plane valuation ν (of K centered at
R). These equations depend on one or two parameters according the type of valuation.
Moreover, we also explain how to compute the value ν(h) for any h ∈ R. It is obvious
that this allows us to compute ν(h) for any h ∈ K and so o(h), o being the above defined
weight function. Note that we make our computations in some normalization of ν (or o).
Other normalizations give rise to equivalent valuations. The associated order functions
and their related codes do not depend on the normalization we have chosen.

• Type A.

Let us assume that ν is a type A plane valuation and that XN+1 → XN is the last
blowing-up (centered at PN ) of its associated sequence π. Consider its Hamburger-Noether
expansion E and set wsg = t1 and wsg+1 = t2. By performing back substitution on E, we
get parametric equations for ν, which we shall write u = u(t1, t2), v = v(t1, t2). It is clear
that both expressions are polynomials in the indeterminates t1 and t2.

Recall Section 3.1. If h1 and h2 are elements in R, we shall denote by I(h1, h2) the
intersection multiplicity, at the maximal ideal m of R, between the germs of curves on X
= Spec R that define h1 and h2. On the other hand, an analytically irreducible element
in R that defines a germ of plane curve whose strict transform in XN is not singular
and intersects LN transversely at PN is called to be a general element of the valuation ν
(relative to R). In [10], it is proved that for any h ∈ R

(3) ν(h) = min {I(h, f) | f is a general element of ν } .
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As a consequence, from the behaviour of the germs of plane curves (see [1] for instance),
we obtain that

ν(h) = νt1 [h(u(t1, t2), v(t1, t2))] ,
where νt1 maps h(u(t1, t2), v(t1, t2)) into the least exponent of the parameter t1.

• Type B.
Suppose that ν is a plane valuation of type B. Let R̂ the m-adic completion of the ring R.
Clearly, we can pick an irreducible element f ∈ R̂, which defines an analytically irreducible
germ of curve, having (in a suitable basis of R̂/(f): {u+(f), v+(f)}) the same Hamburger-
Noether expansion (as a curve) as ν. So, setting wsg = t and performing back substitution
in the Hamburger-Noether expansion of ν, we can conclude that u = u(t), v = v(t) are
parametric equations for the valuation ν. Both equations are in the ring of formal power
series in the indeterminate t, which we denote by K[[t]].

Finally, if h ∈ R, then

(4) ν(h) = (a, νt(h1(u(t), v(t)))

whenever νt is defined as in the case of type A valuations and h = fah1 is the factorization
of h in R̂ in such a way that f does not divide h1. This happens because ν is the restriction
to K of a valuation ν̂ of the fraction field of R̂ (centered at R̂) which satisfies the equality
(4). This last fact can be proved from the above consideration on the limit of type A
valuations and since the sum of the transcendence degree and the rank of ν̂ equals the
dimension of the ring R̂ and, thus, ν̂ is discrete (see [12] and [10]). Notice that a valuation
is said to be discrete whenever its value group is discrete, that is it has finite rank and the
quotient groups given by the ordered chain of its isolated subgroups are groups of rank 1.

• Type C.
The shape of the Hamburger-Noether expansion of the valuations ν of type C shows
that for all nonnegative integer n the inequality nν(wz) < ν(wz−1) holds. Moreover,
the same reasoning given for type B valuations proves that ν is a discrete valuation. As
a consequence, in a suitable normalization of the value group G of ν, we get G = Z2

lexicographically ordered, ν(wz) = (0, b) and ν(wz−1) = (c, d), (b, c > 0).
Now, since the local rings Ri associated with the sequence π relative to ν constitute

an infinite ascending chain satisfying Ri < Ri+1, < being the domination relation (what
means that Ri ⊂ Ri+1 and the contraction of the maximal ideal of Ri+1 to Ri is the
maximal ideal of this last ring), we get Rν = ∪∞i=z+1Ri and so h ∈ R ⊆ Rν can be
regarded as an element in the ring k[[wz−1/w

a
z , wz]], where a is some positive integer.

Then, if
h =

∑
hij(wz−1/w

a
z )iwj

z,

the following equality holds:

ν(h) = min {i(c, d− ab) + j(0, b) |hij 6= 0} .

This proves that setting wz−1 = t(c,d) and wz = t(0,b), and performing back substitution
in the Hamburger-Noether expansion of ν, we get parametric equations for ν, u = u(t),
v = v(t), u(t) and v(t) being in the algebra k[Z2] of the group Z2.

Finally, if νt is defined as above but over a suitable subset of k[Z2] and under the
lexicographical order on Z2, then ν(h) = νt(h(u(t), v(t)).



10 C. GALINDO AND M. SANCHIS

• Type D.
Assume that ν is a type D valuation. Since ν = limi→∞ νi with the notations given in the
remark at the bottom of the above section, to obtain parametric equations for ν, u = u(t),
v = v(t), we must consider the real but non rational number δ given by the continued
fraction [

hsg+1;hsg+2, hsg+3, . . .
]
,

write wsg+1 = t and wsg = tδ and perform back substitution in the Hamburger-Noether
expansion of ν. Notice that both u(t) and v(t) are elements in k〈t〉, k〈t〉 being the ring
of formal power series

∑
r∈R art

r such that ar ∈ k and the set {r ∈ R | ar 6= 0} is a
well-ordered subset of the set of real numbers, R, under the usual ordering.

Finally, it is clear that for the same definition of νt as above but over k〈t〉, one gets
ν(h) = νt(h(u(t), v(t)), for h ∈ R.

• Type E.
Assume, lastly, that ν is a type E valuation and consider the expansion given by all the
equalities of the Hamburger-Noether expansion of ν until the sjth one. In this way, we get
the Hamburger-Noether expansion of a type A valuation νj and if we delete from this last

expression w
hsj
sj wsj+1, we obtain (for a suitable basis) the Hamburger-Noether expansion

of an analytically irreducible germ of curve. Assuming that the characteristic of k is zero,
this gives equations v =

∑
ajru

r, ajr ∈ k and r ∈ Q (Puiseux expansions) which does not
depend on j (see [1, Sect. 3]). Taking into account that ν is a limit of type A valuations
including the νj ones, we conclude that the above sums give rise to parametric equations
u = u(t) = t and v = v(t) =

∑
r∈Q art

r ∈ k〈t〉, where the set {r ∈ Q | ar 6= 0} is infinite
and if write each element on it as a quotient of relatively prime elements, the sequence of
their denominators is not bounded. Thus, ν(h) = νt(h(u(t), v(t)), for h ∈ R.

4. The semigroup algebra as an ordered domain

Let ν be a plane valuation (of K centered at R) and S its value semigroup. Assume
that ν is not of type A. In this section, we shall see that the semigroup algebra K[S] is an
ordered domain whose order function depends on ν and we shall describe it. We shall do
this by considering an algebra isomorphic to k[S], the graded algebra relative to ν, and
by using the concept of generating sequence of a valuation. Notice that the hypothesis of
2-dimensionality of R is not necessary to define these concepts.

Definition 4.1. A sequence {ri}i∈I of elements in the maximal ideal m of R is said to be
a generating sequence (relative to R) of a valuation ν if, for any element α ∈ S, S being
the value semigroup of ν, the ν-ideal of R, Pα, is spanned by the set

(5)

 ∏
j∈I0⊆I,I0 finite

r
aj

j | aj ∈ N, aj > 0 and
∑

j∈I0
ajν(rj) ≥ α

 .

Minimal generating sequences of plane valuations are described in [10]. Next, in our
language, we say how to get these sequences.

Firstly, assume that (3) is the Hamburger-Noether expansion for ν. Set q0 = u, q1 =
v and, for 1 < i ≤ z (z 6= ∞), consider qi the defining equation of any analytically
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irreducible germ of curve on Spec R whose Hamburger-Noether expansion in the basis
{ū = u+ (qi), v̄ = v + (qi)} of R̂/(qi) is

v̄ = a01ū+ a02ū
2 + · · ·+ a0h0 ū

h0 + ūh0w̄1

ū = w̄h1
1 w̄2

...
...

w̄s1−1 = as1k1w̄
k1
s1

+ · · ·+ as1hs1
w̄

hs1
s1 + w̄

hs1
s1 w̄s1+1

...
...

w̄si−1−1 = asi−1ki−1
w̄

ki−1
si−1 + · · ·+ asi−1hsi−1

w̄
hsi−1
si−1 + · · · .

Then, a minimal generating sequence of ν can be obtained as follows, according the type
of valuation what ν belongs to.

Not all valuations have minimal generating sequences. Valuations of type B-II which
admit them are called of type B-II-a and the remaining ones will be of type B-II-b. To
understand this fact, we have to consider an element qg+1 which, in general, will be in the
m-adic completion R̂. qg+1 will be the element f given in Section 3.3 which allows ν to
be computed.

If qg+1, up to multiplication by an unit, belongs to R, then we are speaking about a
valuation of type B-II-a, and {qi}g+1

i=0 is a minimal generating sequence of ν.
Otherwise, if ν is of type B-II-b, this means that there exists an element in R which, in

R̂, factorizes as a product which contains qg+1 as a factor. When this last fact does not
happen, ν is a type B-I valuation. Neither valuations of type B-II-b nor those of type B-I
admit minimal generating sequences.

Let ν be a plane valuation of type C or D. In both cases {qi}g+1
i=0 constitute a minimal

generating sequence of ν. In the first type of valuations ν(qi) (0 ≤ i < g + 1) are data
lying on the line that joins the origin to ν(q0), but ν(qg+1) does not satisfy this property.
With respect to the second type, ν(qi) ∈ Q whenever 0 ≤ i < g + 1, but ν(qg+1) ∈ R \Q.

Finally, when ν is a type E valuation, the infinite sequence {qi}0≤i is a minimal gener-
ating sequence of ν.

The interest of order functions, for using them in coding theory, is that they provide
filtrations {Oα} (α is over the value semigroup of the order function) of the domain T ,
which are defined in such a way that the dimension of the quotient vector spaces Oα+/Oα

is one, α+ being the next element to α.
In the valuative case, this structure fits to that of the so-called graded algebra associated

with a valuation:

Definition 4.2. Let ν be a valuation (of the quotient fieldK of a local ring R and centered
at R) and S its value semigroup (relative to the ring R). The graded algebra associated
with ν is defined to be the graded k-algebra,

grνR =
⊕
α∈S

Pα

Pα+

.

The following proposition relates minimal generating sequences and the graded algebra
of a plane valuation.
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Proposition 4.1. Let ν be a type B-II-a, C or D plane valuation. Then a set {ri}i∈I ,
where ri ∈ m, is a generating sequence of ν if, and only if, the k-algebra grνR is spanned
by the cosets defined by the elements ri in grνR.

Proof. It suffices to suppose that r̄i = ri + Pν(ri)+ generates grνR and prove that if
α ∈ S then Pα = Qα, Qα being the ideal generated by the set given in (5). This is so
because the converse statement of the proposition is straightforward.

Clearly Qα ⊆ Pα . Let f ∈ Pα be such that ν(f) = α0 ≥ α, then f ∈ Pα0 and
f + Pα+

0
∈ grνR is a homogeneous element.

Since f + Pα+
0

= a
∏
r̄γi
i , a ∈ k, for some vector γ whose coordinates are non-negative

integers γi and if it is infinite, all its coordinates but finitely many vanish, we get that
f −a

∏
rγi
i ∈ Pα+

0
, and so, f ∈ Qα0 +Pα+

0
. Therefore f +f0 ∈ Pα+

0
, for some f0 ∈ Qα0 and

in the same way, f + f0 ∈ Qα0 + Pα+
1

for some α1 ∈ S, α1 > α0. Iterating, there appears
a increasing sequence α0 < α1 < · · · < αi < · · · , such that αi ∈ S, and f ∈ Qα0 + Pα+

i
for

each i. As a consequence

f ∈
∞⋂
i=0

(Qα0 + Pα+
i
).

Set m the maximal ideal of the ring R, if we prove that

(6)
∞⋂
i=0

(Qα0 + Pα+
i
) =

∞⋂
i=0

(Qα0 +mi),

then the proof can be completed, because by considering the quotient ring R/Qα0 and
setting m+Qα0 = m̄, one gets, in this ring,

⋂∞
i=0(Qα0 +mi) =

⋂∞
i=0 m̄

i = 0̄ = Qα0 . This
concludes the proof since

∞⋂
i=0

(Qα0 + Pα+
i
) = Qα0

and so f ∈ Qα0 ⊆ Qα.
It only remains to show (6). ν is a plane valuation of type B-II-a, C or D, therefore it

admits a finite minimal generating sequence {qi}i∈{0,...,g+1}. If f ∈ Pα with α ∈ S then,

f =
∑

γ∈M0⊆M

Aγ

∏
qγi
i

where M = {γ = (γ0, . . . , γg+1) |
∑g+1

j=0 γjν(qj) ≥ α} and Aγ ∈ R. Write

µα = min


g+1∑
j=0

γj | (γ0, . . . , γg+1) ∈M

 ,

then it is clear that, f ∈ mµα , and moreover µα′ > µα whenever α′ > α. Thus⋂∞
i=0(Qα0 +Pα+

i
) ⊆

⋂∞
i=0(Qα0 +mi). This concludes the proof of (6), because the converse

inclusion holds since R is a Noetherian domain and Pα is a m-primary ideal for all α.

Remark. Notice that for type E valuations, it is also true that the set of cosets in
Pν(qi)/Pν(qi)+ of a minimal generating sequence {qi}i∈I spans the k-algebra grνR.
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On the other hand, associated with an order function o : T → Γ−∞, one can also
define its graded algebra as G :=

⊕
α∈ΓOα/Oα− , where Oα := {f ∈ T | o(f) ≤ α} and

Oα− := {f ∈ T | o(f) < α}.
The following result collects the consequences in terms of order functions of the above

developed theory. There, we shall consider an order function associated with a valuation
ν with value semigroup S. In such a case, we slightly modify the definition of graded
algebra: set o = −ν and suppose that T is any k-algebra of K such that S ⊆ o(T ), then
the sets Oα, α ∈ S are k-vector spaces and we define the graded algebra groT as above
but grading it in S, the value semigroup of ν, i.e. groT :=

⊕
α∈S Oα/Oα− .

Theorem 4.1. Let ν be a valuation of the fraction field K of a 2-dimensional Noetherian
local regular domain R which is centered at R. Assume that ν is of type B-II-a, C, D or
E and let {qi}i∈I be a minimal generating sequence of ν. Then

(1) The function o (= −ν) defined over the k-algebra groT , T := k[{q−1
i }i∈I ] ⊆ K, is

a weight function whose value semigroup is S, the value semigroup of ν.
(2) The graded algebra associated with ν (relative to R) and that associated with o are

isomorphic and both are isomorphic to the k-algebra of the semigroup S, k[S].
(3) Assume that ν is of type B-II-a, C or D. Then, any Noetherian k-algebra T ⊆ K

such that
(i) o : groT → S is a weight function,
(ii) there exist elements fi ∈ T (0 ≤ i ≤ s < ∞) such that f−1

i ∈ R and the set
{o(fi +Oo(fi)−)}0≤i≤s spans S

must be of the above form, that is T = k[{q−1
i }i∈I ], {qi}i∈I being a minimal gen-

erating sequence of ν.
(4) Parametric equations for the function o, which allow the explicit computation of

o(h), h ∈ K are those given in Section 3.3.

Proof. The same procedure of Proposition 2.2 proves that dimOα/Oα− = 1, α ∈ S,
and this proves (1). Clause (2) is a consequence of the following k-algebra isomorphisms
groT ∼= k[S] ∼= grνR, which hold by fixing elements of each value in T or R. Pick a family
{fi}0≤i≤r≤s such that the sequence {o(fi + Oo(fi)−)}0≤i≤r is a minimal set of generators
of the semigroup S. The structure of S shows that T = K[{fi}0≤i≤r]. Since the set
{f−1

i + Po(fi)+}0≤i≤r spans grνR, we have completed the proof of (4) by Proposition 4.1.
Finally, Clause (4) is clear from Section 3.3, where we have seen how to compute o(h) for
any h.

5. Evaluation codes associated with the semigroup algebra

Along this section o : groT → S denotes the weight function given by a plane valuation
of type B-II-a, C, D or E and by a minimal generating sequence {qi}i∈I of it. Recall
that we have set T = k[{q−1

i }i∈I ] and groT ∼= K[S]. Assume that φ : groT → kn is an
epimorphism of k-algebras. From φ and o, one can define a family of evaluation codes
{Eα}α∈S in the following way

Eα = spank{φ(f) | o(f) ≤ α; f ∈ groT}.
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The dual space of the vector space Eα will be denoted by Cα. Since Cα = 0 for α large
enough, we denote by ω the least element in S satisfying Cα = 0 for all α ≥ ω. Our aim
is to give a bound for the minimum distance of the code Cα. To do this, we shall study
the semigroup S which has the advantage that it is that of a plane valuation.

It is clear that the set the values {β̄i := o(q−1
i ) = ν(qi)}0≤i<r, said to be of maximal

contact, where r = g + 2 if ν is of type B, C or D, and r = ∞ when ν is of type E, is a
minimal set of generators of the semigroup S.

There is no lose of generality if we assume that the group of values of ν is a subgroup
of Z2 if ν is of type B or C and it is a subgroup of R in the remaining cases.

The values {β̄i}0≤i<r can be obtained from the Hamburger-Noether expansion of ν.
This is a consequence of the facts given in Section 3.3 and from those formulae given in
[1] for germs of plane curves. Explicitly, set β′0 = 1 and for 1 ≤ i < r

β′i := (hsi−1 − ki−1 + 1) +
1

hsi−1+1 + · · ·+ 1
k+

i

,

where k+
i means either the element ki or the remaining sums (which could be infinite) of

the Hamburger-Noether expansion whenever i = g + 1 and ν is of type C or D. Clearly
β′i ∈ Q for i < r − 1, β′g+1 = ∞ in case B, β′g+1 ∈ Q in case C and β′g+1 ∈ R \ Q in case
D. Then β̄0 = ν(u), and for 0 ≤ i < r − 1,

β̄i+1 = miβ̄i + (β′i+1 − 1)ei,

where mi is the denominator of β
′
i when we write it as a quotient of relatively prime

elements and ei = ν(wsi). Notice that

(β′i+1 − 1)ei = ei(hsi − ki) + ν(wsi+1).

Theorem 5.1. Let {Cα}α∈S be the family of dual codes of {Eα}α∈S defined by a weight
function o : groT (T := k[{q−1

i }0≤i<r]) → S which comes from a type B-II-a, C, D or E
plane valuation ν and a minimal generating sequence {qi}0≤i<r of it, and φ : groT → kn an
epimorphism of k-algebras. Set {β̄i}0≤i<r a minimal system of generators of the semigroup
S, {ei}0≤i<r−1 the family of values ei = ν(wsi) and ni those positive integers such that
eini = ei−1.

Then, a bound for the minimum distance of the code Cα is

min

[
d∏

i=0

(ai + 1)

]
− 2,

where (a0, a1, . . . , ad) runs over the unique coefficients of the expressions of those elements
δ ∈ S (ω > δ > α) of the form δ =

∑d
i=0 aiβ̄i (ai ∈ N), d = r − 1 and ai < ni (1 ≤ i < d)

if ν is not of type E, and d < r and ai < ni (1 ≤ i ≤ d) otherwise.

Proof. Recall that if ν is of type B, β̄r = (1, 0) (and the first coordinate of the remaining
values β̄i is 0), when ν is of type C, then β̄r does not belong to the line joining the origin to
β̄0, unlike the other values β̄i, and in the case of type D valuations, one gets β̄r ∈ R\Q, but
the remaining values β̄i are rational numbers. Therefore, for fixed δ ∈ S, the coefficient
ar of any expression δ =

∑r
i=0 aiβ̄i for the above types of valuations is unique.
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Furthermore, assume that
r−1∑
i=0

aiβ̄i =
r−1∑
i=0

a′iβ̄i

and ai (a′i, respectively) < ni (1 ≤ i < r). Then, it is clear that a′r−1 − ar−1 is a multiple
of er−1 and so it is a multiple of nr−1, which contradicts ar−1 < nr−1. Repeating this
procedure for r− 2, r− 3, . . ., one leads to the uniqueness of the above expression. Notice
that this last reasoning is also valid for valuations of type E.

Finally, a bound for the minimum distance follows in an straightforward way from the
uniqueness of the above expression of δ and from the fact that a bound for the minimum
distance of the code Cα is given by

min {µδ | δ ∈ S, δ > α and Cδ 6= Cδ+} ,

µδ being the cardinality of the set {(δ1, δ2) ∈ S2 | δ1 + δ2 = δ} and δ+ the minimum
of the set {γ ∈ S | γ > δ}. This fact can be proved following the line given in [8] for
subsemigroups of the semigroup N of the nonnegative integers.

Remark. Valuations of type E are interesting from the point of view of order functions.
As we shall see, they do not give monomial orderings. Note that the example of [9] cited
in the introduction corresponds to this type of valuations. To handle these valuations is
not easy because we can obtain their parametric equations only in characteristic zero and,
even in this case, we get power series with infinitely many data which are not suitable for
an algorithm. However, we shall handle many type E valuations by using the fact that
they can be regarded as a limit of type A ones.

For that reason, although we have yet mentioned this fact, now we shall be more precise.
Let π the sequence (1) of a type E valuation ν. Consider the finite subsequence of π

Xi
πi−→ Xi−1 −→ · · · −→ X1

π1−→ X0 = X = Spec R,

and the corresponding valuation νi (of type A). Then, for every f ∈ K, there exists a
nonnegative integer m(f), that depends on f , such that ν(f) = νi(f) whenever i > m(f).
We have assumed that all valuations are normalized in such a way that the minimum value
by ν or νi of the elements in the maximal ideal of R is 1.

The proof of the above fact follows after realizing that the map ν∗, defined on K as
ν∗(f) = limi→∞ νi(f), is a valuation of K which assigns to f the value νi(f) for i large
enough, and that ν and ν∗ are equivalent valuations.

To see the first assertion, it suffices to consider f ∈ R, analytically irreducible, and note
that if we consider divisorial valuations νi, i ≥ i0, whose Hamburger-Noether expansion
is large enough to have the same common part with the Hamburger-Noether expansion of
the germ of plane curve given by f (in the corresponding basis of the maximal ideal of R
and R/(f)R), then νi(f) have the same value for all i ≥ i0 (use (3) and the known theory
of plane algebroid curves [1]). Finally, by noticing that the valuation ring Rν is the di-
rected limit lim→OXi,Pi , that Rνi = OXi,ηi , for ηi the generic point of the defining divisor
of νi, and that there exists a one to one morphism of local rings OXi,Pi → OXi+1,ηi+1 we
conclude Rν = Rν∗ .
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The following result allows us to regard grνR as a quotient of a polynomial algebra.
Since groT ∼= grνR ∼= k[S], this completes the construction of our codes.

Theorem 5.2. Let ν be a plane valuation of type B-II-a, C, D or E, {β̄i}0≤i<r the gen-
erators of the value semigroup of ν and {qi}0≤i<r a minimal generating sequence of ν.
Set A[ν] = k[{Xi}0≤i<r] and define ψ : A[ν] → grνR, by ψ(Xi) = qi + Pν(qi)+. ψ is an
epimorphism of k-algebras. Consider, for each i < r − 1, the unique expression

(7) niβ̄i =
i−1∑
j=0

γij β̄j ,

where γij are nonnegative integers such that γij < nj and nj (j ≤ i) the values defined in
Theorem 5.1. If ai ∈ k is that value satisfying

qni
i + P(niβ̄i)+

= ai

i−1∏
j=0

q
γij

j + P(niβ̄i)+

 ,

then the ideal of A[ν], kerψ, is spanned by the set gi := aiX
ni
i −

∏i−1
j=0X

γij

j , (0 ≤ i < r−1).

Proof. Consider the subset G of A[ν] whose elements are expressions w = aπ1 + bπ2

such that πl (l = 1, 2) are forms with coefficient 1 that satisfy ν(π̄1) = ν(π̄2) and ν(aπ̄′1 +
bν(π̄′1) > ν(π̄′1), where π̄l means substituting Xi by qi in π and where π′l equals πl/X

b
r−1

if ν is of type B and b is the exponent of Xr−1 in πl, and π′l = πl otherwise. G generates
kerψ.

If ν is not of type E, each expression w, up to constant, can be represented by a
pair (α, β) ∈ Nr × Nr where α and β are the ordered exponents of the Xi in π1 and
π2. The obtained set Ω is a congruence (i.e., an equivalence relation on Nr such that
(α+γ, β+γ) ∈ Ω whenever (α, β) ∈ Ω and γ ∈ Nr). Now, if ∆ is the subset of Ω consisting
of the pairs representing the elements in the set {gi}0≤i<r−1, we conclude the result after
noticing that Ω is the smallest congruence containing ∆. We arrive at that conclusion by
getting an element in ∆ from any element in Ω by repeating, for each coordinate z of α
and β, the following procedure: if z − niβ̄i > 0 (i as large as possible), we replace (α, β)
by another element (α′, β′) where we have subtracted ni to the ith coordinate of α or β
(what corresponds to z) and we have added γij to the jth one according to the expression
(7).

The above reasoning with minor changes proves the same property for type A valua-
tions. In the above remark, we have shown that if ν is a valuation of type E, we can
consider a sequence of valuations of type A, {νi}i≥0, converging to ν. It is clear that pick-
ing a large enough positive integer i0, then the (normalized) values of νi, i ≥ i0, {ei, β̄i}i≤g

(which can be computed as above, r = g + 1) are the same as the g first of ν. Thus, if
h ∈ kerψ, h will be in the ideal 〈gi〉i≤i0 for some i0.

Remark. Notice that we can change the element qi of the minimal generating sequence by
a

1/ni

i qi. In this case gi = Xni
i −

∏i−1
j=0X

γij

j , (0 ≤ i < r − 1).
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6. Other weight functions. Algorithms and examples

Proposition 2.2 and 2 of Theorem 4.1 give a computable weight function for each suitable
plane valuation and k-algebra. The next straightforward result provides some ordered
domains suited to the above results.

Proposition 6.1. Consider a valuation ν and notations as in Theorem 5.2.
1. If ν is of type B, C or D and q ∈ k[q−1

0 , q−1
1 , . . . , q−1

r−2] such that o(q) > 0, then:

a. The map o : k[q, q−1
r−1] → o(k[q, q−1

r−1]) is a weight function.
b. The map o : k[q−aq−b

r−1, q
−cq−d

r−1] → o(k[q−aq−b
r−1, q

−cq−d
r−1]) is a weight function

whenever ν is of type B and a ν(q) + b ν(qr−1) 6= c ν(q) + d ν(qr−1) for a, b, c, d
positive integers.

2. For α ∈ S such that α < n1β̄1, set Πα the unique monic monomial in q0 and q1 whose
valuation is α, and

∆1 :=
1
qn1
1

− a1
1
qγ10
0

.

When o(∆i−1) ∈ S (i > 1), define inductively ∆i := ∆i−1−λiΠ−1
o(∆i−1), λi being the unique

element in k such that o(∆i) < o(∆i−1). If o(∆i0) > 0 and o(∆i0) 6∈ S for some i0 ≥ 1,
then o : k[q−1

0 , q−1
1 ] → o(k[q−1

0 , q−1
1 ]) is a weight function, and

o : k[q−1
0 , q−1

1 , q−1
r−1] → o(k[q−1

0 , q−1
1 , q−1

r−1])

is also whenever ν is not of type E.

Remark. We have explained how to construct codes and parametric equations for weight
functions coming from plane valuations. Next, we shall clarify why both constructions are
algorithmic. The algorithm for constructing the semigroup algebra K[S] is named A1 and
A2 that for obtaining the parametric equations and some suitable ordered domains. A2
also allows us to get representatives of every class in groT . A1 is very simple and A2 is
supported on other algorithms relative to curve singularities. The parametric equations of
algorithm A2 will allow us to explicitly compute the order functions of the above Propo-
sition. The last row of the Hamburger-Noether expansions of valuations of type B can
be infinite, however we can consider the so-called symbolic Hamburger-Noether expansion
for them (see [2]). This expansion contains as a last row an implicit equation in wsg and
wsg−1 , which allows us to explicitly obtain as many elements of this last row as we want.
So we can use this symbolic expansion to compute the valuation ν of any element of the
field as we have described by successive substitution and lazy evaluation.

The input of our algorithm A1 is a convenient form of the Hamburger-Noether expan-
sion of a plane valuation ν (types B-II-a, C, D or E). For valuations of type B, we only
need to know the first element in the last row of their expansion, which can be expressed
as wsg−1 = asgkgw

kg
sg + . As we have said, if ν is of type C, we must also fix two pairs

in Z2, (0, b) and (c, d) corresponding to ν(wz) and ν(wz−1). For type D valuations, we
change the last infinite set of non-free rows wi−1 = whi

i wi+1, (i > sg) by an expression
wsg = wδ

sg−1
, where, as above, δ is the real, non rational, number given by the continued

fraction
[
hsg+1;hsg+2, hsg+3, . . .

]
. Finally, we can obtain the Hamburger-Noether expan-

sion of infinitely many valuations of type E simply by giving some recursive procedure
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which provides the values aij , hj , kj and si.

The input of our algorithm A2 is what we call the symbolic Hamburger-Noether ex-
pansion of a plane valuation ν. When ν is a valuation of type B, we consider an algebraic
curve given by f ∈ R such that it is analytically irreducible and compute its symbolic
Hamburger-Noether expansion as in [2] which will be the same of ν. That algorithm
allows us to decide if a polynomial corresponds to an analytically irreducible curve. To
compute implicit equations of some generating sequence of ν we can use lazy evaluation for
polynomials from the parametric equations that the symbolic Hamburger-Noether expan-
sion gives or to use the algorithm given in [3] to that purpose. Notice that ν corresponds
to a curve given by a polynomial. For valuations ν of types C and D, we can consider the
symbolic Hamburger-Noether expansion of a type B valuation ν∗ and replace its last row
by another set of rows that make the expansion into a type C or D valuation (the first
new row corresponds partly to the last one of ν∗ and the following ones can be chosen as
we desire). This choice has the advantage that a generating sequence for ν is the same
we know for ν∗. Summing up, good choices of the Hamburger-Noether expansions give
minimal generating sequences which are polynomial. Finally, for type E valuations, we
can do the same, but we only know a part of the generating sequence.

Computation of A1 Reproducing the computations given in Section 5 (recall that
β′g+1 = (hsg − kg + 1) + 1/δ for type D valuations) and taking into account that the
Hamburger-Noether expansion allows us to compute the values ei (since we know ν(wsg)),
we compute the values β̄i and ni for all valuations but those of type E. If ν is a valuation of
type E, by using the recurrence relations that give the Hamburger-Noether expansion, we
can compute values β̄i and ni relative to ν for i ≤ g0, g0 as large as we want. To do it, we
only need to reproduce the above computations with the portion of Hamburger-Noether
expansion we need (what corresponds to some type A valuation of the set of those con-
verging to ν) to get values β̄∗i and ei (0 ≤ i ≤ g0). Finally, the maximal contact values of
ν will be β̄i = β̄∗i /β̄

∗
0 .

Output of A1. The ordered domain groT will be isomorphic to

k[X0, X1, . . . , Xr−1]/〈gi|1 ≤ i < r − 1〉.

Let us note that to obtain the order function, we only need to assign to each Xi the weight
β̄i and the order of any element f + 〈{gi}〉 will be the degree of the polynomial f with
respect to the assigned weight. If ν is a type E valuation and f involves l indeterminates,
we only need to compute values β̄i and ei (i ≤ l) to get its order. Clearly this order is not
monomial.

Output of A2. Parametric equations of the valuation. We have already said how to
compute these equations from our input. This allows us to get o(f) for any element
f ∈ K. Recall that we know implicit equations for generating sequences of the valuations
which allows us to know the ordered domain in Proposition 6.1.

Notice that for type E valuations, ν, we can compute o(f/g) where f and g are reduced
elements in R giving algebraic curves. To do it, we must compute the Hamburger-Noether
expansion of the branches of f and g (the algorithm in [2] computes it) and choose the
Hamburger-Noether expansion of a divisorial valuation νi converging to ν (gotten by a



EVALUATION CODES AND PLANE VALUATIONS 19

piece of the Hamburger-Noether expansion of ν) which have the largest coincidence in
values aij , hj , kj , si to the branches of f and g (always using the same basis). Then
o(f/g) = −ν(f/g) = −ν̄i(f/g), ν̄i being the normalization of the valuation νi. Finally,
νi(f/g) can be computed by using the parametric equations given in Section 3.3 for type
A valuations.

Examples.
1. Consider the type B plane valuation ν of the field k(u, v) centered at the local ring

k[u, v](u,v) whose Hamburger-Noether expansion in the regular system of parameters {u, v}
(input) is

v = uw1

u = w2
1 + w2

1w2

w1 = w2
2.

Notice that this is the same Hamburger-Noether expansion (for a suitable basis) of the
curve of equation f = 0, f = v5 − u7. We can get q0 = u, q1 = v, q2 = f and β̄0 =
(0, 2), β̄1 = (0, 3), β̄2 = (1, 0), n1 = 2. So an output is groT ∼= k[X0, X1, X2]/〈X2

1 −X3
0 〉.

Given weight (0, 2) to X0, (0, 3) to X1 and (1, 0) to X2, we get the order function. Finally
the parametric equations are u = t4 + t5, v = t6 + t7.

2. Similarly, if we consider a type C plane valuation whose input is

v = uw1

u = w2
1 + w2

1w2

w1 = wπ
2 .

we get q0 = u, q1 = v, q2 = v3 − u2 and computing β̄0 = 2, β̄1 = 3, β̄2 = 6 + 1
π , n1 = 2. As

above an output is groT ∼= k[X0, X1, X2]/〈X2
1 − X3

0 〉, but we must give weight 6 + 1
π to

the indeterminate X2. The parametric equations are u = t2π + t2π+1, v = t3π + t3π+1.
3. Let ν be a type E valuation whose input is

v = uw1

u = w2
1 + w2

1w2

w1 = w2w3

w2 = w2
3 + w2

3w4

· · · · · · · · ·

That is, the Hamburger-Noether expansion repeats indefinitely the structure of the two
first rows. The two first rows give β̄∗0 = 2, β̄∗1 = 3, n1 = 2. If we consider two more
ones, then β̄∗0 = 4, β̄∗1 = 6, β̄∗3 = 7, n1 = 2, n2 = 2. So we get β̄0 = 1, β̄1 = 3/2, β̄3 =
7/4, . . . , n1 = 2, n2 = 2, . . . and groT ∼= k[X0, X1, X2, . . .]/〈X2

1 −X3
0 , X

2
2 −X2

0X1, . . .〉.
4. Let us see a more complicated example. For simplicity, we consider zero character-

istic. The input is
v = uw1

u = −w2
1 + w2

1w2

w1 = −w2
2 + w2

2w3

w2 = −w2
3 + w2

3w4

w3 = w
√

2
4 ,
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then we get q0 = u, q1 = v, q2 = u3 + v2, q3 = u6 + 2u3v2 + v4 + vu5, q4 = v8 + 4v6u3 +
2v5u5 + 6v4u6 + 4v3u8 + 2v2u9(u+ 2) + 2vu11 + u12(u+ 1) and computing β̄0 = 16, β̄1 =
24, β̄2 = 52, β̄3 = 106, β̄4 = (424 +

√
2)/2, n1 = n2 = n3 = 2. An output is groT ∼=

k[X0, X1, X2, X3, X4]/〈X2
1 −X3

0 , X
2
2 −X2

0X
3
1 , X

2
3 −X2

0X1X
3
2 〉. The parametric equations

are u = t16(−1+t)4(−1+t
√

2)2[−1+t2
√

2(1+t)], v = t24(−1+t)6(−1+t
√

2)3[−1+t2
√

2(1+t)].
We have used SINGULAR and the algorithm in [3].

Our procedure works for the above described k-algebras T whose transcendence degree
(that of their quotient field) is two. Since the associated codes are given by order functions,
we can use the Berlekamp-Massey-Sakata algorithm to decode them. To end this paper,
we shall show that evaluation codes associated with order functions can be given for any
finitely generated k-algebra (of arbitrary transcendence degree). The concrete result is
the following:

Proposition 6.2. Let J = 〈pj〉 (1 ≤ j ≤ s) be an ideal of the polynomial ring k[X] :=
k[X1, . . . , Xm]. Consider a set P = {P1, P2, . . . , Pn} of points in the zero set of J . Set
evP : k[X]/J → kn the evaluation map given by evP (h + J) = (h(P1), h(P2), . . . , h(Pn)).
Then, there exists a family of vector spaces {Wα}α∈S, where S is a semigroup such that
the family of codes {Eα := evP (Wα)}α∈S comes from an order function over a suitable
k-algebra, and so the dual codes can be quickly decoded by the Berlekamp-Massey-Sakata
algorithm.

Proof. On polynomial ring k[X], consider weights w(Xi) ∈ Nr (1 ≤ i ≤ m) which allow
us to give a weight, in the obvious manner, to each element of the set M of monomials in
k[X]. If, in addition, we consider a monomial ordering < on Nr and another one <M on
M , then we get a generalized weighted degree ordering on M associated with <M and <,
denoted <w, so: M1 <w M2 where M1,M2 ∈M if, and only if, either w(M1) < w(M2) or
w(M1) = w(M2) and M1 <M M2.

Take the polynomial ring k[X1, . . . , Xm, U1, . . . , Us] := k[X,U ], pick linearly indepen-
dent weights w(Xi) and give to each Uj the highest weight of the monomials in pj

(1 ≤ j ≤ s). Consider a monomial ordering on the set M of monomials in k[X,U ]
such that Uj > Xi for all j and i. Now, consider the ideal I of k[X,U ] spanned by pj +Uj

(1 ≤ j ≤ s). Then, a weight function o : k[X,U ]/I → S∞ exists. Indeed, to show this, we
are going to check the three facts which allow to apply the factor ring Theorem of [6].

Firstly, we note that the S polynomial Sjl (see [4, Ch. II, Sect. 6, Def. 4]) of the
polynomials pj and pl is −plUj + pjUl, j, l ∈ {1, 2, . . . , s}; j 6= l and thus the remainder of
dividing Sjl by pj +Uj and pl +Ul is equal to 0, and so [4, Ch. II, Sect. 6, Th. 6] we have
proved that the set G = {pj + Uj}1≤j≤s is a Gröbner basis for I.

Secondly, we notice that the set

∆<w =
{
M ′ ∈M |M ′ is not a leading monomial of any monomial in I

}
,

called the footprint of I is the set of monomials in k[X] and they have mutually distinct
weights since the weights w(Xi) are linearly independent.
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Finally, by construction, every polynomial pj+Uj has, exactly, two monomials of highest
weight in its support. So, we obtain a weight function o : k[X,U ]/I → S−∞ given by

o(f) = max
<

{
w(M ′) |M ′ ∈ Supp(F )

}
,

F being the remainder on division by G of any polynomial in f , whenever f 6= 0, and
otherwise by o(f) = −∞.

Now, the kernel of the epimorphism of rings ϕ : k[X,U ] → k[X]/J , given by ϕ(h(X,U)) =
h(X, 0) + J is the ideal L of k[X,U ] spanned by the set {pj , Uj}1≤j≤s. Thus, one ob-
tains an isomorphism k[X,U ]/L ∼= k[X]/J . On the other hand, we can consider the
natural ring epimorphism µ : k[X,U ]/I → k[X,U ]/L which holds since I ⊆ L. Set
i : km → km+s, i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0) and consider the set of points
Q = {Qi = i(Pi)}1≤i≤n. The map evQ : k[X,U ]/I → kn is a surjective morphism of k-
algebras [8]. Therefore, for each α ∈ S, we can consider the vector subspaces of k[X,U ]/I

Wα = spank {f ∈ k[X,U ]/I | o(f) ≤ α} ,
and it is clear that the set of codes {Eα}α∈S , where Eα = evQ(Wα), is a family of evaluation
codes associated with a Noetherian order domain. Finally, it is straightforward that if we
write Vα = µ(Wα), then the family {Eα}α∈S is exactly {evP (Vα)}α∈S which concludes the
proof.
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[3] V. Cossart and G. Moreno-Soćıas, Abhyankar’s irreducibility criterion: a geometric point of view.
Preprint University of Versailles.

[4] D. Cox, J. Little and D. O’Shea “Ideals, varieties and algorithms”, Springer (1996).
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