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Abstract 25 

To meet the growing demand from public and private stakeholders for early yield estimates, a high-26 

resolution (2 km × 2 km) rice yield forecasting system based on the integration between the WARM 27 

model and remote sensing (RS) technologies was developed. RS was used to identify rice-cropped 28 

area and to derive spatially distributed sowing dates, as well as for the dynamic assimilation of RS-29 

derived leaf area index (LAI) data within the crop model. The system – tested for the main European 30 

rice production districts in Italy, Greece and Spain – performed satisfactorily: more than 66% of inter-31 

annual yield variability was explained in six out of eight combinations of ecotype × district, with a 32 

maximum of 89% of variability explained for Tropical Japonica cultivars in the Vercelli district 33 

(Italy). In seven out of eight cases, the assimilation of RS-derived LAI allowed improving the 34 

forecasting capability, with minor differences due to the assimilation technology used (updating or 35 

recalibration). In particular, RS allowed reducing the uncertainty by capturing factors not properly 36 

reproduced by the simulation model (given the uncertainty due to large-area simulations). As an 37 

example, the season 2003 in the Serres (Greece) district was characterized by severe blast epidemics, 38 

whose effect on canopy vigor was captured by RS-derived LAI products. The system – extending the 39 

one used for rice within the EC-JRC-MARS forecasting system – was pre-operationally used in 2015 40 

and 2016 to provide early yield estimates to private companies and institutional stakeholders within 41 

the EU-FP7 ERMES project. 42 

 43 
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 46 

1. Introduction 47 

There is an increasing demand for systems able to provide timely yield forecasts, given the potential 48 

interest for a variety of actors within the agricultural sector, including private companies and 49 

institutional stakeholders (e.g., Supit, 1997; Bannayan and Crout, 1999; Wang et al., 2010; Fang et al., 50 

2011). While industries and private companies are interested in crop yield forecasts for reasons such 51 
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as the need of defining selling strategies or planning milling operations (Everingham et al., 2002), the 52 

interest of public institutions deals with the need of regulating agricultural markets and mitigating 53 

volatility of prices in case of speculative actions on food commodities (e.g., OECD and FAO, 2011; 54 

Kogan et al., 2013). Simple forecasting systems – based, e.g., on agroclimatic indicators (Balaghi et 55 

al., 2012) – demonstrated their usefulness under conditions characterized by large year-to-year 56 

fluctuations in yields and when those fluctuations are driven by one or two key factors. Other 57 

approaches are more complex, relying on remote sensing (Mkhabela et al., 2005; Wang et al., 2010; 58 

Duveiller et al., 2013; Son et al., 2014) or crop simulation models (Vossen and Rijks, 1995; Supit, 59 

1997; Bezuidenhout and Singels, 2007a/b; de Wit et al., 2010; Kogan et al., 2013; Pagani et al., 2017). 60 

Crop models are indeed able to interpret reality, e.g., by capturing the effects of weather anomalies or 61 

other factors affecting crop yields better than simpler systems. As an example, they are able to 62 

simulate the effect of thermal shocks-induced spikelet sterility (Shimono et al., 2005). A forecasting 63 

system solely based on remote sensing would fail in contexts where sterility is an issue, since sterility 64 

can severely affect yields even without any damage to the canopy. Forecasting systems solely based 65 

on remote sensing are unsuitable also in contexts characterized by a good yield potential because of 66 

signal saturation (Sader et al., 1989; Dobson et al., 1995; Zhao et al., 2016). However, crop models 67 

are demanding in terms of data needs and, when applied on large areas, they can be affected by many 68 

sources of uncertainty, due to the poor quality of input data (weather, soil), to the lack of information 69 

on management (e.g., sowing dates, irrigation practices, cultivars/hybrids grown), as well as to the 70 

model structure (Sándor et al., 2016; Confalonieri et al., 2016a), to the experience of users 71 

(Diekkrüger et al., 1995; Confalonieri et al., 2016b), and to the uncertainty in the data used for their 72 

calibration (Kersebaum et al., 2015; Confalonieri et al., 2016c). 73 

The availability of powerful platforms for gridded model runs and for automatic calibration of 74 

parameters, as well as the availability of consistent archives (e.g., leaf area index estimates for the 75 

period 2000 - 2016 from ESA - Copernicus or NASA – MODIS) and new generations (e.g., Sentinel 76 

satellites from the Copernicus program) of remote sensing products (Lefebvre et al., 2016), is 77 

increasing the potential of forecasting systems integrating crop models and remote sensing 78 
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technologies. The combined use of these two kinds of technology can indeed markedly reduce their 79 

intrinsic limits, because the potentialities of both technologies can be increased by their integration 80 

(Fang et al., 2011; Ines et al., 2013; Ma et al., 2013). As an example, the uncertainty in the sowing 81 

dates provided to crop models can be reduced through the analysis of temporal profile or remote 82 

sensing products (e.g., Boschetti et al., 2009). Moreover, in case of differences in vigour among 83 

varieties or of factors not accounted for by simulation models (e.g., insects, Wu and Wilson, 1997; 84 

weeds, Kropff et al., 1992), they can be implicitly included in the simulation via the assimilation of 85 

remote sensing-derived leaf area index data varying in time and space (Launay and Guèrif, 2005; 86 

Dorigo et al., 2007). 87 

Two main strategies are available to integrate remote sensing information into crop simulators, each 88 

presenting pros and cons for different species and agroclimatic/operational contexts (Dorigo et al., 89 

2007): recalibration and updating. The recalibration method is based on the automatic adjustment of 90 

model parameters targeting the minimization of the error between model outputs and remote sensing-91 

derived state variables (e.g., Bouman et al., 1995). The updating method is instead based on the update 92 

of model state variables when the remote sensing data are available, using algorithms to convert them 93 

into simulated variables and to redefine all model outputs accordingly (McLaughlin, 2002). The latter 94 

is easy to implement and does not increase the computational time but penalizes the internal 95 

coherence of the simulation because it generate discontinuities in state variables (Bouman et al., 1995; 96 

Zhao et al., 2013; Jin et al., 2018). Recalibration instead – besides the higher complexity and 97 

requirements in terms of computational time/power – exposes to the risk of degrading the quality of 98 

parameter sets because at each assimilation event and for each spatial simulation unit, few RS-derived 99 

LAI values are used to change parameter values that were developed using many data (usually for 100 

different state variables) from dedicated multi-site and multi-year experiments (Dorigo et al., 2007). 101 

The aim of this study was to develop and test a high-resolution rice yield forecasting system targeting 102 

the main European rice districts based on different techniques (recalibration, updating) to assimilate 103 

remote sensing information in crops models. This was done in the framework of the EU-FP7 ERMES 104 

project, whose aim was developing services and disseminating added-value information for the rice 105 
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sector (www.ermes-fp7space.eu). The system is an evolution of the one used for rice within the 106 

European Commission Joint Research Centre MARS (EC-JRC-MARS) activities. 107 

 108 

2. Materials and methods 109 

2.1. Study areas 110 

The system was developed targeting Italy, Spain and Greece, which are responsible of 52% (1386100 111 

t, 219500 ha), 25% (861103 t, 110419 ha) and 7% (229900 t, 30720 ha) of the total European rice 112 

production, respectively (FAOSTAT, 2014). The rice production districts selected for each of the 113 

three countries are shown in Fig. 1. For the Italian district “Lombardo-Piemontese”, we considered the 114 

province of Vercelli and the area of Lomellina (located in the Pavia province), respectively including 115 

31% and 27% of the Italian rice area (National Rice Authority [Ente Nazionale Risi]; www.enterisi.it). 116 

For Spain, the system included the areas of the Ebro delta and of the “Parc natural de l’Albufera”, 117 

with the two rice districts located in the provinces of Tarragona and Valencia representing about 30% 118 

of the Spanish rice production. In Greece, the Central Macedonia region was selected, with rice 119 

districts located around Thessaloniki (the main Greek producing site), and Serres. According to the 120 

Koppen climate classification, Spanish and Greek areas are characterized by a Mediterranean climate, 121 

with hot and dry summers, whereas the climate in the Italian district is temperate with warm and 122 

humid conditions during the summer months. In general, the rice season in the three countries starts in 123 

March/April and ends in September/October, even though the length of the cycle strictly depends on 124 

the cultivated variety and on the seasonal weather conditions. The most common water management 125 

adopted in the three countries is based on continuous flooding; however, dry sowing (usually coupled 126 

with delayed flooding at the 3rd-5th leaf stage) is increasingly used in Italy, with 38.2% of the total rice 127 

surface in 2015 (last year for which official data are available) and an average value of 27.7% for the 128 

previous five years. According to data made available by Italian National Rice Authority, Japonica 129 

varieties belonging to the market category “Lungo A” are the most cultivated in Italy, followed by 130 

Japonica varieties “Tondo” and the Tropical Japonica varieties “Lungo B”, with the latter – especially 131 

grown in the province of Vercelli – representing about 15% of the national rice production. In Spain 132 
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and Greece, the most cultivated varieties belong to Japonica and Tropical Japonica groups, 133 

respectively, with the exception of the Greek district of Serres, where the colder climate is more 134 

suitable for the cultivation of Japonica varieties. 135 

 136 

Figure 1: rice production districts and related 2016 rice distribution maps for the a) Spanish (Valencia 137 

district), b) Italian (Lomellina and Vercelli districts) and c) Greek (Thessaloniki district) study areas. Source: 138 

EU-FP7 ERMES; Campos-Taberner et al. (2017). 139 

 140 

2.2. Crop model and assimilation tool 141 

This study was carried out using the rice-specific model WARM (e.g., Confalonieri et al., 2009a; 142 

Pagani et al., 2014). The model has been used in both research (e.g., Paleari et al., 2017) and 143 

operational contexts, e.g., it is one of the rice models used within the AgMIP project (Agricultural 144 

Model Intercomparison and Improvement Project; Rosenzweig et al., 2013) and it is the model used 145 

by the EC-JRC for rice yield forecasts in Europe; http://ies-webarchive-ext.jrc.it/mars/mars/About-146 

us/AGRI4CAST/Models-Software-Tools/Crop-Growth-Modelling-System-CGMS.html. WARM was 147 

selected among other rice models for both scientific and practical reasons. Given it was originally 148 

developed for being used within operational contexts at regional scale, it is parsimonious in terms of 149 
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data needs compared to other approaches (Confalonieri et al., 2009b). Nevertheless, it reproduces the 150 

effect of key factors affecting yield fluctuations in Europe, such as blast disease and spikelet sterility 151 

due to pre-flowering thermal shocks. Moreover, it demonstrated its accuracy in reproducing rice 152 

growth and development under the conditions explored by the crop in the study areas (Confalonieri et 153 

al., 2009a) and parameter sets were available for different groups of popular European varieties 154 

because of previous studies. Another reason was the availability of an integrated automatic 155 

optimization tool that allowed assimilating remote sensing-derived leaf area index (LAI) data based 156 

on recalibration techniques. 157 

WARM estimates biomass accumulation based on radiation use efficiency, which is modulated 158 

according to temperature limitation, saturation of enzymatic chains, senescence, sterility, and diseases. 159 

Daily accumulated aboveground biomass (estimated with daily or hourly time step) is partitioned to 160 

plant organs using a set of beta (panicles) and parabolic (leaves) functions of a SUCROS-type 161 

development stage code driven by a single parameter (partitioning to leaves at emergence). 162 

Partitioning to stems is then equal to 1 minus the coefficients for leaves and panicles. Green leaf area 163 

index increase is derived from daily increase in leaf biomass and a development stage-dependent 164 

specific leaf area. Leaf senescence is simulated when daily-emitted leaf area units reach a thermal 165 

time threshold. Spikelet sterility due to cold shocks around young microspore stage and at flowering, 166 

as well as due to heat stress at flowering, is calculated by weighing hourly stresses by development-167 

dependent bell-shape functions to reproduce the between- and within- plant heterogeneity in 168 

development. Concerning leaf and neck blast, disease onset is estimated based on hydrothermal time 169 

(Arai and Yoshino, 1987; Kim, 2000), whereas the daily infection efficiency is computed according to 170 

Magarey et al. (2005). Duration of the phases of latency, incubation and infectious is based on hourly 171 

air temperature. Leaf area affected by blast lesions is estimated using a compartmental susceptible-172 

infected-removed model (Bregaglio et al., 2016). Effects of neck blast are reproduced by reducing the 173 

fraction of assimilates partitioned to panicles (Bregaglio et al., 2016). For both spikelet sterility and 174 

diseases, hourly weather data are generated from daily inputs. 175 
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The assimilation of remote sensing information was carried out using recalibration and updating 176 

techniques. For the former, the optimization method used was a multi-start and bounded (for 177 

parameter ranges) version of the downhill simplex (Nelder and Mead, 1965). The simplex has N+1 178 

vertices interconnected by line segments and polygon faces in an N-dimensional parameter 179 

hyperspace, and it moves through this space according to three basic rules: reflection, contraction, and 180 

expansion. Although other optimization methods not using derivatives are available (e.g., Kirkpatrick 181 

et al., 1983; Glover, 1986), the simplex guarantees a very favourable ratio between performance and 182 

complexity (Matsumoto et al., 2002; Press et al., 2007). The updating method was instead 183 

implemented (i) by deriving leaf biomass from RS-derived LAI and simulated specific leaf area and 184 

(ii) by using the relationships among the relative weights of different plant organs at the previous time 185 

step to update all plant-related state variables. 186 

For both the assimilation methods, the procedure was triggered only (i) before flowering (to avoid 187 

uncertainty due to green or senescent leaf area), (ii) in case at least three exogenous data were 188 

available for each elementary simulation unit, and (iii) for leaf area index data within a biophysical 189 

range for rice in each specific phenological stage. Concerning the recalibration method, parameters 190 

whose values were optimized were specific leaf area at emergence and at mid-tillering and radiation 191 

use efficiency. 192 

 193 

2.3. Input data 194 

Dedicated processing chains were developed to produce the near real-time weather data and RS-195 

derived information used to feed the WARM simulation model. The adopted spatial resolution 196 

(defining the size of the elementary simulation unit) was 2 km × 2 km, considered as a good 197 

compromise between the high resolution of remote sensing data and the lower resolution of the 198 

weather database (which was downscaled; details in the following sections). Despite it would have 199 

been possible to further downscale weather data, the uncertainty in the information on management 200 

practices and the need of developing an operational system potentially extendible to other rice districts 201 

suggested to avoid further increases in the spatial resolution. Indeed, given other sources of 202 
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uncertainty (including those related with an extreme downscaling of weather data), further reductions 203 

in the size of the elementary simulation unit would have only increased the computational power 204 

needed to run the system, without increasing the quality of the information provided. 205 

2.3.1. Weather data 206 

An archive (continuously updated for near real-time simulations) of weather data at 2 km × 2 km 207 

spatial resolution was created starting from 1st of January 2003 to provide daily input to the WARM 208 

model. Source data were derived from the European Centre for Medium-Range Weather Forecast 209 

ERA-Interim (for the historical series) and TIGGE (for near real-time) databases (ECMWF; 210 

www.ecmwf.int; de Wit et al., 2010) for the following daily variables: maximum and minimum air 211 

temperatures, maximum and minimum air relative humidity, rainfall, average wind speed, global solar 212 

radiation. Leaf wetness duration, needed for the simulation of blast infections, was estimated 213 

according to Sentelhas et al. (2008). The spatial resolution of the ECMWF database used in this study 214 

was 0.125° (about 17 km). Data were downscaled to a regular 2 km × 2 km grid based on kriging 215 

methodology (Cressie, 1993). To allow correcting biases detected for some of the variables, dedicated 216 

calibration procedures were developed by targeting the EC-JRC MARS weather database as a 217 

reference (http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx). 218 

2.3.2. Satellite remote sensing data 219 

Satellite data were exploited to retrieve information on (i) current rice cultivated area (for identifying 220 

the area covered by rice in each 2 × 2 km elementary unit to perform the upscaling of model outputs), 221 

(ii) spatially distributed, season-specific sowing dates, and (iii) LAI for the updating/recalibration of 222 

the model. In order to guarantee continuity and redundancy, earth observation thematic products were 223 

derived either using existing operational mapping services (e.g., for LAI) or dedicated processing 224 

chains able to exploit operational, free of charge data provided by the ESA and NASA space agencies. 225 

See next sections for details. 226 

http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx
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2.3.2.1. Rice distribution maps 227 

Spatially explicit information on rice cultivated areas for the three study sites was derived at 20 m 228 

resolution from Sentinel-1 SAR data processing (Fig.1.a/b/c). The map was produced using the 229 

processing chain module within MAPscape-RICE (Sarmap®). The mapping method involved two 230 

main steps according to Nelson et al. (2014): automatic pre-processing of SAR data and rule-based 231 

classification. Firstly, the multi-temporal spaceborne SAR Single Look Complex data were converted 232 

into terrain geocoded backscattering coefficient (σ0) following strip mosaicking, co-registration, time-233 

series speckle filtering, terrain geocoding, radiometric calibration and normalization, anisotropic non-234 

linear diffusion (ANLD) Filtering, Removal of atmospheric attenuation. Secondly, a SAR specific 235 

multi-temporal σo rule-based rice detection algorithm (MSRD) was then applied. In this work, for 236 

Greece and Spain exclusively Sentinel-1A 12 days VV/VH Ascending (12 in Greece, 13 in Spain) and 237 

Descending (12 in Greece, 13 in Spain) data have been used (hence enabling an almost weekly 238 

monitoring) to produce the maps. For Italy, due to the complex agricultural system, 4 Landsat-8 239 

images acquired between March 2016 and June 2016 were additionally used. In this second case, 240 

maps of Enhanced Vegetation Index (EVI; Huete et al. 2002) – a spectral index sensitive to crop LAI 241 

– and Normalized Difference Flooding Index (NDFI; Boschetti et al., 2014) – sensitive to surface 242 

standing water – were calculated from Landsat images and used as additional info to improve the 243 

differentiation between rice and other summer crops (maize, sunflower, soybean). MAPscape-RICE is 244 

therefore based on operational, free of change SAR and Optical data provided by ESA and NASA that 245 

guarantees consistency of data provision and offer the data redundancy needed to support the 246 

production of crop masks. 247 

2.3.2.2. Sowing date maps 248 

Spatially distributed estimates of sowing date at district level were based on the use of the PhenoRice 249 

algorithm (Boschetti et al., 2009, 2017). Currently the method works on integrated time series of 250 

TERRA and AQUA 250 m 16-days composite MODIS vegetation indices products (MOD13Q1 and 251 

MYD13Q1, respectively). The algorithm identifies a MODIS pixel as a rice crop when (i) a clear and 252 

unambiguous flood condition is detected using NDFI, and (ii) a consistent rapid crop growth is 253 
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recognized analyzing EVI. In synthesis, sowing date was estimated in correspondence with agronomic 254 

flooding and a minimum in the EVI curve, more details can be found in Boschetti et al. (2009). The 255 

PhenoRice approach was applied in three study areas (Italy, Greece and Spain) to estimate dates of 256 

crop establishment to be used primarily as direct input to crop modeling solutions, providing spatially 257 

and temporally dynamic crop calendars. MODIS imageries acquired from 2003 to 2014 were used to 258 

analyze the inter-annual and spatial variability of rice growth dynamics. Fig. 2 provides the statistics 259 

derived for sowing dates in Italy (a), Spain (b) and Greece (c). It is interesting to notice that the 260 

method was able to detect the anomalous condition that occurred in Italy in 2013 (Fig. 2.a), when crop 261 

establishment was 1-month delayed compared to the 10-year average. This observation was confirmed 262 

by the National Rice Authority in the 2013 Rice Season Report, that described how an extremely rainy 263 

and cold spring forced farmers to delay rice sowing up to mid-June (ENR, 2013). The new Sentinel-3 264 

data represents an operational data source that can guarantee a backup solution for MODIS data. 265 

 266 

Figure 2: Inter-annual variability of rice sowing dates from 2003 to 2014 in a) Italy, b) Spain and c) Greece. 267 

 268 

2.3.2.3. Leaf Area Index maps 269 

LAI values (Fig. 3) – used for being assimilated into the WARM model – were derived from 270 

operational multi-temporal biophysical products derived from SPOT/VEGETATION and PROBA-V 271 
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in the framework of the Copernicus Global Land Services. The GEOV1 dataset is a multisensory 272 

product, developed to guarantee temporal continuity of biophysical variables over the globe on the 273 

near real-time basis. The GEOV1 LAI retrieval processing chain relies on neural networks trained 274 

using MODIS and CYCLOPES products (Baret et al., 2013) to generate remote sensing LAI estimates 275 

from SPOT/VEGETATION (1999 to May 2014) and PROBA-V (June 2014 up to date) sensors at 276 

1/112° spatial resolution in a Plate Carrée projection (regular latitude/longitude grid) every 10 days. 277 

LAI maps were downloaded from Copernicus servers and downscaled at the 2 km × 2 km regular grid 278 

used as elementary simulation unit. The downscaling was performed using only values with quality 279 

flags indicating the best confidence estimates and using dedicated crop masks for the study areas. 280 

 281 

Figure 3: LAI map over the Greek rice area derived from Proba-V on 2 July 2016 and the time-trend of LAI in 282 
2016 (from the ERMES geoportal, http://ermes.dlsi.uji.es/). 283 

 284 

LAI values used within this study were validated during the EU-FP7 ERMES project (www.ermes-285 

fp7space.eu) following international CEOS (Committee on Earth Observation Satellites) protocols 286 
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(Fernandes et al., 2014). The procedure consisted in the intercomparison with high resolution LAI 287 

maps derived from decametric satellite imagery (Campos-Taberner et al., 2017). Results showed that 288 

GEOV1-derived LAI maps allow to properly describe the temporal and spatial variability of rice crops 289 

over the study areas. The possibility of using MODIS LAI product (MOD15A2) as a backup solution 290 

in case of missing GEOV1 data was also successfully assessed. 291 

 292 

2.4. Spatially distributed simulations and forecasting methodology 293 

WARM model simulations were run on 2 km × 2 km elementary units, according to the spatial 294 

resolution of the weather database (see section 2.3.1). The model parameters for Japonica varieties 295 

(Confalonieri et al., 2009a) were used for the simulations carried out in Spain (both districts) and in 296 

the Greek district of Serres, whereas the WARM parameters for Tropical Japonica varieties were used 297 

for Thessaloniki. Concerning the Italian districts, simulations were run for both the market categories 298 

“Lungo B” (belonging to the Tropical Japonica group) and “Tondo” (belonging to the Japonica 299 

group). For the latter, the available set of parameters was refined using data on phenological 300 

development, LAI and final yield provided by “Ente Nazionale Sementi Elette” (ENSE) between 2006 301 

and 2012, and collected during dedicated experiments carried out within the ERMES project 302 

(www.ermes-fp7space.eu) in 2014-2015 in the Pavia Province. The market category “Lungo A” 303 

(belonging to the Japonica group) was excluded from the analysis since specific datasets were not 304 

available for the calibration of WARM parameters. 305 

According to the agro-management practices in the study areas, simulations were carried out under 306 

potential conditions for water and nutrients, whereas the effects of blast disease and cold shocks 307 

around flowering (inducing spikelet sterility) were taken into account by means of dedicated WARM 308 

modules. For each elementary simulation unit (regular grid of 2 km × 2 km) and for each 10-day 309 

period, a variety of information was aggregated at district level based on the percentage of rice cover, 310 

as derived by rice maps, for each elementary simulation unit. This information included potential, 311 

blast- and cold shock-limited crop model state variables, the same state variables for model runs 312 
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including the assimilation of remote sensing information (for both the updating and recalibration 313 

assimilation methods), and key agro-climatic indicators (Table 1). According to the forecasting 314 

methodology developed and used within the MARS forecasting system of the European Commission 315 

(Vossen and Rijks, 1995; https://ec.europa.eu/jrc/en/scientific-tool/agri4cast-mars-crop-yield-316 

forecasting-system-wiki) and in related yield forecasting systems (de Wit et al., 2010; Kogan et al., 317 

2013), model outputs and agro-climatic indicators were then related to official yield statistics for the 318 

time series 2003-2014 using multiple linear step-wise regressions (“statistical post-processing”, 319 

hereafter). The methodology is fully described by Pagani et al. (2017). To avoid losing robustness 320 

because of overfitting, the maximum allowed number of regressor was four. The forecasting event 321 

was triggered at the10-day period corresponding to the physiological maturity. Official yield statistics 322 

for the rice ecotypes considered (with the exception of Tarragona, for which only global rice statistics 323 

were available) were supplied by the Spanish and Greek Ministries of agriculture and by the Italian 324 

National Rice Authority. Before the analysis, yield statistics were examined to identify and possibly 325 

remove the presence of significant technological trends due to, e.g., improved machineries or 326 

genotypes. Indeed, if information on improved technological solutions (which affect historical yield 327 

statistics) are not provided to the model and the same management and genotype are used for the 328 

whole time series because of lack of information given the scale considered, the model will be able 329 

only to reproduce the effect of the year-to-year variability in weather. In case of significant 330 

technological trends, their elimination from the historical series of yield statistics prevents the step-331 

wise regression analysis being performed on series of data (model outputs and historical yields) that 332 

are not coherent, being historical yields affected by a factor (technological improvement) not 333 

accounted for by the model. In particular, the presence of linear trends was first tested and the 334 

significance of quadratic ones was then verified. The predictive ability of each regression model was 335 

tested by performing a leave-one-out cross-validation on the available time series of historical yields 336 

and by calculating the following performance metrics: mean absolute error (MAE; minimum and 337 

optimum = 0 t ha-1), relative root mean square error (RRMSE; minimum and optimum = 0%; 338 

normalized for the mean of reference values; Jørgensen et al., 1986), modelling efficiency (EF; from -339 
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∞ to +1, optimum +1; Nash and Sutcliffe, 1970), and metrics from the linear regression between 340 

official and predicted yields (slope, intercept, R2). 341 

 342 

Table 1: List of crop model outputs and agro-climatic indicators used as independent variables within the 343 
forecasting system (P=potential conditions; B-l=blast-limited; C-l=cold shock-limited; U=updated; 344 
R=recalibrated). 345 

Indicator 

name 

Unit Description Model 

configuration 

Model outputs   

DVS  - Development stage code P 

AGB t Aboveground biomass P, B-l, U, R 

SB t Stem biomass P, B-l, U, R 

YIELD t ha-1 Storage organs biomass P, B-l, U, R 

LAI m2 m-2 Leaf area index P, B-l, U, R 

GLAI m2 m-2 Green leaf area index P, B-l, U, R 

BlastInf  - Cumulated efficiency percentage of potential blast infections B-l 

Coldster  - Cumulated efficiency percentage of potential cold-induced spikelets 

sterility 
C-l 

Agro-climatic indicators   

TMAX °C Cumulated daily maximum temperature  - 
TMIN °C Cumulated daily minimum temperature  - 

Rain mm Cumulated rainfall   - 

 346 

3. Results and discussion 347 

The cross validation allowed identifying the best statistical models for each combination ecotype × 348 

production district identified among those proposed by the step-wise regression analysis (Table 2). 349 

The significance level for all regression models – sorted on the basis of the beta coefficients – was 350 

lower than 0.05. 351 

The forecasting system achieved satisfactory performances in six out of eight cases. Unsatisfying 352 

forecasting reliability was indeed obtained only for Tropical Japonica varieties in Thessaloniki and 353 

Japonica varieties in Lomellina. Without considering these two cases, average RRMSE and R2 of the 354 

most reliable regression model were equal to 2.9% and 0.78, respectively. The best results were 355 

obtained for the Japonica ecotype in Valencia and the Tropical Japonica ecotype (market category 356 

“Lungo B”) in Vercelli, for which the amount of inter-annual yield variability explained was, 357 

respectively, 89% (33% of which explained by a technological trend) and 83% (no statistical 358 

technological trend). 359 
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Despite the low value of R2 for Tropical Japonica in Thessaloniki and Japonica in Lomellina (Fig. 4), 360 

the values of EF were positive (0.24 and 0.16, respectively) indicating that the forecasting system – 361 

even in these cases, is a better predictor than the mean of official yield statistics (Table 2). The marked 362 

over- and underestimations showed in some years (i.e., 2012-2014 for Thessaloniki, and 2009-2010 363 

for Lomellina; Fig. 4.a) were likely caused by factors not accounted for by the simulation model. This 364 

hypothesis is supported by the analysis of the seasons 2012, 2013/2014 and 2014 in Thessaloniki. The 365 

low yields recorded in the district in 2012 were caused by an extreme heat wave during the 366 

reproductive period (process not simulated by the current modelling solution), whereas the high yields 367 

in 2013 and 2014 were due to the introduction of the successful high yielding variety Ronaldo 368 

(information provided by the Cereal Institute of the Hellenic Agricultural Organization (DEMETER); 369 

www.nagref-her.gr/en). 370 

 
b) a) 

 371 

Figure 4: Comparison between official (grey circles) and forecasted (black crosses) yields for the cross-372 

validation for a) Tropical Japonica cultivars in Thessaloniki and b) Japonica cultivars (market category 373 

“Tondo”) in Lomellina. 374 

 375 

In seven out of eight cases, the assimilation of remote sensing-derived LAI allowed improving the 376 

forecasting capability; in particular, the updating and recalibration assimilation methods led to 377 

improving forecasts in two and five cases, respectively. This is in agreement with results obtained by 378 

other authors: e.g., Ma et al. (2013) almost halved the error on yield estimates by assimilating 379 

MODIS-derived LAI into a forecasting system based on the WOFOST crop model. Similar results 380 

were obtained by Ines et al. (2013) for maize yield forecast using a DSSAT-based system. 381 
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For the rice district of Tarragona, simulated state variables (including blast-limited conditions) 382 

allowed achieving satisfactory predictions even without the assimilation of remote sensing 383 

information (Table 2), with EF and R2 for cross-validation equal to 0.60 and 0.71, respectively, 384 

although 37% of the inter-annual yield variability was explained by a significant technological trend. 385 

For other combinations ecotype × district, the assimilation of remote sensing information allowed to 386 

increase the predicting capability, although the forecasting system solely based on the crop model 387 

explained a relevant part of yield fluctuations in the series of historical yields series. As an example, 388 

assimilation led to increasing R2 from 0.70 to 0.83 for Tropical Japonica in the province of Vercelli 389 

(Table 2). In other cases, the reduction of uncertainty due to the assimilation of remote sensing-390 

derived LAI led to a substantial improvement in yield forecasts. As an example, the model showed 391 

marked under- and overestimations in most of the years for Japonica varieties in Serres, even under 392 

blast-limiting conditions (negative EF, R2=0.09; Table 2 and Fig. 5.a), for which some of the model 393 

outputs achieved significant values when used as regressors. In particular, the yield forecasted for 394 

2003 was in line with the average values for the time series, whereas official yield statistics for the 395 

same year were severely affected by blast disease (information provided by the Cereal Institute of the 396 

Hellenic Agricultural Organization (DEMETER); www.nagref-her.gr/en). Among the reasons for 397 

explaining the crop model failure in identifying 2003 as a year particularly affected by blast disease, a 398 

key role is likely played by the lower resistance of varieties grown at the beginning of the 2000s and 399 

by the general uncertainty due to the lack of information on fungicides distribution for large-area 400 

simulations. Concerning the former, indeed, given the pathogen pressure change greatly between 401 

years, the effect of improved varieties is hardly detectable by medium-term technological trends. The 402 

assimilation of remote sensing LAI allowed reducing the uncertainty in simulations by detecting the 403 

overall lower vigor of rice canopies in the district due to the disease. Indeed, assimilation led to 404 

markedly increase the system capability to reproduce the inter-annual yield fluctuations (a value of 405 

0.80 was achieved for both EF and R2), including the correct estimate of the poor yields recorded for 406 

2003 (Fig.5.b). 407 
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b) a) 

 408 
Figure 5: Comparison between official (grey circles) and forecasted (black crosses) yields for the cross-409 

validation for Japonica varieties in Serres. Forecasting system was based on a) crop model outputs and agro-410 

climatic indicators, and on b) model outputs updated using remote sensing-derived LAI and agro-climatic 411 

indicators. 412 

In most of the cases, the statistical post-processing of simulated outputs was important for reducing 413 

the different sources of uncertainty (in model structure, parameterizations, management, upscaling 414 

procedure, etc.) affecting large area simulations and, thus, to allow the system to correctly reproducing 415 

the fluctuations along the historical series of yield statistics. However, when the model was run in 416 

contexts not severely affected by extreme weather conditions or by unreproducible (given the scale) 417 

season- or site-specific effects involved with the application of management practices, good results 418 

were obtained from the combined use of crop modelling and remote sensing technologies, even 419 

without post-processing results. As an example, in the rice district of Valencia, yields simulated by 420 

WARM under potential conditions for Japonica cultivars were sufficiently coherent – in terms of 421 

overall time trend – with official yield statistics, although they were characterized by a general 422 

underestimation during the whole time series (Fig. 6.a). The assimilation of remote sensing-derived 423 

LAI values (via recalibration of model parameters) allowed to improve the forecasting capability of 424 

the crop model even in absolute term, especially in the second part of the series (Fig. 6.b). However, 425 

the statistical post-processing of simulated results led to further improve forecasts (Fig. 6.b) by 426 

including in the regression model – besides simulated yield – a second variable, i.e. the cumulated 427 

rainfall, that presented a negative correlation with official yields. The reason for the importance of 428 

cumulated rainfall is related with its role in affecting rice productivity because of less radiation 429 

available for photosynthesis (in turn due to more cloudy days) and because of higher humidity, that 430 



19 

favored blast infections. A further negative effect of abundant rainfall in the last part of the crop cycle 431 

is the possible problems during harvesting procedures. 432 

 433 

 
a) b) 

 434 

Figure 6: Comparison between official (grey circles) and yields forecasted for Japonica cultivars in Valencia 435 
using a) only the crop model (grey triangles), b) the crop model with assimilation of remote sensing LAI (grey 436 
triangles) and the statistical post-processing of simulated results (including LAI assimilation) (black crosses). 437 
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Table 2: Comparison between official and forecasted yields for the 2003-2014 time series. Forecasted yields derive from the statistical post-processing of simulated 438 

model outputs (M in the column “Regressors”) and agro-climatic indicators (A-c) (Table 1). Best regression models (maximum allowed regressor = 4) were identified 439 

by cross-validation. U and R (column “Regressors” and subscripts in column “Regression model”) refer to the assimilation of remote sensing LAI in the crop model 440 

using updating and recalibration techniques, respectively. Empty cells indicate the absence of significant regression models. Cells with dashes indicate that no 441 

improvement was obtained from assimilation. MAE: mean absolute error (minimum and optimum = 0 t ha-1); RRMSE: relative root mean square error (minimum and 442 

optimum = 0%; Jørgensen et al., 1986), EF: modelling efficiency (from -∞ to +1, optimum +1; Nash and Sutcliffe, 1970); Slope, Int and R2 refer to the linear 443 

regression between official and predicted yields. 444 

Country Ecotype District Regressors Regression model MAE RRMSE (%) EF Slope Int R2 
Spain Japonica Valencia M, A-c Rain**, Yield* 0.23 3.01 0.66 1.07 -0.60 0.66 

M, A-c, U  -  -  -  -  -  -  - 
M, A-c, R Rain***, YieldR*** 0.11 1.72 0.89 1.04 -0.31 0.89 

Tarragona M, A-c GLAIB*, LAI**, Yield**, AGBB**  0.22 4.61 0.60 0.72 1.71 0.71 
M, A-c, U  -  -  -  -  -  -  - 
M, A-c, R  -  -  -  -  -  -  - 

Greece Tropical 

Japonica 

Thessaloniki M, A-c               
M, A-c, U GLAIU**, LAIB**, LAIU* 0.50 8.00 0.07 0.55 3.80 0.21 
M, A-c, R GLAI**, LAI*, AGBR* 0.50 7.24 0.24 0.74 2.10 0.28 

Japonica Serres M, A-c YieldB*, AGBB* 0.41 9.08 -0.08 0.43 3.30 0.09 
M, A-c, U GLAI***, YieldU***, Tmax*** 0.20 3.94 0.80 0.97 0.13 0.80 
M, A-c, R LAI**, LAIR*, Tmax*, YieldB** 0.33 7.05 0.35 0.79 1.17 0.39 

Italy Tropical 

Japonica 

(market 

category 

“Lungo B”) 

Lomellina M, A-c GLAI**, DVS**, Tmax**, Tmin* 0.23 3.88 0.11 0.55 3.16 0.40 
M, A-c, U DVS**, LAIU**, LAIB**, AGBU** 0.16 2.78 0.54 0.75 1.78 0.62 
M, A-c, R DVS**, LAIR*, Yield**, YieldR*** 0.14 2.31 0.69 0.91 0.67 0.70 

Vercelli M, A-c ColdSter**, LAI*** 0.21 3.34 0.70 0.96 0.29 0.70 
M, A-c, U  -  -  -  -  -  -  - 
M, A-c, R GLAIR***, LAI***, LAIR**, YieldR** 0.16 2.50 0.83 1.00 -0.03 0.83 

Japonica 

(market 

category 

“Tondo”) 

Lomellina M, A-c               
M, A-c, U               
M, A-c, R SBR**, AGBR* 0.37 6.58 0.16 0.60 2.90 0.30 

Vercelli M, A-c LAI** 0.19 3.16 0.48 0.90 0.72 0.49 
M, A-c, U LAIU**, DVS*, Rain*, AGBB*** 0.16 2.57 0.66 0.78 1.55 0.72 

M, A-c, R  -  -  -  -  -  -  - 
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001445 
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The forecasting reliability obtained for Italy is in line with (or better than) the best results obtained by 446 

de Wit et al. (2010) using the CGMS-WOFOST model for grain yield estimates in Europe, whereas 447 

the results we obtained for Japonica cultivars in Valencia (56% of the variance explained without 448 

considering the trend) are slightly better than those achieved by de Wit et al. (2010) for barley, field 449 

beans and sugar beets. Results achieved for other combinations rice ecotype × district are less reliable, 450 

although they can be considered as in agreement with most of the results normally obtained using 451 

generic and crop-specific (e.g., Kogan et al., 2013; Ines et al., 2013) yield forecasting systems. 452 

Comparing our system with other rice specific ones, the values of R2 obtained by Son et al. (2014) 453 

with an approach based on MODIS-derived vegetation indices for the Mekong River Delta (Vietnam) 454 

ranged from 0.40 to 0.71. These values are similar to the ones we found, although the inter-annual 455 

yield fluctuations in Vietnam are larger than those characterizing rice cultivation in Europe, and the 456 

mean error obtained by Son et al. (2014) was often higher than those achieved in this study. However, 457 

the approach proposed by Son et al. (2014) is simpler and easier to set-up and maintain. 458 

4. Conclusions 459 

A high-resolution rice yield forecasting system based on the WARM model was run on 2 km × 2 km 460 

elementary simulation units covering the main European rice districts in Italy, Spain and Greece. The 461 

system integrated remote sensing information to define rice-cropped area and to derive sowing dates 462 

varying in time and space, as well as for assimilating exogenous LAI information into the simulation 463 

(using both updating and recalibration techniques). The system demonstrated its reliability in 464 

forecasting yields at district level even under conditions characterized by small year-to-year 465 

fluctuations in rice productivity. However, despite WARM includes algorithms for the simulation of 466 

processes with a relevant impact on yields in the study areas (e.g., blast disease and spikelet sterility 467 

due to thermal shocks during young microspore stage and flowering), the forecasting system in a few 468 

cases was not able to reproduce the effects of unfavorable seasons. This highlights the need for further 469 

improvements, given the importance of predicting yields especially in case of unfavorable conditions. 470 



22 

Although further studies are needed to increase the predicting capability in some of the districts (i.e., 471 

Thessaloniki and Lomellina), the system demonstrated its usefulness during 2015 and 2016, when it 472 

was used under pre-operational conditions during the activities performed within the EU-FP7 ERMES 473 

project (http://www.ermes-fp7space.eu/). In this context, yield forecast bulletins were regularly issued 474 

to public authorities and private companies in Italy, Greece and Spain. Feedbacks received from 475 

public and private stakeholders encouraged the continuation of the forecasting system operationally in 476 

the next seasons. 477 

 478 
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