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Abstract

We present several algorithms to compute the solution of a linear system ofequations on a GPU, as well
as general techniques to improve their performance, such as paddingand hybrid GPU-CPU computation.
We compare single and double precision performance of a modern GPUwith unified architecture, and
show how iterative refinement with mixed precision can be used to regain full accuracy in the solution
of linear systems, exploiting the potential of the processor for single precision arithmetic. Experimental
results on a GTX280 using CUBLAS 2.0, the implementation of BLAS for NVIDIA R©GPUs with unified
architecture, illustrate the performance of the different algorithms and techniques proposed.

Keywords: Linear systems, Cholesky factorization, LU factorization, graphics processors (GPUs), dense
linear algebra, high performance.

1 Introduction

The improvements in performance, functionality, and programmability of the current generation of graphics
processors (GPUs) have renewed the interest in this class ofhardware for general-purpose computations.
These advances also apply to dense linear algebra, with important gains in the performance delivered for
basic linear algebra operations. The interest in using GPUsfor dense linear algebra is not new. Several
earlier studies have evaluated the performance of this typeof operations on former generations of GPUs.
Some of them were specifically focused in the evaluation of different procedures for solving dense linear
systems [1, 2].

In this paper we focus on the Cholesky and LU factorizations and update the studies in [1, 2], using
the current generation of GPUs and the implementation of BLAS optimized for graphics processors with
unified architecture. In particular, we compare several algorithmic variants ofthe factorization procedures
and evaluate their performance on a GTX280 graphics processor. In addition, we describe techniques to
improve the performance of the basic implementations and, as a result, we obtain optimized routines that
outperform the CPU-based implementations in both single and double precision. Finally, we also employ an
iterative method, which combines single and double precision arithmetic, to refine the solution of a linear
system of equations to attain full precision accuracy.



By evaluating the double precision performance of the GTX280, we extend the study in [3], evaluating
the loss of performance of the first generation of GPUs when operating in double precision. In addition, we
can observe the real value of the iterative refinement technique exposed, by comparing a mixed precision
algorithm and a full double precision implementation on GPU.

The new generation of GPUs, that exhibit a new unified architecture, solves many of the problems that
limited the performance of older generations of graphics processors, mainly in terms of memory hierarchy,
interconnection buses and programmability. In particular, CUDA has been released by NVIDIA as a general-
purpose oriented API (application programming interface)for its graphics hardware, with the G80 and newer
processors (for example, the GTX280 GPU) as the target platforms. In addition, CUBLAS is an optimized
version of the BLAS built on top of CUDA, and adapted to the peculiarities of this type of platforms [4, 5].

The rest of the paper is structured as follows. Section 2 reviews the algorithms for the Cholesky and LU
factorization implemented in our study. Section 3 describes several strategies that are applied to improve
the performance of the initial algorithms. The impact of these techniques is evaluated in Section 4. Finally,
Section 5 collects the conclusions of this analysis.

2 Overview of the Cholesky and LU factorization methods

Let A ∈ R
n×n be symmetric positive definite, and consider its Cholesky factorization given by

A = LLT , (1)

whereL is a lower triangular matrix known as theCholesky factorof A.
There exist three different algorithmic variants for obtaining the Cholesky factorization [6]. Blocked

algorithms for the different variants are given in Figure 1 in a notation that has been developed as part of
the FLAME project [7, 8]. The thick lines in the figure denote how far the computation of the factorization
has proceeded; the notationTRIL (B) refers to the lower triangular part of matrixB, andn(B) stands for
the number of columns ofB. We believe the rest of the notation to be intuitive. Upon completion, the
entries of the Cholesky factorL overwrite the corresponding entries ofA. Despite being different from the
algorithmic point of view, all variants perform exactly thesame operations. However, the performance of
the implementations depends on the way and order in which these operations are executed, and also on the
specific BLAS implementation that is employed.

Given a matrixA ∈ R
m×n, the LU factorization with partial pivoting decomposes this matrix into two

matrices,L andU , such that
PA = LU, (2)

whereP is a permutation matrix,L is a unit lower triangular matrix, andU is an upper triangular matrix.
Three different variants for obtaining the LU factorization with partial pivoting are given in Figure 2 in

FLAME notation. As for the Cholesky factorization, all variants perform the same operations, but in different
order, and the triangular factorsL andU overwrite the corresponding entries ofA upon completion. The
notationTRILU(B) stands for the unit lower triangular matrix stored inB. The sequence of permutations is
registered in vectorp ∈ R

m, which initially contains{1, 2, . . . ,m}. Given a vectorq ∈ R
k, P (q) ∈ R

k×k

denotes the corresponding permutation matrix.
For each variant shown in Figures 1 and 2, we also include the name of the BLAS-3 kernel used to

carry out the corresponding operation. For the Cholesky factorization, the performance of theSYRK kernel,
invoked to updateA22, will determine the final performance of Variant 1 of the blocked algorithm; theTRSM

andSYRK kernels, used to updateA10 andA11, are the dominant operations for Variant 2; and the majority
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Algorithm: A := CHOL BLK(A)

Partition A→

„

ATL ATR

ABL ABR

«

whereATL is 0× 0

while n(ATL) < n(A) do
Determine block sizenb

Repartition

„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

whereA11 is nb × nb

Variant 1:
A11 := CHOL UNB(A11)

A21 := A21TRIL (A11)
−T (TRSM)

A22 := A22 −A21A
T
21 (SYRK)

Variant 2:
A10 := A10TRIL (A00)

−T (TRSM)
A11 := A11 −A10A

T
10 (SYRK)

A11 := CHOL UNB(A11)

Variant 3:
A11 := A11 −A10A

T
10 (SYRK)

A11 := CHOL UNB(A11)
A21 := A21 −A20A

T
10 (GEMM)

A21 := A21TRIL (A11)
−T (TRSM)

Continue with

„

ATL ATR

ABL ABR

«

←

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A

endwhile

Figure 1: Multiple blocked variants of the Cholesky factorization. CHOLUNB refers to the unblocked
versions of the Cholesky procedures.
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Algorithm: [A, p] := LUP BLK(A)

Partition

A→

„

ATL ATR

ABL ABR

«

, p→

„

pT

pB

«

whereATL is 0× 0 andpT has0 elements
while n(ATL) < n(A) do

Determine block sizenb

Repartition

„

ATL ATR

ABL ABR

«

→

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A ,

„

pT

pB

«

→

0

@

p0

p1

p2

1

A

whereA11 is nb×nb andp1 hasnb elements

Variant 1:
0

@

A01

A11

A21

1

A := P (p0)

0

@

A01

A11

A21

1

A

A01 := TRILU(A00)
−1A01 (TRSM)

A11 := A11 −A10A01 (GEMM)
A21 := A21 −A20A01 (GEMM)
»„

A11

A21

«

, p1

–

:= LUP UNB

„

A11

A21

«

„

A10

A20

«

:= P (p1)

„

A10

A20

«

Variant 2:
A11 := A11 −A10A01 (GEMM)
A21 := A21 −A20A01 (GEMM)
»„

A11

A21

«

, p1

–

:= LUP UNB

„

A11

A21

«

„

A10 A12

A20 A22

«

:= P (p1)

„

A10 A12

A20 A22

«

A12 := A12 −A10A02 (GEMM)
A12 := TRILU(A11)

−1A12 (TRSM)
Variant 3:

»„

A11

A21

«

, p1

–

:= LUP UNB

„

A11

A21

«

„

A10 A12

A20 A22

«

:= P (p1)

„

A10 A12

A20 A22

«

A12 := TRILU(A11)
−1A12 (TRSM)

A22 := A22 −A21A12 (GEMM)

Continue with

„

ATL ATR

ABL ABR

«

←

0

@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1

A ,

„

pT

pB

«

←

0

@

p0

p1

p2

1

A

endwhile

Figure 2: Multiple blocked variants of the LU factorizationwith partial pivoting. LUPUNB refer to the
unblocked versions of the LU factorization procedures.
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of the operations in Variant 3 are performed through theGEMM kernel when updating the submatrixA21.
As a result, the performance of these BLAS-3 kernels will determine which of the proposed variants of the
Cholesky factorization yields a higher performance.

Similar considerations can be made for the study of the LU factorization variants described in Figure 2.

3 Computing the Cholesky and LU factorizations on GPUs

Starting from these basic implementations, the following sections introduce refinements that can be applied
simultaneously in order to improve both the performance of the factorization process and the accuracy of the
solution of the linear system. These improvements include padding, a hybrid CPU-GPU implementation, a
recursive implementation, and an iterative refinement procedure.

3.1 Padding

Experiments in [9] have shown that Level 3 BLAS implementations of CUBLAS (specially theGEMM

kernel) deliver much higher performance when operating on matrices with dimensions that are a multiple of
32. This is due to memory alignment issues [4].

Therefore, it is possible to improve the overall performance of the blocked Cholesky factorization (and,
similarly, the LU factorization) process by applying the correct pad to the input matrix and selecting the
appropriate block sizes. Starting from a block sizenb that is multiple of 32, we pad then × n matrix A to
compute the factorization

Ā =

(

A 0
0 Ik

)

=

(

L 0
0 Ik

)(

L 0
0 Ik

)T

,

whereIk denotes the identity matrix of orderk, andk is the difference between the matrix sizen and the
nearest integer multiple ofnb larger thann. By doing this, all BLAS-3 calls operate on submatrices of
dimensions that are a multiple of 32, and the overall performance is improved. Moreover, there is no com-
munication overhead associated with padding as only the matrix A and the resulting factorL are transferred
between main memory and video memory. On the other hand, we incur in a computation overhead due to
useless arithmetic operations which depends on the relation betweenn and 32. For moderate to largen, this
overhead is negligible.

3.2 Hybrid algorithm

We have also developed a hybrid version of the blocked algorithm for the Cholesky and LU factorizations
which delegates some of the calculations previously performed on the GPU to the CPU. This approach aims
to exploit the different abilities of each processor to dealwith specific operations. The advantage of the CPU
is twofold: due to the stream-oriented nature of the GPU it offers higher performance when operating with
small matrices, and it delivers higher performance for somefine-grained arithmetic operations, specially the
square root calculation, heavily used in the factorizationof the diagonal blockA11, for which the GPU is
not fully optimized.

The hybrid algorithm sends the diagonal block from video memory to main memory, factorizes this
block on the CPU, and transfers back the results to video memory before the computation on the GPU
continues. Whether this technique delivers a performance gain will depend on the overhead introduced by
the transference between video memory and main memory.
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The same technique has been applied in the LU factorization.In this case, the factorization of the current

column panel
„

A11

A21

«

is computed on the CPU.

3.3 Recursive implementation

It is quite straight-forward to obtain a recursive version of the blocked variants for the Cholesky factorization.
The recursive version partitions the matrix into2×2 square blocks, of similar dimensions, and then factorizes
the upper-left block using the same algorithm, which results in a first level of recursion; the procedure is then
repeated recursively at each deeper level.

We have implemented recursive implementations of Variants1 and 2 for the Cholesky and LU factor-
izations, respectively, which perform a single level of recursion and employ the hybrid algorithm at the
bottom stage. Performing several recursive steps did not improve the performance of the algorithm in our
experiments.

3.4 Iterative refinement

GPUs have recently introduced double precision support, asmentioned in Section 1. Unfortunately, the dou-
ble precision performance of the GTX280 is far from the peak performance of the processor when operating
in single precision. However, computing the Cholesky or LU factorization on the GPU using single precision
arithmetic will yield half the precision that is traditionally employed in numerical linear algebra.

The iterative refinement approach can be used to regain full (double-) precision when the factors obtained
after the factorization process on the GPU are employed to solve the linear systemA · x = b, as described
next.

This basic procedure for iterative refinement can be modifiedto use a mixed precision approach follow-
ing the strategy in [10] for the Cell B.E. The factorization of matrix A is first computed on the GPU (in single
precision arithmetic) using any of the algorithms proposedin previous sections. A first solution is then com-
puted and iteratively refined on the CPU to double precision arithmetic; see Algorithm 3.4. In this algorithm,
the(32) subscript indicates single precision storage, while the absence of subscript means double preci-
sion format. Thus, only the matrix-vector productA · x is performed in double precision (kernelGEMV),
at a cost ofO(n2) flops (floating-point arithmetic operations), while the rest of the nonnegligible arithmetic
operations involve only single precision operands. The following algorithm illustrates the solution of a sym-
metric definite positive system using mixed precision with iterative refinement. The Cholesky factorization
is performed on GPU. A similar strategy can be applied to general systems using the LU factorization.

Our implementation of the iterative refinement algorithm iterates until the solution,x(i+1), satisfies the
following condition:

‖r(i)‖
‖x(i+1)‖ <

√
ε,

whereε corresponds to the machine precision of the platform. When this condition is met, the algorithm
iterates twice more, and the solution is then considered to be accurate enough [10].

A(32), b(32) ← A, b

L(32) ← GPU CHOL BLK(A(32))

x
(1)
(32)
← L−T

(32)
(L−1

(32)
b(32))

x(1)
← x

(1)
(32)

i← 0
r e p e a t

9



i← i + 1

r(i)
← b−A · x(i)

r
(i)
(32)
← r(i)

z
(i)
(32)
← L−T

(32)
(L−1

(32)
r
(i)
(32)

)

z(i)
← z

(i)
(32)

x(i+1)
← x(i) + z(i)

u n t i l x(i+1) i s a c c u r a t e enough

4 Experimental results

Starting from a basic blocked implementation, we show how the techniques proposed in the previous section
(padding, hybrid approaches, and recursive implementation) improve the performance and accuracy of the
GPU implementations.

4.1 Experimental setup

The system used for the performance evaluation is based on anAMD Phenom 9550 Quad-Core Processor
running at 2.2 GHz, with 512 Kbytes of L2 cache memory per core, and 4 Gbytes of DDR2 RAM memory.
The interconnection bus to the GPU is a PCIExpress Gen2 interface, with a peak bandwith of 8 Gbits/s.

On the GPU side, all the implementations have been tested on aNVIDIA Geforce GTX280 board, which
implementsthe unified architectureintroduced in the NVIDIA G80 series. This architecture is built on top
of a unified shader or massively parallel processor, composed of hundreds of cores. Each core is a scalar,
general purpose floating point processor operating in SIMD mode.

There are subtle differences between the G80 and the GT200 architecture implemented in the GTX280
GPU. As the G80, the GT200 is an array of SIMD processors, withup to 240 scalar streaming (or shader)
cores grouped in clusters (also calledStreaming Multiprocessors, SM). Figure 3 is a schematic diagram of the
architecture. There are 8Streaming Processors(SP) per multiprocessor, each one with single precision float
point and 32-bit integer computation capabilities, and as anovelty, a single 64-bit ALU for FP64 support.
All the Streaming Processors inside a Streaming Multiprocessor share a fast pool of shared memory of 16
Kbytes and a registry file of 16384 32-bit registers. In addition, every core has access to a global DDR video
memory, with higher latency than the shared memory, but alsoof much higher capacity (1 Gbyte in the tested
board).

Running at 1.296 Mhz, each SM can dual-issue 8madd+mul1 instructions per clock, achieving a peak
performance of 933 GFLOPs per GPU when operating in single precision. Each FP64 ALU can issue one
madd instruction per clock, with a total peak performance of nearly 78 double precision GFLOPS.

We have developed Fortran 77 implementations of the blockedfactorization algorithms based on LA-
PACK codes, linked with the latest available CUDA and CUBLASversions (2.0) for the GPU. In the CPU,
the algorithms were implemented on top of GotoBLAS 1.26, tuned for the AMD architecture, using LA-
PACK 3.0 when necessary; LAPACK relies on the underlying BLAS implementation to extract all the per-
formance of the QuadCore processor. The compilers include GNU Fortran Compiler version 4.1.2 and
NVCC (NVIDIA CUDA compiler) release 1.1, version 0.2.1221.No extra optimization flags where used in
our codes.

1Themadd (multiply and accumulate) operation is prevalent in many graphics operations such as transformation and lighting, so
GPUs are usually optimized for this type of operations.mul denote a multiplication of two scalars.
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Figure 3: Architectural diagram of the GT200 architecture.

All the results on the GPU presented hereafter include the time required to transfer the data from the
main memory to the GPU memory and retrieve the results back. The kernels for both the CPU and the GPU
implementations operate on single and on double precision real data, and results are reported in terms of
GFLOPS (109 flops per second). The four cores of the AMD processor were employed in the experiments in
order to achieve a fair comparison between the CPU and the GPU. For the CPU, all parallelism was extracted
within the multi-threaded implementation of BLAS.

4.2 Basic blocked implementations on CPU and GPU

The first set of experiments is based on the basic blocked implementations illustrated in Figures 1 and 2,
executed on both CPU and GPU. Figures 4 and 5 report the performance of the three variants of the blocked
algorithms for the Cholesky and LU factorizations, respectively. On the left-hand plot of the figures, we show
the single precision performance of the implementations executed on CPU and GPU. On the right-hand plot,
the double precision performance of both processors is shown.

On both the CPU and the GPU, the variants of the blocked algorithm deliver a considerable higher
performance than their unblocked counterparts; therefore, results for the unblocked implementations are not
included in the figures. Due to its stream-oriented architecture and the overhead introduced by the data
transfers, the GPU only outperforms the CPU starting from matrices of large dimension (aroundn = 6000
for Cholesky, andn = 3000 for LU). For single precision data, these initial implementations on GPU
obtain speed-ups of2.66 and2.95 for Cholesky and the LU, respectively, comparing the best variants on
each platform. Although being more powerful in terms of peakperformance, the SIMD stream-oriented
architecture of current GPUs, and the big penalty introduced by the video memory latency still limits their
actual performance when operating with small problem sizes, as can also be observed for the Level 3 BLAS
implementations in CUBLAS [9].
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Figure 4: Performance of the three blocked variants for the Cholesky factorization, operating on single
precision data (left) and double precision data (right). Highest performances attained on the GPU are152.4,
46.8, and156.2 GFLOPS for single precision, and42.9, 17.5, and45.6 GFLOPS for the double precision.
Peak performances on CPU for the best variants are59.6 GFLOPS for single precision and30.9 GFLOPS
for double precision.

The different variants of the blocked algorithm executed onGPU exhibit a much different performance.
This can be explained by the different behavior of the underlying CUBLAS kernels, as we argue next. A
detailed comparison between the Level 3 CUBLAS routines underlying the Cholesky and LU factorization
routines (GEMM, TRSM, andSYRK) can be found in [9]. The results show that theGEMM kernel in CUBLAS
is thoroughly tuned, while considerably less attention hasbeen paid to the optimization ofSYRK andTRSM.
This explains the differences in the performance of the three variants of the Cholesky factorization. As noted
in Figure 1,SYRK is the dominant operation in Variant 1; the bulk of the computation in Variant 2 is cast in
terms ofTRSM andSYRK; and theGEMM kernel is the most important in Variant 3.

Variant 1 of the LU factorization in Figure 4 obtains a poor performance compared with Variants 2
and 3. As explained before, the underlying BLAS implementation determines the final performance of
the LU factorization process. The update of blockA01 in this variant is implemented on top of theTRSM

routine. Through a detailed performance evaluation of the CUBLAS TRSM routine, we have observed that
this operation yields worse results when large triangular matrices are involved. The variant implemented
suffers from this poor performance of theTRSM implementation of CUBLAS when updating matrices with
m ≫ n.

Similar conclusions can be extracted from the analysis of the double precision performance for both
algorithms. However, in this case, the maximum speed-up compared with the multicore CPU is not as
important as the attained for the single precision implementations. Nevertheless, the matrix sizes for which
the GPU attain better performances than CPU are similar to those for single precision.

4.3 Blocked implementation with padding

Padding is a simple but effective method for improving the performance of the Level 3 CUBLAS imple-
mentations [9]. Our goal here is to exploit the high performance achieved by padding the Level 3 CUBLAS
operations (see the difference betweenGEMM with and without padding in [9] for more details) to improve
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Figure 5: Performance of the three blocked variants for the LU factorization, operating on single precision
data (left) and double precision data (right). Highest performances attained on the GPU are64.9, 140.6,
and142.4 GFLOPS for single precision, and26.9, 44.9, and44.3 GFLOPS for double precision. Peak
performances on CPU for the best variants are48.3 GFLOPS for single precision and25.1 GFLOPS for
double precision.

the overall performance.
Figures 6 and 7 show the results of the three variants of the Cholesky and LU factorizations, respectively,

when the appropriate padding is applied to the input matrices operating with single and double precision.
Comparing the results with those without padding, it is possible to distinguish a small improvement in the
final performance of the three variants of both factorizations for the single precision experiments. In [9] it
was noted that the performance gain that is attained when applying padding to the Level 3 BLAS routines in
CUBLAS is higher forGEMM than forSYRK. Thus, it is natural that Variant 3 of the Cholesky factorization
(based onGEMM) benefits more than the other two variants. In fact, the improvement for Variant 2 is minimal
when applying this optimization, as for Variant 1 of the LU factorization, in whichTRSM is the main routine.

The application of padding masks the irregular behavior of the implementations, when the matrix size is
not a multiple of32 (see Figures 4 or 5 forn = 12000, for example). In addition, the overall performance
is considerably improved: maximum speed-ups for the Cholesky factorization variants compared with the
CPU implementations operating on single precision data are2.59 and2.89 for variants 1 and 3 (the second
variant attains better performance on CPU), while the speed-ups attained for the LU are1.63, 3.25, and2.98,
respectively.

This technique can be also applied with success to the doubleprecision implementations, as can be
observed on the right-hand plots of Figures 6 and 7. We achieved peak speed-ups of1.12, 0.77 and1.41
respectively for each variant of the Cholesky factorization, and1.19, 1.66 and1.57 respectively for the LU
variants. More important than the peak performances is the constant behavior of the implementations for
any matrix size.

4.4 Hybrid and recursive implementations

We next evaluate our hybrid and recursive blocked algorithms, including padding, for the Cholesky and LU
factorizations based on Variants 1 and 2, respectively. We have chosen these variants because they have

13



0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000 14000

G
F

LO
P

S

Matrix size

Cholesky factorization - Single precision with padding

GPU - Single precision - VAR 1
GPU - Single precision - VAR 2
GPU - Single precision - VAR 3

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size

Cholesky - Double precision with padding

GPU - Double precision - VAR 1
GPU - Double precision - VAR 2
GPU - Double precision - VAR 3

Figure 6: Performance of the three blocked variants for the Cholesky factorization with padding applied,
operating on single precision data (left) and double precision data (right). Highest performances attained on
the GPU are154.1, 46.8, and159.5 GFLOPS for single precision, and16.2, 37.8, and43.1 GFLOPS for
double precision.

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000 14000

G
F

LO
P

S

Matrix size (n=m)

LU with partial pivoting and padding - Single precision

GPU - Single precision - VAR 1
GPU - Single precision - VAR 2
GPU - Single precision - VAR 3

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000

G
F

LO
P

S

Matrix size (n=m)

LU with partial pivoting and padding - Double precision

GPU - Double precision - VAR 1
GPU - Double precision - VAR 2
GPU - Double precision - VAR 3

Figure 7: Performance of the three blocked variants for the LU factorization with padding applied, operating
on single precision data (left) and double precision data (right). Highest performances attained on the GPU
are63.2, 145.4, and143.9 GFLOPS for single precision, and24.7, 44.7, and46.1 GFLOPS for double
precision.
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Figure 8: Left: performance of the implementations of Variant 1 of the blocked algorithm for the Cholesky
factorization operating on single precision data: basic implementation, hybrid implementation, and a com-
bination of the recursive and hybrid implementations. Highest performances are153.9, 168, and175.6
GFLOPS, respectively. Right: same implementations operating on double precision data. Peak perfor-
mances are28.1, 29.1, and39.5 GFLOPS, respectively.

obtained the best results for each type of factorization. Figures 8 and 9 show that the hybrid approach
delivers notable performance gains compared with the basicimplementation for both algorithms. Recursion,
however, is only positive when applied to the Cholesky factorization.

Due to the overhead associated with the factorization of thesmall current diagonal block/column panel on
the GPU, the hybrid approach introduces a significant improvement compared with the basic implementation
of both Cholesky/LU factorization processes. Similar benefits are to be expected for the other two variants.
In addition, Figures 8 and 9 also show the improvement attained for a hybrid implementation combined with
a recursive approach for the factorization process.

The combination of padding, hybrid execution and recursionimproves the original single precision
blocked implementation on GPU (see Section 4.2), achievinga maximum speed-up of2.97 for the best
Cholesky variant, and3.04 for the chosen version of the LU factorization (version 2) when comparing the
GPU implementations with the CPU ones. However, for the LU factorization, the highest speed-ups are not
attained for the biggest input matrices. For double precision data, the overhead associated with the data trans-
fers to/from main memory implies an important penalty on thefinal performance, making the improvements
of the application of these techniques less important.

4.5 Iterative refinement

We next perform a time-based comparison using the basic implementation of Variant 1 for the blocked
algorithms. Similar qualitative results can be extracted for the other variants of the algorithms. Employing
the GPU as a general-purpose coprocessor, our mixed precision implementation first computes a solution
using the Cholesky or LU factorization computed on the GPU (single precision), which is then refined to
double precision accuracy. The overhead of the iterative refinement stage is reported in Figure 10 as the
difference between the mixed and single precision implementations. The figure also includes the time for
the corresponding full double precision routine executed exclusively on GPU.
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Figure 9: Left: performance of the implementations of Variant 2 of the blocked algorithm for the LU factor-
ization operating on single precision data: basic implementation, hybrid implementation, and a combination
of the recursive and hybrid implementations. Highest performances are138.9, 142.8, and145.9 GFLOPS,
respectively. Right: same implementations operating on double precision data. Peak performances are44.3,
43.5, and44.5 GFLOPS, respectively.
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Figure 10: Execution time of mixed precision iterative refinement compared with those of a full single
precision solution on the GPU and a full double precision solution on the GPU. A single right-hand side
vector is considered.
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Although the mixed precision version introduces some overhead, the execution time is much lower than
that of a full double precision version executed exclusively on GPU. In fact, the number of iterations required
to achieve the desired accuracy was lower than6 in our experiments. Due to the higher performance of the
single precision GPU implementations, the mixed precisionstrategy is a good choice to achieve accurate
results in less time, as the overhead introduced by the refinement process does not have a significant impact
on the overall performance.

4.6 Experimental results summary

The set of experiments performed for the Cholesky and LU withpartial pivoting factorizations have showed
that blocked implementations achieve much better performance results than the unblocked counterparts.
However, there are still some points that can be tuned in the basic implementations.

Padding is an effective way to attain a regular behavior in the performance of both algorithms; although
peak performances can be similar to the non-padded ones, higher performance can be achieved for all matrix
sizes. Similar conclusions can be extracted for double precision data. Hybrid variants better exploit the
potential of each type of processor achieving the biggest jump in performance, even more in combination
with the recursive variant.

Double precision implementations also outperform the corresponding variants implemented on CPU, but
achieving lower speed-ups. Techniques such as hybrid computation do not have the same impact on the final
performance as in the case of single precision. Current GPUsare not fully prepared to beat top-end CPUs
for double precision data and this type of algorithms. Fortunately, techniques such as iterative refinement
can combine the power of the GPUs for single precision arithmetic and the accuracy of double precision
implementations.

5 Conclusions

We have evaluated three blocked variants of the Cholesky andthe LU factorizations using tuned implemen-
tations of BLAS on a GT200 graphics processor and an AMD QuadCore processor. The study reports that
padding, hybrid GPU-CPU computation, and recursion are attractive techniques which deliver important in-
creases in the performance of the implementations. These improvements can be applied to double precision
implementations executed natively on GPU, with similar impact on the overall performance. Native support
for double precision in the last generation of GPUs is still far from being impressive. Iterative refinement
with mixed precision is thus revealed as an inexpensive technique to regain full accuracy in the solution of a
linear system of equations, exploiting the high performance of the GPU when it operates on single precision
data.

Similar results and techniques can be expected to apply alsoto other dense linear algebra factorization
procedures, such as the QR factorization, attaining high performance and accuracy on a low cost and widely
available hardware platform.
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