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We present several algorithms to compute the solution afeati system of equations on a GPU, as well
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We compare single and double precision performance of amd@gsleU with unified architecture, and show
how iterative refinement with mixed precision can be usecgain full accuracy in the solution of linear
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GTX280 using CUBLAS 2.0, the implementation of BLAS for NMI®®R GPUs with unified architecture,
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precisbn en la soludn obtenida. Se incluyen resultados experimentales sbpre@sador GTX280 para
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Abstract

We present several algorithms to compute the solution of a linear systguafions on a GPU, as well
as general techniques to improve their performance, such as patding/brid GPU-CPU computation.
We compare single and double precision performance of a modernv@tUinified architecture, and
show how iterative refinement with mixed precision can be used to reghiadcuracy in the solution
of linear systems, exploiting the potential of the processor for singlégwecarithmetic. Experimental
results on a GTX280 using CUBLAS 2.0, the implementation of BLAS for BMI[R) GPUs with unified
architecture, illustrate the performance of the different algorithms arfhigues proposed.

Keywords: Linear systems, Cholesky factorization, LU factorizatignaphics processors (GPUs), dense
linear algebra, high performance.

1 Introduction

The improvements in performance, functionality, and paogmability of the current generation of graphics
processors (GPUs) have renewed the interest in this clasardfvare for general-purpose computations.
These advances also apply to dense linear algebra, withriamiaains in the performance delivered for
basic linear algebra operations. The interest in using GlBUdense linear algebra is not new. Several
earlier studies have evaluated the performance of this afmperations on former generations of GPUs.
Some of them were specifically focused in the evaluation fémint procedures for solving dense linear
systems [1, 2].

In this paper we focus on the Cholesky and LU factorizatiomd @pdate the studies in [1, 2], using
the current generation of GPUs and the implementation of 8lofstimized for graphics processors with
unified architecture In particular, we compare several algorithmic variantshef factorization procedures
and evaluate their performance on a GTX280 graphics process addition, we describe techniques to
improve the performance of the basic implementations asi@ r@sult, we obtain optimized routines that
outperform the CPU-based implementations in both singliedamible precision. Finally, we also employ an
iterative method, which combines single and double precisrithmetic, to refine the solution of a linear
system of equations to attain full precision accuracy.



By evaluating the double precision performance of the GTX2& extend the study in [3], evaluating
the loss of performance of the first generation of GPUs whemadjmg in double precision. In addition, we
can observe the real value of the iterative refinement tecienexposed, by comparing a mixed precision
algorithm and a full double precision implementation on GPU

The new generation of GPUs, that exhibit a new unified archite, solves many of the problems that
limited the performance of older generations of graphiceessors, mainly in terms of memory hierarchy,
interconnection buses and programmability. In partic@@&DA has been released by NVIDIA as a general-
purpose oriented API (application programming interfdoejts graphics hardware, with the G80 and newer
processors (for example, the GTX280 GPU) as the targetpiatf. In addition, CUBLAS is an optimized
version of the BLAS built on top of CUDA, and adapted to theuigeities of this type of platforms [4, 5].

The rest of the paper is structured as follows. Section 2vevihe algorithms for the Cholesky and LU
factorization implemented in our study. Section 3 describeveral strategies that are applied to improve
the performance of the initial algorithms. The impact ofstaéechniques is evaluated in Section 4. Finally,
Section 5 collects the conclusions of this analysis.

2 Overview of the Cholesky and LU factorization methods
Let A € R™*" be symmetric positive definite, and consider its Choleskyoidzation given by
A=LL", (1)

wherelL is a lower triangular matrix known as ti@holesky factoof A.

There exist three different algorithmic variants for obiag the Cholesky factorization [6]. Blocked
algorithms for the different variants are given in Figurenlainotation that has been developed as part of
the FLAME project [7, 8]. The thick lines in the figure denohfar the computation of the factorization
has proceeded; the notatioriL (B) refers to the lower triangular part of matri, andn(B) stands for
the number of columns aB. We believe the rest of the notation to be intuitive. Upon ptation, the
entries of the Cholesky factdr overwrite the corresponding entries 4f Despite being different from the
algorithmic point of view, all variants perform exactly teame operations. However, the performance of
the implementations depends on the way and order in whigdetbperations are executed, and also on the
specific BLAS implementation that is employed.

Given a matrixA € R™*" the LU factorization with partial pivoting decomposessthatrix into two
matrices,. andU, such that

PA=LU, 2

whereP is a permutation matrix, is a unit lower triangular matrix, and is an upper triangular matrix.

Three different variants for obtaining the LU factorizatiwith partial pivoting are given in Figure 2 in
FLAME notation. As for the Cholesky factorization, all vanits perform the same operations, but in different
order, and the triangular factofsandU overwrite the corresponding entries dfupon completion. The
notationTRILU(B) stands for the unit lower triangular matrix storedBn The sequence of permutations is
registered in vectop € R™, which initially contains{1,2, ..., m}. Given a vectoy € R¥, P(q) € RF*k
denotes the corresponding permutation matrix.

For each variant shown in Figures 1 and 2, we also include éimeenof the BLAS-3 kernel used to
carry out the corresponding operation. For the Choleskypfaation, the performance of tterrK kernel,
invoked to updatels,, will determine the final performance of Variant 1 of the I¥ed algorithm; therRsm
andsYRK kernels, used to updaté; and A1, are the dominant operations for Variant 2; and the majority



Algorithm: A := CHOL_BLK (A)
ATL ATR )
ABL ABR
whereArr is0 x 0
while n(Arr) < n(A) do
Determine block sizen,
Repartition

Arr | Arn Aoo | Ao | Aoz
(A 1 >—> Ao | A1 | A2
prlaBR Az | Az | Az

Partition A — (

whereA;; isny X nyp

Variant 1:
Ay := CHOL_UNB(A11)
Aoy = A TRIL (A1) (TRSM)
Aog = Aoy — AzlA;Fl (SYRK)
Variant 2:
Ao := A1pTRIL (Ago)™ " (TRSM)
A1 = A — AloA?O (SYRK)
Ay := CHOL_UNB(A11)

Variant 3:
A1 = A — AIOArlI‘O (SYRK)
A11 := CHOL_UNB(A11)
Aoy = Aoy — AQQA?O (GEMM)

Aoy = A TRIL (A11)”" " (TRSM)

Continue with

AOO AOI AOQ
(j“ j”)% To [ A | A
BE | 48R Aso | Azr | Azo

endwhile

Figure 1: Multiple blocked variants of the Cholesky factation. CHOLUNB refers to the unblocked
versions of the Cholesky procedures.



Algorithm: [A, p] := LUP_BLK(A)
Partition
AH(ATL ATR)p*)(pT)
ABL ABR ' PB
whereAr, is0 x 0 andpr has0 elements
while n(Arr) < n(A) do

Determine block sizen,
Repartition

A A A
Ars | Arg 00 01 02 pr Po
1 1 —| Ao | A1 | A1z ) D - P1
B oBR Aso | Az1 | Az o

whereA1; is ny X n, andp; hasn, elements

Variant 1:
AOI AOl
( A ) = P(po) ( Air )
Az Agy
Ap1 = TRILU(Apo) Ao (TRSM)
A1 = A1 — AioAor (GEMM)
Ag1 = Ag1 — A20A01 (GEMM)

A11 All
= LUP_
Al() AIO
=P
< Aszo ) (pl)( Azo )

Variant 2:
Aq1 = A — AjgAon (GEMM)
Azi = Az1 — Az0Ao1 (GEMM)

A11 All
:= LUP_UNB
10
0 Azz

A1o Az A A1z
=P
( Ao | | Az ) (”1)( s | )

Aqg = Arz — A10Ao2 (GEMM)
Aig := TRILU(A11) " Ar2 (TRSM)
Variant 3:

A 77 An
() ] copne ()
Ao A1z A1o A1z
=P
( Aszo Az ) (pl)( Aso Ay )
Atz = TRILU(A11) t A2 (TRSM)
Agg = Ago — A1 A1 (GEMM)

Continue with

A
Arp | Arn 00 | Aot | Aoz or Do
—| Ao | A1x | Ar2 R —| pm
Apr | Ar oo e pB —_—

21

b

endwhile

Figure 2: Multiple blocked variants of the LU factorizatiovith partial pivoting. LUPUNB refer to the
unblocked versions of the LU factorization procedures.
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of the operations in Variant 3 are performed throughdlEim kernel when updating the submatrite; .
As a result, the performance of these BLAS-3 kernels wiled®ine which of the proposed variants of the
Cholesky factorization yields a higher performance.

Similar considerations can be made for the study of the Ltbfagation variants described in Figure 2.

3 Computing the Cholesky and LU factorizations on GPUs

Starting from these basic implementations, the followiagti®ns introduce refinements that can be applied
simultaneously in order to improve both the performancéeffactorization process and the accuracy of the
solution of the linear system. These improvements incluatidmg, a hybrid CPU-GPU implementation, a
recursive implementation, and an iterative refinementgutace.

3.1 Padding

Experiments in [9] have shown that Level 3 BLAS implemeitasi of CUBLAS (specially thesEmM
kernel) deliver much higher performance when operating atrioes with dimensions that are a multiple of
32. This is due to memory alignment issues [4].

Therefore, it is possible to improve the overall performantthe blocked Cholesky factorization (and,
similarly, the LU factorization) process by applying thereat pad to the input matrix and selecting the
appropriate block sizes. Starting from a block sizethat is multiple of 32, we pad the x n matrix A to

compute the factorization
A (A ON_(L 0 L o\"
“\0 I, )\ 0 I 0 I ’

where; denotes the identity matrix of ordét andk is the difference between the matrix sizeand the
nearest integer multiple of, larger thann. By doing this, all BLAS-3 calls operate on submatrices of
dimensions that are a multiple of 32, and the overall peréoree is improved. Moreover, there is no com-
munication overhead associated with padding as only theméatand the resulting factak are transferred
between main memory and video memory. On the other hand, eue in a computation overhead due to
useless arithmetic operations which depends on the relagtweem and 32. For moderate to large this
overhead is negligible.

3.2 Hybrid algorithm

We have also developed a hybrid version of the blocked algarfor the Cholesky and LU factorizations
which delegates some of the calculations previously peréaron the GPU to the CPU. This approach aims
to exploit the different abilities of each processor to deith specific operations. The advantage of the CPU
is twofold: due to the stream-oriented nature of the GPUfdrsfhigher performance when operating with
small matrices, and it delivers higher performance for séneegrained arithmetic operations, specially the
square root calculation, heavily used in the factorizatbthe diagonal blockd,, for which the GPU is
not fully optimized.

The hybrid algorithm sends the diagonal block from video mnto main memory, factorizes this
block on the CPU, and transfers back the results to video meimefore the computation on the GPU
continues. Whether this technique delivers a performantcevgéd depend on the overhead introduced by
the transference between video memory and main memory.



The same technique has been applied in the LU factorizdtichis case, the factorization of the current

column pane( f‘; ) is computed on the CPU.

3.3 Recursive implementation

Itis quite straight-forward to obtain a recursive versidthe blocked variants for the Cholesky factorization.
The recursive version partitions the matrix iRte 2 square blocks, of similar dimensions, and then factorizes
the upper-left block using the same algorithm, which result first level of recursion; the procedure is then
repeated recursively at each deeper level.

We have implemented recursive implementations of Variarasd 2 for the Cholesky and LU factor-
izations, respectively, which perform a single level ofurston and employ the hybrid algorithm at the
bottom stage. Performing several recursive steps did nptave the performance of the algorithm in our
experiments.

3.4 lterative refinement

GPUs have recently introduced double precision suppomegioned in Section 1. Unfortunately, the dou-
ble precision performance of the GTX280 is far from the peattggmance of the processor when operating
in single precision. However, computing the Cholesky or Bctbrization on the GPU using single precision
arithmetic will yield half the precision that is traditiolhaemployed in numerical linear algebra.

The iterative refinement approach can be used to regairtfuli{le-) precision when the factors obtained
after the factorization process on the GPU are employedlte e linear systeml - 2 = b, as described
next.

This basic procedure for iterative refinement can be moditiagse a mixed precision approach follow-
ing the strategy in [10] for the Cell B.E. The factorizatidmaatrix A is first computed on the GPU (in single
precision arithmetic) using any of the algorithms propaseaatevious sections. A first solution is then com-
puted and iteratively refined on the CPU to double precisighraetic; see Algorithm 3.4. In this algorithm,
the (32) subscript indicates single precision storage, while treeabe of subscript means double preci-
sion format. Thus, only the matrix-vector produtt z is performed in double precision (kerneEmv),
at a cost o0 (n?) flops (floating-point arithmetic operations), while thetrelsthe nonnegligible arithmetic
operations involve only single precision operands. Thiewahg algorithm illustrates the solution of a sym-
metric definite positive system using mixed precision wignative refinement. The Cholesky factorization
is performed on GPU. A similar strategy can be applied to ggrsystems using the LU factorization.

Our implementation of the iterative refinement algoritherates until the solution;(“+1), satisfies the
following condition:

1
(B ’

wheree corresponds to the machine precision of the platform. Whincibndition is met, the algorithm
iterates twice more, and the solution is then considere@ @courate enough [10].

A(32),b(32) — A, b
L(32) < GPU.CHOL-BLK (A (32))
(1) -T ;-1
T(32) L(32)(L(32)b(32>)
1
() — T (33
i— 0
repeat



1+—1+1

r@ —b—A. 2
)

o (i)
% -T —1 7

Z(a2) ~ Laz) (L) "(32))

2

—

204D 0 4 40
until zG+Y is accurate enough

4 Experimental results

Starting from a basic blocked implementation, we show hawéichniques proposed in the previous section
(padding, hybrid approaches, and recursive implememigiioprove the performance and accuracy of the
GPU implementations.

4.1 Experimental setup

The system used for the performance evaluation is based é&hM@nPhenom 9550 Quad-Core Processor
running at 2.2 GHz, with 512 Kbytes of L2 cache memory per canel 4 Gbytes of DDR2 RAM memory.
The interconnection bus to the GPU is a PCIExpress GenZaetrwith a peak bandwith of 8 Ghits/s.

On the GPU side, all the implementations have been testedNdiRIA Geforce GTX280 board, which
implementshe unified architecturéntroduced in the NVIDIA G80 series. This architecture isltoon top
of a unified shader or massively parallel processor, congpos@undreds of cores. Each core is a scalar,
general purpose floating point processor operating in SIMiden

There are subtle differences between the G80 and the GT280euture implemented in the GTX280
GPU. As the G80, the GT200 is an array of SIMD processors, wgtho 240 scalar streaming (or shader)
cores grouped in clusters (also calt&tieaming MultiprocessorS$M). Figure 3 is a schematic diagram of the
architecture. There are®reaming Processof$P) per multiprocessor, each one with single precision floa
point and 32-bit integer computation capabilities, and as\glty, a single 64-bit ALU for FP64 support.
All the Streaming Processors inside a Streaming Multipssoeshare a fast pool of shared memory of 16
Kbytes and a registry file of 16384 32-bit registers. In additevery core has access to a global DDR video
memory, with higher latency than the shared memory, butafletuch higher capacity (1 Gbyte in the tested
board).

Running at 1.296 Mhz, each SM can dual-issuea@ld+nul  instructions per clock, achieving a peak
performance of 933 GFLOPs per GPU when operating in singleigipn. Each FP64 ALU can issue one
madd instruction per clock, with a total peak performance of he@8 double precision GFLOPS.

We have developed Fortran 77 implementations of the blotketrization algorithms based on LA-
PACK codes, linked with the latest available CUDA and CUBL¥Ssions (2.0) for the GPU. In the CPU,
the algorithms were implemented on top of GotoBLAS 1.26gtufor the AMD architecture, using LA-
PACK 3.0 when necessary; LAPACK relies on the underlying BLitnplementation to extract all the per-
formance of the QuadCore processor. The compilers includ®& Gortran Compiler version 4.1.2 and
NVCC (NVIDIA CUDA compiler) release 1.1, version 0.2.1220 extra optimization flags where used in
our codes.

1Themadd (multiply and accumulate) operation is prevalent in many giapbperations such as transformation and lighting, so
GPUs are usually optimized for this type of operatiamsl denote a multiplication of two scalars.
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SP1 Thread Execution
Manager

g‘
aE> sP2 Geforce GTX280:
= . .
[} - 30 Streaming Multiprocessors (SM):
S - 8 SPs: scalar FP32 ALUs
8 (1 MADD + 1 MUL/ clk)

P8 -1 FP64 ALU

(1 MADD / clk)
- 16K 32-bit registers
Instruction Fetch - 16 Kbytes Shared Memory
SM and Issue - 8 Kbytes L1 Cache (texture/constant)
S - J

Figure 3: Architectural diagram of the GT200 architecture.

All the results on the GPU presented hereafter include the tiequired to transfer the data from the
main memory to the GPU memory and retrieve the results bao& K€rnels for both the CPU and the GPU
implementations operate on single and on double precigahdata, and results are reported in terms of
GFLOPS (0 flops per second). The four cores of the AMD processor werdamag in the experiments in
order to achieve a fair comparison between the CPU and the B#tlthe CPU, all parallelism was extracted
within the multi-threaded implementation of BLAS.

4.2 Basic blocked implementations on CPU and GPU

The first set of experiments is based on the basic blockedeingtations illustrated in Figures 1 and 2,
executed on both CPU and GPU. Figures 4 and 5 report the pafare of the three variants of the blocked
algorithms for the Cholesky and LU factorizations, respety. On the left-hand plot of the figures, we show
the single precision performance of the implementatioeseted on CPU and GPU. On the right-hand plot,
the double precision performance of both processors isishow

On both the CPU and the GPU, the variants of the blocked dlgordeliver a considerable higher
performance than their unblocked counterparts; therefegailts for the unblocked implementations are not
included in the figures. Due to its stream-oriented architecand the overhead introduced by the data
transfers, the GPU only outperforms the CPU starting frorriges of large dimension (around= 6000
for Cholesky, and» = 3000 for LU). For single precision data, these initial implensiins on GPU
obtain speed-ups ¢f.66 and2.95 for Cholesky and the LU, respectively, comparing the besbwmés on
each platform. Although being more powerful in terms of pgakformance, the SIMD stream-oriented
architecture of current GPUs, and the big penalty introdumnethe video memory latency still limits their
actual performance when operating with small problem sizesan also be observed for the Level 3 BLAS
implementations in CUBLAS [9].
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Cholesky - Single precision Cholesky - Double precision

180 80
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CPU - Single precision - VAR 1 —=— * ﬂ CPU - Double precision - VAR 1 —=—
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Matrix size Matrix size

Figure 4: Performance of the three blocked variants for thel€sky factorization, operating on single
precision data (left) and double precision data (rightghtist performances attained on the GPUlat4,
46.8, and156.2 GFLOPS for single precision, an.9, 17.5, and45.6 GFLOPS for the double precision.
Peak performances on CPU for the best variant$aug GFLOPS for single precision argd.9 GFLOPS
for double precision.

The different variants of the blocked algorithm executed=8J exhibit a much different performance.
This can be explained by the different behavior of the uryitegl CUBLAS kernels, as we argue next. A
detailed comparison between the Level 3 CUBLAS routinesdyiohg the Cholesky and LU factorization
routines GEMM, TRSM, andsYRK) can be found in [9]. The results show that themm kernel in CUBLAS
is thoroughly tuned, while considerably less attentiontieen paid to the optimization sfrRK andTRSM.
This explains the differences in the performance of thesthiegiants of the Cholesky factorization. As noted
in Figure 1,sYRK is the dominant operation in Variant 1; the bulk of the comagion in Variant 2 is cast in
terms ofTRsm andsyYRK; and theGeMMm kernel is the most important in Variant 3.

Variant 1 of the LU factorization in Figure 4 obtains a poorfpemance compared with Variants 2
and 3. As explained before, the underlying BLAS impleméatatietermines the final performance of
the LU factorization process. The update of blotl in this variant is implemented on top of th&sm
routine. Through a detailed performance evaluation of td8ICAS TRSM routine, we have observed that
this operation yields worse results when large triangulatrites are involved. The variant implemented
suffers from this poor performance of thesm implementation of CUBLAS when updating matrices with
m > n.

Similar conclusions can be extracted from the analysis efdbuble precision performance for both
algorithms. However, in this case, the maximum speed-uppeoed with the multicore CPU is not as
important as the attained for the single precision impleat@ns. Nevertheless, the matrix sizes for which
the GPU attain better performances than CPU are similaogetfor single precision.

4.3 Blocked implementation with padding

Padding is a simple but effective method for improving thefguenance of the Level 3 CUBLAS imple-
mentations [9]. Our goal here is to exploit the high perfonceachieved by padding the Level 3 CUBLAS
operations (see the difference betwesrmm with and without padding in [9] for more details) to improve

12



LU with partial pivoting - Single precision LU with partial pivoting - Double precision
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Figure 5: Performance of the three blocked variants for thddctorization, operating on single precision
data (left) and double precision data (right). Highest ganfances attained on the GPU &9, 140.6,
and 142.4 GFLOPS for single precision, arb.9, 44.9, and44.3 GFLOPS for double precision. Peak
performances on CPU for the best variants 4868 GFLOPS for single precision arizth.1 GFLOPS for
double precision.

the overall performance.

Figures 6 and 7 show the results of the three variants of tlideSky and LU factorizations, respectively,
when the appropriate padding is applied to the input matraperating with single and double precision.
Comparing the results with those without padding, it is fjaego distinguish a small improvement in the
final performance of the three variants of both factorizaifor the single precision experiments. In [9] it
was noted that the performance gain that is attained whegiaggadding to the Level 3 BLAS routines in
CUBLAS is higher forceMm than forsyrk. Thus, it is natural that Variant 3 of the Cholesky factatiza
(based orcsEMM) benefits more than the other two variants. In fact, the ivgmeent for Variant 2 is minimal
when applying this optimization, as for Variant 1 of the Ldtiarization, in whichtRsmis the main routine.

The application of padding masks the irregular behaviohefimplementations, when the matrix size is
not a multiple of32 (see Figures 4 or 5 far = 12000, for example). In addition, the overall performance
is considerably improved: maximum speed-ups for the Chyglésctorization variants compared with the
CPU implementations operating on single precision dat2 &feand2.89 for variants 1 and 3 (the second
variant attains better performance on CPU), while the spgsdattained for the LU are63, 3.25, and2.98,
respectively.

This technique can be also applied with success to the dqublgsion implementations, as can be
observed on the right-hand plots of Figures 6 and 7. We aetlipeak speed-ups of12, 0.77 and1.41
respectively for each variant of the Cholesky factorizatiand1.19, 1.66 and1.57 respectively for the LU
variants. More important than the peak performances is dinstant behavior of the implementations for
any matrix size.

4.4 Hybrid and recursive implementations

We next evaluate our hybrid and recursive blocked algomsthintluding padding, for the Cholesky and LU
factorizations based on Variants 1 and 2, respectively. ®e [thosen these variants because they have
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Figure 6: Performance of the three blocked variants for thel€sky factorization with padding applied,
operating on single precision data (left) and double precidata (right). Highest performances attained on
the GPU arel54.1, 46.8, and159.5 GFLOPS for single precision, and.2, 37.8, and43.1 GFLOPS for
double precision.
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Figure 7: Performance of the three blocked variants for tiddctorization with padding applied, operating
on single precision data (left) and double precision datg{y. Highest performances attained on the GPU
are63.2, 145.4, and143.9 GFLOPS for single precision, aritil.7, 44.7, and46.1 GFLOPS for double
precision.
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Figure 8: Left: performance of the implementations of Viaria of the blocked algorithm for the Cholesky
factorization operating on single precision data: basiglé@mentation, hybrid implementation, and a com-
bination of the recursive and hybrid implementations. Hsthperformances ark3.9, 168, and175.6
GFLOPS, respectively. Right: same implementations operain double precision data. Peak perfor-
mances arés.1, 29.1, and39.5 GFLOPS, respectively.

obtained the best results for each type of factorizatiorguieis 8 and 9 show that the hybrid approach
delivers notable performance gains compared with the lragiementation for both algorithms. Recursion,
however, is only positive when applied to the Cholesky feazttion.

Due to the overhead associated with the factorization asithed| current diagonal block/column panel on
the GPU, the hybrid approach introduces a significant imgameent compared with the basic implementation
of both Cholesky/LU factorization processes. Similar fgnare to be expected for the other two variants.
In addition, Figures 8 and 9 also show the improvement athiar a hybrid implementation combined with
a recursive approach for the factorization process.

The combination of padding, hybrid execution and recursioproves the original single precision
blocked implementation on GPU (see Section 4.2), achiegimgaximum speed-up &f.97 for the best
Cholesky variant, and.04 for the chosen version of the LU factorization (version 2)ewltomparing the
GPU implementations with the CPU ones. However, for the Lédddazation, the highest speed-ups are not
attained for the biggest input matrices. For double prenidata, the overhead associated with the data trans-
fers to/from main memory implies an important penalty onfthal performance, making the improvements
of the application of these techniques less important.

4.5 lterative refinement

We next perform a time-based comparison using the basiceimghtation of Variant 1 for the blocked
algorithms. Similar qualitative results can be extractadiie other variants of the algorithms. Employing
the GPU as a general-purpose coprocessor, our mixed mnedisplementation first computes a solution
using the Cholesky or LU factorization computed on the GRbig{e precision), which is then refined to
double precision accuracy. The overhead of the iteratifinement stage is reported in Figure 10 as the
difference between the mixed and single precision impleaiems. The figure also includes the time for
the corresponding full double precision routine executedusively on GPU.
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Figure 9: Left: performance of the implementations of \Vati2 of the blocked algorithm for the LU factor-
ization operating on single precision data: basic impletaté&n, hybrid implementation, and a combination
of the recursive and hybrid implementations. Highest pertnces aré38.9, 142.8, and145.9 GFLOPS,
respectively. Right: same implementations operating arbt#oprecision data. Peak performancesdrs,
43.5, and44.5 GFLOPS, respectively.
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Figure 10: Execution time of mixed precision iterative refirent compared with those of a full single
precision solution on the GPU and a full double precisioutoh on the GPU. A single right-hand side
vector is considered.
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Although the mixed precision version introduces some aeadhthe execution time is much lower than
that of a full double precision version executed exclugivel GPU. In fact, the number of iterations required
to achieve the desired accuracy was lower thamour experiments. Due to the higher performance of the
single precision GPU implementations, the mixed precisimategy is a good choice to achieve accurate
results in less time, as the overhead introduced by the raéineprocess does not have a significant impact
on the overall performance.

4.6 Experimental results summary

The set of experiments performed for the Cholesky and LU pétttial pivoting factorizations have showed
that blocked implementations achieve much better perfoomaesults than the unblocked counterparts.
However, there are still some points that can be tuned indselimplementations.

Padding is an effective way to attain a regular behavior énpgérformance of both algorithms; although
peak performances can be similar to the non-padded onégripgrformance can be achieved for all matrix
sizes. Similar conclusions can be extracted for doubleisicetdata. Hybrid variants better exploit the
potential of each type of processor achieving the biggespjin performance, even more in combination
with the recursive variant.

Double precision implementations also outperform theeggonding variants implemented on CPU, but
achieving lower speed-ups. Techniques such as hybrid c@atigudo not have the same impact on the final
performance as in the case of single precision. Current GRP&sot fully prepared to beat top-end CPUs
for double precision data and this type of algorithms. Ruataly, techniques such as iterative refinement
can combine the power of the GPUs for single precision aetiorand the accuracy of double precision
implementations.

5 Conclusions

We have evaluated three blocked variants of the CholeskytentU factorizations using tuned implemen-
tations of BLAS on a GT200 graphics processor and an AMD Quael@rocessor. The study reports that
padding, hybrid GPU-CPU computation, and recursion araciive techniques which deliver important in-
creases in the performance of the implementations. Thgs@imments can be applied to double precision
implementations executed natively on GPU, with similar &wipon the overall performance. Native support
for double precision in the last generation of GPUs is stitlffom being impressive. Iterative refinement
with mixed precision is thus revealed as an inexpensivenigoke to regain full accuracy in the solution of a
linear system of equations, exploiting the high perforngaoicthe GPU when it operates on single precision
data.

Similar results and techniques can be expected to applyt@isther dense linear algebra factorization
procedures, such as the QR factorization, attaining higlopeance and accuracy on a low cost and widely
available hardware platform.
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