

Universitat Jaume I of Castellón, Spain

http://geotec.uji.es

@geotecUJI

https://www.linkedin.com/company/geotec-geospatial-technologies-research-
group---universitat-jaume-i

https://www.youtube.com/user/geotecUJI

This paper might be a pre-print or a post-print author-produced .pdf version
of an article accepted for publication.

https://www.linkedin.com/company/geotec-geospatial-technologies-research-group---universitat-jaume-i
https://www.linkedin.com/company/geotec-geospatial-technologies-research-group---universitat-jaume-i
http://geotec.uji.es/

Noname manuscript No.
(will be inserted by the editor)

Personalised Code Generation from Large Schema Sets for
Geospatial Mobile Applications

Alain Tamayo · Carlos Granell · Laura Dı́az ·
Joaquı́n Huerta

Received: date / Accepted: date

Abstract XML and XML Schema are used in the geospatial domain for the defini-
tion of standards that enhance the interoperability between producers and consumers
of spatial data. The size and complexity of these geospatial standards and their asso-
ciated schemas have been growing with time reaching levels of complexity that make
it difficult to build systems based on them in a timely and cost-effective manner. The
problem of producing XML processing code based on large schemas has been tradi-
tionally solved by using XML data binding generators. Unfortunately, this solution
is not always effective when code is generated for resource-constrained devices, such
as mobile phones. Large and complex schemas often result in the production of code
with a large size and a complicated structure that might not fit the device limitations.
In this article we present Instance-based XML data binding, an approach to produce
more compact application-specific XML processing code for geospatial applications
targeted to mobile devices. The approach tries to reduce the size and complexity of
the generated code by using information about how schemas are used by individual
applications. Our experimental results suggest a significant simplification of XML

A. Tamayo
Institute of New Imaging Technologies, Universitat Jaume I, Av. Vicent Sos Baynat, SN, 12071, Castellón
de la Plana, Spain
Tel.: +34-964729058
Fax: +34-964728730
E-mail: atamayo@uji.es

C. Granell
European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi
2749, I-21027 Ispra, Italy E-mail: carlos.granell@jrc.ec.europa.eu

L. Dı́az
Institute of New Imaging Technologies, Universitat Jaume I, Castellón de la Plana, Spain
E-mail: laura.diaz@uji.es

J. Huerta
Institute of New Imaging Technologies, Universitat Jaume I, Castellón de la Plana, Spain
E-mail: huerta@uji.es

2 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

Schema sets to the real needs of client applications accompanied by a substantial
reduction of size of the generated code.

Keywords XML Processing · XML Schema · Code Generator · Mobile Applica-
tions · XML Data Binding

1 Introduction

Geospatial applications have become commonplace in desktop, server, and web en-
vironments. In such varied scenarios, standardization on communication protocols
and data encodings is a vehicle to increase interoperability among data providers and
consumers. In the geospatial domain, the Open Geospatial Consortium (OGC1) has
defined a set of web service interfaces, communication protocols, and data encodings
to access, discover, process, visualize and exchange geospatial information in a stan-
dard way [1]. The success of these set of standards is witnessed by the large number
of OGC-based service instances available online [2]. A geospatial web service that
exposes an OGC service specification is termed OGC web service (OWS) throughout
this paper.

Increased capabilities in mobile devices (e.g. built-in sensors) have impelled the
development of geospatial mobile applications. This trend has also been stimulated
by the increasing demand from users to run such applications on their mobile phones
[3,4]. While geospatial applications such as navigation systems, web mapping ser-
vices and location based services are more common everyday on mobile devices,
mobile applications that interact with OWS services are still a few. In our opinion,
though, the complexity of some data encodings makes it difficult and time-consuming
to create reliable and efficient OGC-compliant mobile applications [5]. For example,
OGC services may serve huge amount of observational data packed in complex data
structures in XML format, which is reputed to be extremely verbose in certain sce-
narios [6]. While this functioning still runs well in desktop and web settings, it causes
great performance penalties and poor efficient processing in mobile devices because
of their hardware limitations [7,8]. In the previous example, two issues arise: the size
of exchanged messages and the complexity of data structures (i.e., schema complex-
ity). The first issue may be addressed by using compression or some binary versions
of XML, but the problem of schema complexity still remains once client applications
uncompress incoming messages.

This paper focuses on the schema complexity issue in generating code for OWS-
compliant mobile applications. Distinct techniques may address this problem. The
first alternative is illustrated by code generators [9–12]. Using generators, develop-
ers are relieved from the burden of producing communication and XML processing
code manually. However, in some scenarios, finding a code generator that meets all
the application requirements (performance, size, scalability, etc.) may be very dif-
ficult or even impossible. This is precisely the case of building mobile OWS client
applications.

1 http://www.opengeospatial.org

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 3

A second alternative would be the use of light-weight data formats such as JSON.
These formats do not eliminate the process code for data bindings, that is, XML- or
JSON-encoded data must be in the end mapped into application objects. However,
this step may be different depending on the target client application. For example
JavaScript applications may transform JSON streams in application objects almost
automatically. The same though does not hold for Java-based applications since JSON
and XML must be handled in a similar manner.

A third alternative would be the definition of application-focused subsets of large
XML Schema sets in the form of application profiles. For instance, in the geospatial
domain some profiles have been defined2 such as Simple Feature Profile and Com-
mon CRS Profile. This strategy makes in principle a lot of sense as the complexity
of a source XML Schema is reduced to the portions needed for a particular appli-
cation. From the perspective of rapid development of client applications, however,
it presents some disadvantages. The wide array of potential applications that could
use a XML Schema would make it difficult if not impossible to define standardized
application profiles for each particular case. Standardization moves forward in a low
pace, different from the one of user’s and market’s needs.

In our opinion, the problem of producing XML processing code for mobile de-
vices in an easy and cost-effective way is greatly limiting the adoption of OWS clients
in mobile environments. Built on our previous works [5] and [13], in this article we
present an approach called Instance-based XML Data Binding.This approach is based
on the observation that the existence of large schemas does not imply that every sin-
gle XML element and type definition is required by client applications [14]. That is,
a client application is built according to the real requirements rather than support-
ing the full range of data structures offered by a given service specification, being
most of them particularly unnecessary in that client application. Our approach first
automatically extract the subset of a group of specification schemas required by a spe-
cific mobile client application. Then this subset is processed by a code generator to
produce compact application-specific XML processing code that fits the limitations
of mobile devices. An implementation of the approach is presented for Java-based
mobile applications running on the Google’s Android platform [15]. Nevertheless,
the approach is essentially platform-independent and can even be applied to other
schema languages beyond XML Schema. We validate our implementation through a
set of experiments in a case study in which a generated mobile application retrieves
air quality sensor data from OWS services.

The remainder of this article is structured as follows. Section 2 presents an intro-
duction to topics related to XML processing, geospatial schemas and mobile comput-
ing. In Section 3, related work on the topic is presented. The approach proposed in
this article is presented in Section 4. Section 5 provides details about the implemen-
tation of the approach for the selected mobile platform and programming language.
After this, Section 6 presents experiments showing the usefulness of this solution
using real sensor data. Last, conclusion and future work are presented.

2 http://www.opengeospatial.org/standards/profile

4 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

2 Background

XML is a text format originally designed to meet the challenges of large-scale elec-
tronic publishing [16]. It defines a set of rules to encode documents in a machine-
readable form. XML has been adopted as the most common form of encoding in-
formation exchanged by Web services [17–19]. XML Schema is used to define the
structure of information contained in XML documents [20,21]. Each XML Schema
file has a root element named schema, that contains the definition of the structure of
a set XML documents expressed through schema components such as complex types,
simple types, elements, attributes, and element and attribute groups. An XML docu-
ment conforming to the structure defined in some schema is said to be valid against
that schema.

Producing XML processing code manually is recognised to be difficult and error-
prone and may lead to code that is hard to modify and maintain [22,23]. An alter-
native is the use of code generators to generate this code based on the information
contained in XML Schemas. This process is commonly known as XML Data Bind-
ing. The use of generators brings benefits such as increased productivity, consistent
quality throughout all the generated code, higher levels of abstraction as we usually
work with an abstract model of the system, and the potential to support different
programming languages, frameworks and platforms [10]. The process of mapping
XML Schema components to object-oriented programming constructs is not a trivial
one. [24] details all the problems associated to carry out this mapping in a way that
satisfies all developer needs. This problem is labelled as X/O impedance mismatch.
In practice, the most common approach is to perform a best-effort mapping, while
recognising that some desirable aspects might still be missing from the generated
code.

The availability of many XML data binding code generators has provoked that the
task of producing XML processing code be taken for granted by schema designers,
who frequently assume that independent of the great length of schemas, a working
implementation can be built with little effort. Although this is true in some occasions,
with the growth in size of schemas in some domains it may not be the case. For exam-
ple, this is the case when code generated from large schemas must be accommodated
in a device with memory or processing limitations such as mobile devices.

XML Schema allows communities to define their own types on top of a set of pre-
defined types. The geospatial community, under the OGC umbrella, has extensively
used XML Schema to define data exchange models for their service specifications.
Examples of service specifications are Web Mapping Service (WMS) that provides a
simple HTTP interface for requesting geo-registered map images from one or more
distributed geospatial databases [25]; Web Feature Service (WFS) that allows a client
to retrieve and update geospatial vector data [26]; and Sensor Observation Service
(SOS) that provides access to observations from sensors in a consistent manner for all
sensor systems, including remote, in-situ, fixed and mobile sensors [27]. Examples of
data encodings related to the above service specifications are the Geography Markup
Language (GML), a grammar for expressing geographical features that serves as a
modelling language as well as an interchange format [28–30]; and Observation and
Measurements (O&M) that defines an abstract model and schema encoding for ob-

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 5

servations gathered by sensors [31]. Further readings relating OGC service specifica-
tions and data encodings applied to varied application domains are well documented
[32,33].

3 Related work

In general, issues related with having large and complex schemas have been ad-
dressed in multiple domains [34–36]. For example, Pichler et al [34] deal with prob-
lems of large schemas in schema matching in the business domain. In the context of
schema and ontology mapping Rahm [35] states that current matching systems still
struggle to deal with large-scale match tasks, in order to achieve both good effec-
tiveness and good efficiency. Villegas and Olivé [36] present an algorithm to extract
fragments from large conceptual schemas arguing that the largeness of these schemas
makes it difficult for users to get precise knowledge in which they are interested in.

Literature concerning XML processing for mobile devices is mainly focused in
two competing requirements: information compactness and processing efficiency [7].
To achieve compactness compression techniques are used to reduce the size of XML-
encoded information [37,38]. In this sense, the use of compressed format such as EXI
[39] would drastically reduce the size of exchanged messages [40], which has positive
effect on the volume of transmitted data to mobile devices. Indeed, the addition of
compressed formats would only require a few changes in terms of importing libraries
for handling these formats in our implementation as we comment later. Compression
techniques, however, do not alleviate the issue of parsing exchanged messages (in
XML or JSON format) into application objects in the client side.

On the other hand, to the best of our knowledge, not much work has been done
to deal with XML processing efficiency in mobile devices. A prominent exception
in this topic is the work presented in [7], [38] and [41]. These articles are related to
the implementation of a middleware platform for mobile devices: the Fuego mobility
middleware [42], where XML processing has a large impact. The proposed XML stack
provides a general-purpose XML processing API called XAS [7], an XML binary
format called Xebu [38], already mentioned before, and other APIs such as Trees-
with-references (RefTrees) and Random Access XML Store (RAXS)[41]. The focus
of the aforementioned work is much more low-level than our approach as it deals
directly with defining new XML processing APIs and exchange formats. In theory,
an implementation of our approach can be built by using any of the above XML
processing APIs.

Regarding the use of instance files to drive the manipulation of schemas, a key
point in our approach, [35] presents a review of different methods that use instance
files for ontology matching. In the field of schema inference, instance files are used
as well to generate adequate schema files that can be used to assess their validity (e.g.
[43–45]).

An extensive literature related to geospatial applications for mobile devices is
available [46–50], but mostly unrelated to OGC specifications and standards. Ex-
ceptions are a few but give an idea of the increasing importance of producing XML
processing code for OGC-compliant mobile applications in an easy and cost-effective

6 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

way. Some authors have proposed a kind of proxy approach by implementing a por-
tion of the SOS specification to allow mobile devices to act as an intermediary be-
tween physical sensors and SOS servers [51] [52]. Another strategy is driven by the
adaptation of Representational State Transfer (REST) style together with light-weight
data formats (e.g. JSON) as an alternative to the verbosity of XML-based messages.
In this context, an OGC Working Group has recently released a GeoServices REST
API candidate standard that leverages JSON as default format for exchanged mes-
sages3. The proposed REST API allows users to retrieve JSON-encoded geospatial
data from main OWS services (e.g. WMS, WFS). This approach eases web mapping
applications because of the smooth coupling of JavaScript and JSON formats. Sim-
ilarly, Rouached et al. [53] proposed a REST interfaces combined with JSON data
formats for sensor-related OWS services. Although promising solutions they still do
not put their emphasis on addressing the creation of processing code from exchanged
messages regardless if they are encoded in XML or JSON formats.

Although most of the data binding generators available nowadays are targeted to
desktop or server applications, some tools have been developed for mobile devices
such as XBinder4 and CodeSynthesis XSD/e5, or for building complete web services
communication end-points for resource constrained environments, such as gSOAP
[11]. All of the tools mentioned before map XML Schema structures to programming
language constructs in a straightforward way, which might not be adequate when
large schemas sets are used because it may result in code with a large binary size.

4 Instance-based XML data binding

Instance-based data binding attempts to generate application-specific data binding
code that consumes less computational resources. The approach is based on the as-
sumption that an application does not require all of the artifacts (e.g. types) specified
in the set of definition files (e.g. schemas) used to describe data instances of that ap-
plication. Note that we use general language to describe the main ideas behind this
approach to make obvious that it can be applied to other cases besides XML and
XML Schema. For example, it can be also applied to JSON and JSON schemas. We
used the term definition file to refer to any language or convention used to describe
the structure of a set of documents or fragments, and the term artifact to refer to any
relevant piece of information contained in a definition file.

Figure 1 shows the instance-based data binding approach for XML and XML
Schema. In this case, definition files are XML Schemas, artifacts are schema compo-
nents (types, elements, etc.), and input instances are XML files. The approach also
assumes that a representative subset of instances (input instances) that must be pro-
cessed by the application is available. By representative we mean that the input in-
stances contain enough information to infer which artifacts of the definition files are
needed to describe all of the instances that will be processed by the application dur-
ing its lifespan. In our experience working with OWS services such a representative

3 http://www.opengeospatial.org/standards/requests/89
4 http://www.obj-sys.com/xbinder.shtml
5 http://codesynthesis.com/products/xsde

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 7

Fig. 1 Instance-based XML data binding code generation process

subset is frequently available even when the development of a generic client is at-
tempted. In case it were not available synthetic documents that reflect the needs of
the application can be built by hand an used as input to the method.

The Instance-based data binding approach consists of two steps. The first step,
instance-based simplification, extracts the subset of the definition files needed by a
given application using information of input instances. The simplification algorithm
is used to reduce the number of artifacts in the definition files by removing those that
are not necessary to process input instances. The second step, code generation, uses
information extracted on the previous step to generate data binding code as optimised
as possible for a target platform. The “simplified definition files” are not the only
input to the code generation process, some other useful information can be extracted
from the input instances. The nature of this information is very specific to the type of
the definition files, examples for XML and XML Schema will be provided later on
this section. Likewise, how this information can be used to produce optimised code
will largely depend on the nature of the target platform.

The method outlined above is essentially platform-independent although individ-
ual implementations might be targeted to a single platform. In the rest of this section
we present a specific implementation of this approach for mobile applications based
on OWS standards and targeted on the Android platform. Our main goals in this
case are to lower the size of the generated XML data binding code and its memory
consumption to cope with the performance limitations of mobile devices. Both goals
are mainly accomplished by reducing the number of classes in the generated code,
because having a large number of classes have a negative impact on the memory foot-
print of an application, and in the case of a Java program, in the performance of the
class loader [54,55].

To detail some of the features of our solution we will use a specific case study.
The case study consists of a mobile client for the Sensor Observation Service (SOS)
implementation specification 1.0.0 [27]. The mobile client shall display air quality
data of the Valencian Community that available from a 52◦ North SOS server6. This

6 http://52north.org/communities/sensorweb/sos/

8 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

sensor data is gathered by a set of control stations located in the Valencian area. The
stations measure the level of different contaminants in the atmosphere using a group
of sensors. The mobile client application is referred to as Air quality mobile client in
the remainder of this article. We have chosen SOS because of our previous experi-
ence with this specification in the server and client side [5,14,40], and also because
the SOS schemas are among the most complex schemas of the OGC specifications
with more than 700 types distributed over more than 80 schema files. These figures
undoubtedly represent a real challenge for testing our approach.

4.1 Instance-based schema simplification

The Instance-based schema simplification step is aimed to extract the subset of the
schemas used on a set of XML documents conforming to them. Starting from the
input XML documents the algorithm calculates which schema components are used
and which are not. The subsetting algorithm is divided in two steps XML exploration
and subset calculation. During XML exploration the input XML files are processed
and the following information is recorded:

– Schema components that are instanced in XML documents: For each XML node
there exists a global or inner element and a schema type describing its structure.
This structure is in turn defined using other schema components. While XML
documents are processed the information of the schema components needed to
describe the structure each node is recorded.

– Type and element substitutions: The subtyping mechanism of XML Schemas al-
lows that the real or dynamic type of an element in a XML document be different
from its declared type in the schemas. The information about XML nodes whose
dynamic type is different from its declared type is recorded.

– Wildcard substitutions: Wildcards are an extensibility feature of XML Schema,
which allows to extend the XML document with elements not necessarily speci-
fied by the schema. Elements used to substitute wildcards are recorded.

– Element occurrence constraints information: for all the elements it is checked that
if they allow multiple occurrences there is at least one document where several
occurrences of the element are present.

The information of schema components instanced in XML documents is used by
the subset calculation step to compute the subset of the XML schemas needed to fully
describe the XML input instances. Note that the set of schema components explic-
itly referenced by instance files is built from other components that are not explicitly
referenced. To illustrate how this calculation works we introduce next the concept of
schema set:

Definition 1: An schema set S = (TS, ES, AS, MGS, AGS, RS), where TS is the
set of all type definitions, ES is the set of all element declarations, AS is the set of all
attribute declarations, MGS is the set of all element group definitions, AGS is the set
of all attribute group definitions, and RS is a set of binary relations (described later)
between components of TS, ES, AS, MGS, and AGS.

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 9

Listing 1 XML Schema fragment

<complexType name=” Base ”>
<s e q u e n c e>

<e l e m e n t name=” baseElem ” t y p e =” s t r i n g ” />
<e l e m e n t r e f =” baseElem2 ” minOccurs=” 0 ”>

</ s e q u e n c e>
</ complexType>

<complexType name=” C h i l d ”>
<complexCon ten t>

<e x t e n s i o n base =” Base ”>
<s e q u e n c e>

<e l e m e n t name=” chdElem ” t y p e =” s t r i n g ” />
</ s e q u e n c e>

</ e x t e n s i o n>
</ complexConten t>

</ complexType>

<complexType name=” C o n t a i n e r T y p e ”>
<s e q u e n c e>

<e l e m e n t name=” i t em ” t y p e =” Base ” maxOcurrs=” unbounded ” />
</ s e q u e n c e>

</ complexType>

<e l e m e n t name=” C o n t a i n e r ” t y p e =” C o n t a i n e r T y p e ” />
<e l e m e n t name=” baseElem2 ” t y p e =” s t r i n g ” />

Components included in sets TS, MGS and AGS, are composed by inner compo-
nents. In the case of types, inner components can be references to global elements,
attributes, model groups and attribute groups, or they can be nested element and
attribute declarations. Model groups can contain references to global elements and
other model groups, or they can contain nested element declarations. Similarly, at-
tribute groups may contain references to other global attributes and attribute groups,
or they may contain nested attribute declarations. Inner components can be optional,
meaning that is legal that they do not appear in all valid instance documents. For
example in Listing 1, element baseElem2 in Base is optional.

To define the binary relations, we use italics to refer to global types and ele-
ments in schema files, e.g. Container and ContainerType. We refer to attributes or
elements within types, model groups or attribute groups, by adding their name and a
colon as prefix to the attribute or element name. The whole expression is written in
italics, e.g. ContainerType:item, Base:baseElem, and Child:chdElem. So, the binary
relations contained in RS are defined as follows:

– isOfType(x, t): relates an element or attribute x to its corresponding type t. For ex-
ample: isOfType(Container, ContainerType), isOfType(Base:baseElem, string).

– reference(x, y): relates x ∈ TS ∪MGS ∪ AGS to y ∈ ES ∪ AS ∪MGS ∪ AGS if x
references y in its definition using the ref attribute in any of its components, e.g.
reference(Base, baseElem2).

10 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

– contains(x, y): relates x ∈ TS ∪MGS ∪AGS to y ∈ ES ∪AS if x defines y as an
inner attribute or element in its declaration, e.g. contains(Base,Base:baseElem),
contains(Child,child:chdElem), contains(Container, Container:item).

– isDerivedFrom(t, b): relates a type t to its base type b, e.g. isDerivedFrom(Child,
Base)

– isInSubstitutionGroup(x, y): relates an element x to another element y if y is the
head element of the x’s substitution group.

The schema set S for the schema fragment in Listing 1 remains as follows7:

S = {TS = {Base,Child,string,ContainerType},
ES = {Container,baseElem2,Base : baseElem,

Child : chdElem,ContainerType : item},
AS = /0,MGS = /0,AGS = /0,

RS = {isO f Type = {(Container,ContainerType),

(baseElem2,string),(Base : baseElem,string),

(Child : chdElem,string),

(ContainerType : item,Base)},
isDerivedFrom = {(Child,Base)},

re f erence = {(Base : Base : baseElem2)},
contains = {(Base,Base : baseElem),

(Child,Child : chdElem),

(ContainerType,ContainerType : item)}
isInSubstitutionGroup = /0}

A schema set can be easily represented as a directed graph where schema com-
ponents (TS, ES, AS, MGS, AGS, RS) are nodes and binary relations represent edges
(Figure 2). Using the information of schema components that are instanced in the
XML input instances we can easily find all the components needed to represent these
instances by calculating all nodes in the graph that can be reached from the instanced
nodes. The initial set of instanced nodes plus all nodes reachable from them repre-
sents the output of the subset calculation step. This information is passed to the code
generator along with the rest of the information gathered during XML exploration.

4.2 Code Generation Process

The second step of Instance-based data binding is code generation, and in our case it
involves the generation of code for a mobile platform, which poses additional com-
plications when large schema files are used. The constraints related to memory, pro-
cessing and battery life inhibited that existing generators for desktop or server appli-
cations could be easily adapted to these devices. As a consequence, the availability of

7 XML Schema anyType has been omitted purposely to simplify exposition.

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 11

Fig. 2 Graph of relations in schema fragment in Listing 1

generators for mobile devices is much more limited than for other environments. In
our case, we will generate code for the Java programming language and the Android
platform8. Although a specific language and mobile platform have been selected, in
general terms most of the techniques presented here are applicable to any program-
ming language or platform.

A more detailed view of the code generation process is shown in Figure 3. The
outputs of the schema simplification step (Section 4.1) are inputs to the schema pro-
cessor, the component of the generator in charge of creating the data model that will
be used later by the template engine. The template engine combines pre-existing class
templates with the data model to generate the final source code. The use of a template
engine allows the generation of code for other platforms and programming languages
by just defining new dedicated class templates.

A summary of the features of the code generation process that generates opti-
mised code is listed next:

– Support for instance-based code generation: Instance-based code generation refers
to the use of information extracted from XML documents to improve the gener-
ated code according to some criteria. The use of the information about schema
use allows to apply the following optimisations:

– Remove unused schema components: The schema components that are not
used are not considered for code generation.

8 These choices have been made based on the availability of mature tools to implement a prototype
which will be used to build a full-fledged sample application.

12 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

Fig. 3 Flow diagram for the code generation process

– Efficient handling of subtyping and wildcards: The scenarios involving dy-
namic typing, i.e, the dynamic type of a node differs from its declared type
can be simplified using information gathered from XML documents.

– Inheritance flattening: By flattening subtyping hierarchies it is possible to
reduce the number of classes in the generated code.

– Adjust occurrence constraints: An element may be declared to have multiple
occurrences but in practice it may have at most one occurrence.

– Collapse elements containing single child elements: Information items that will
always contain single elements can be replaced directly by its content.

– Disabling parsing/serialization operations as needed: Both operations are not
always needed. Hence, the generated code can be reduced by not including un-
needed operations.

– Ignoring sections of XML documents: Frequently, we are not interested in all of
the information contained in XML files, offering a good optimisation opportunity
by ignoring the unneeded portions.

A detailed explanation of the features related to instance-based code generation
is presented in the following subsections. More information about the rest of the
features can be found in [13].

4.2.1 Remove unused schema components

The schema components that are not used are not considered for code generation. By
removing the unused components we can substantially reduce the size of the gen-
erated code. The simplification algorithm presented in Section 4.1 is in charge of
finding the schema components that are used in a set of XML documents, the rest are
just ignored during the code generation step.

The amount of the reduction that can be accomplished will depend on how spe-
cific applications make use of the original schemas. For example, in [14] a study of
the use of XML in a group of 56 servers implementing the SOS specification revealed
that only 29.2% of the SOS schemas were used in a large collection of XML docu-
ments gathered from those servers. Similarly, [56] showed that less than 10% of the

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 13

components of the same schemas were used in the implementation of the Air quality
mobile client.

4.2.2 Efficient handling of subtyping and wildcards

The complexity of the subtyping mechanisms of XML Schema has been pointed out
by several authors [57,58]. These authors stated that this complexity might be the
cause why in practice the extra expressiveness of XML Schema is only used to a
very limited extent [57]; and that the inclusion of more than one subtyping mecha-
nism might be due to the presence of conflicting design approaches in the W3C XML
Schema Working Group [58].

As a consequence of this complexity, handling subtyping (and wildcards) can
be a complicated issue when code with specific performance requirements must be
built, specially if large schemas that rely heavily on these mechanisms are used, such
as those included in OGC specifications. In the general case, when no instance-
based information is available generic code to face any possible type or element
substitution must be written. Nevertheless, this scenario can be substantially sim-
plified with instance-based information. Consider for example the case of complex
type gml:FeaturePropertyType in the context of the SOS schemas (Listing 2). This
type is used as a container for any feature and contains a reference to a global
element gml: Feature. gml: Feature is the head element of the substitution group
shown in Figure 4, hence, the source code for gml:FeaturePropertyType must be
ready to parse any of these elements. If instead of generating code for the full SOS
schemas, we consider the subset of the schemas needed for the Air quality mo-
bile client, the number of elements in the substitution group is reduced from 30
to 5 (Figure 5). Even more, we can determine for every specific type which refer-
enced head elements are substituted by which element in its substitution group be-
cause this information was recorded during the XML exploration step (see Section
4.1). Using this information we can figure out that class FeaturePropertyType only
must be aware of parsing elements of type FeatureCollection and SamplingPoint, as
om:Observation, om:ObservationCollection, and sa:samplingFeature never occurred
inside gml:FeaturePropertyType elements in the XML input instances.

Similarly we can determine which inner elements of a type may have a dynamic
type different from its declared type using the information in the typeSubstitutions
data structure. In the case that type substitution is used for a type, generic code to
handle this situation is generated, but when no type substitution is used we can gen-
erate simpler code (see Section 5.1.1).

The same technique is applied to wildcards. During the execution of the instance-
based schema simplification algorithm it recognizes which elements are used to sub-
stitute wildcards. This information is used by the generator to create the appropriate
code to handle valid substitutions.

14 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

Listing 2 Extract of feature.xsd containing the definition of gml:FeaturePropertyType
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<schema t a r g e t N a m e s p a c e =” h t t p : / /www. o p e n g i s . n e t / gml ”>

<e l e m e n t name=” F e a t u r e ” t y p e =” g m l : A b s t r a c t F e a t u r e T y p e ”
a b s t r a c t =” t r u e ” s u b s t i t u t i o n G r o u p =”gml: GML” />

<complexType name=” A b s t r a c t F e a t u r e T y p e ” a b s t r a c t =” t r u e ”>
<complexCon ten t>

<e x t e n s i o n base =” gml:AbstractGMLType ”>
<s e q u e n c e>

<e l e m e n t r e f =” gml:boundedBy ” minOccurs=” 0 ” />
<e l e m e n t r e f =” g m l : l o c a t i o n ” minOccurs=” 0 ” />

</ s e q u e n c e>
</ e x t e n s i o n>

</ complexConten t>
</ complexType>

<complexType name=” F e a t u r e P r o p e r t y T y p e ”>
<s e q u e n c e minOccurs=” 0 ”>

<e l e m e n t r e f =” g m l : F e a t u r e ” />
</ s e q u e n c e>
<a t t r i b u t e G r o u p r e f =” g m l : A s s o c i a t i o n A t t r i b u t e G r o u p ” />

</ complexType>
</ schema>

Fig. 4 Elements in the substitution group of gml: Feature

4.2.3 Inheritance Flattening

The domain model defined by OWS schemas contains very deep type hierarchies.
The value of the depth of inheritance tree (DIT)9 metric for the subtyping hierarchy

9 DIT is defined as the maximum length from a node to the root of the inheritance tree [59]

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 15

Fig. 5 Elements in the substitution group of gml: Feature for the air quality mobile client schemas

of GML 3.1.1, an encoding format SOS schemas are built upon, is 7, which is a
rather large number. If this specification were analysed in the context of SOS this
value would be even bigger as SOS use several GML types as base types for locally
defined types.

Type hierarchies in OWS schemas contain many abstract classes, which by defi-
nition cannot be instantiated in XML documents. In the code generation step the in-
heritance tree is “flattened”, eliminating all base classes corresponding to types that
never need to be instantiated to process input instances. Each class is transformed by
adding all of the inherited fields and methods to the class declaration, eliminating its
dependency with its base classes. The generated classes will inherit directly from a
common base class named XMLInstanceTag (see Section 5.1.1).

By flattening subtyping hierarchies we reduce the number of classes in the gener-
ated code. The application of this technique will not necessarily result in smaller code
as the fields defined in base types must be replicated in all of their child types, but it
will have a positive impact in the work of the class loader because a lower number of
classes have to be loaded while the application is executed. In the case of geospatial
schemas, such as GML with six or more levels, if the hierarchy were not flattened,
processing an XML node of a type in the lowest levels of the hierarchy would imply
that all its parent types must be loaded first.

Using this technique the generated code is also simpler to understand as a one-
to-one correspondence will exist between a schema type and the code in charge of
processing a node of this type. Consider the opposite case where the processing is
distributed between the class representing the schema type and all its ancestors. Here,
the code is harder to understand and even debugging becomes a more complex task.

Inheritance flattening has the advantage that the number of classes on the gener-
ated code is reduced, but at the expense of loosing all the information related with
subtyping between generated classes, which might not be desirable if the generated
code is meant to resemble the domain model and it is not just a mean to access data
encoded as XML. This technique has been widely explored and used in different
computer science and engineering fields as is proven by the literature found on the
topic [60–65]. It is also used to a limited extent in the XML data binding tool JiBX10.

10 http://jibx.sourceforge.net/

16 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

4.2.4 Adjust occurrence constraints

The occurrence constraints of an element determines if it will be mapped to a single
object instance or to a list. If the element can have multiple occurrences (maxOcurrs
> 1 using the XML Schema jargon) it will be mapped to a list, otherwise to a sin-
gle instance variable. Many elements declared in schemas as having multiple occur-
rences, have only a single occurrence in XML documents. In this case, they can be
safely mapped to a unique instance variable instead of a list, making a better use of
memory during the execution of the program. In the schema simplification step the
information about element occurrences is stored in the maxOccurrences data struc-
ture. For a given schema type T we can map safely a contained element E to a single
object instance if a triple (T,E,1) is stored in this data structure.

5 Implementation

DBMobileGen (DBMG for short) is the current implementation of the Instance-based
XML data binding approach. It includes components implementing both the simpli-
fication algorithm and code generation process. It is implemented in Java and re-
lies on existing libraries such as Eclipse XSD11 for processing XML Schemas and
Freemarker12 as template engine library. For low-level XML processing we initially
used only kXML13 but we have rewritten the code to use any implementation of the
XMLPull API14. This allows to use implementations of this API based on EXI en-
codings such as EXIficient15.

5.1 Mapping schema components to programming language constructs

In this section we explain how schemas components are mapped to programming
language constructs. The basis of this mapping is very simple, containing rules for
mapping complex types, simple types and global elements. To simplify exposition we
say that given s, a schema component, T(s) will be the corresponding programming
language construct generated from s.

5.1.1 Mapping complex types

Each complex type in the schemas is mapped to a class in the target programming
language (Java in our case), i.e., if s is a complex type, T (s) will be a Java class
representing s. An UML diagram showing the structure of the class generated for
complex type Child (Figure 1) is shown in Figure 6. The mapping is performed by
applying the following rules:

11 http://www.eclipse.org/modeling/mdt/?project=xsd\#xsd
12 http://freemarker.sourceforge.net
13 http://kxml.sourceforge.net/kxml2/
14 http://www.xmlpull.org
15 http://exificient.sourceforge.net

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 17

Fig. 6 Class corresponding to complex type Child

1. Attributes references and declarations are declared as fields of the class. The type
of each field, which is always a simple type, is determined according to the rules
for mapping simple types.

2. Element references and declarations are declared as fields of the class. The type
of each field, which in this case can be a simple or complex type, depends on
whether the type of the element on the schemas te has a counterpart on the gener-
ated code, or is mapped to a primitive Java type. It will also depend on the element
occurrence constraints. If the occurrence constraints of an element allow that in-
stances contain at most one occurrence, the type of the element will be T (te). If
multiple occurrences are accepted it will be mapped to List < T (te)>.

3. Setter and getter methods are generated for each field.
4. All classes will inherit directly or indirectly from XMLInstanceTag, a base class

containing the common structure and behaviour of all the mapped classes.
5. An overridden version of the method processTag defined in XMLInstanceTag is

generated for the class. This method will contain the code needed to parse the
content of the XML node containing the information to be parsed.

6. A method named processAttributes is generated for the class. This method will
contain the code needed to parse the attributes of the XML node.

XMLInstanceTag is the base class for all types produced during the code gen-
eration process. It provides the basic mechanisms to read the content of a node in

18 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

Fig. 7 Class to parse Capabilities files

an XML document. The class constructor receives the tag code of the XML node to
parse and a boolean value as parameter. The tag code is a unique identifier for each
element generated from their names. This code is necessary because Java classes cor-
respond to types in the schemas, and as a consequence elements with different names
may have the same type in XML documents. The boolean value defines if the node
may have children elements or not. The class also contains the methods fromXML and
toXML for parsing and serialization respectively. fromXML reads the content of the
current XML node during the parsing process. It first reads the content of attributes,
by calling processAtributtes, method that must be overridden by classes extending
XMLInstanceTag. After this, fromXML depending whether the node may have chil-
dren nodes or not, iterates through the nodes processing them as they are reached,
or just reads the value of the node. Children nodes are processed inside the method
processTag that must be overridden by subclasses as well. Similarly, node values are
read using the method processValue. The method fromXML is an implementation of
the Template Method design pattern [66].

5.1.2 Mapping simple types

Simple types in the schemas will be mapped whenever possible to primitive or pre-
defined Java types. As a general rule, facets that constrain the values of schema pre-
defined types will be ignored to speed up parsing of XML documents. This allows
mapping most of the simple types defined in the schemas without having to create
new types in the generated code. The only exception will be when a simple type is
declared as the union of several types that cannot all be mapped to the same Java type.
In that case, a Java class is created with a field for each possible type of the contained
values and boolean flags indicating which of the values are set. The approach of not
mapping simple types has been selected because the opposite will cause a prolifera-
tion of small objects, which consequently will result in the use of more memory and
more work for the class loader.

5.1.3 Mapping global elements

By default, global elements are not mapped to any programming language construct
unless it is explicitly specified that they can act as roots of XML documents. In that
case, a parser class is created with a method to process the instances using a parser
implementing the XMLPull API. Figure 7 shows the class in charge of processing
a Capabilities document containing metadata about the service the mobile client is
connecting to.

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 19

5.2 Limitations

The Instance-based data binding approach has an inherent limitation which is that it
relies on the existence of a representative set of XML documents that must be pro-
cessed by the application. This subset might not always be available. In this case,
we can still take advantage of the approach by building synthetic XML documents
containing relevant information. Whether XML processing code is produced manu-
ally or automatically developers typically have some knowledge of the structure of
the documents that must be processed by the applications. Therefore, we can use this
knowledge to build sample XML documents that can be used as input to the sim-
plification algorithm. In case it were necessary, the final code can be later modified
manually, or the sample files changed and used to regenerate the code.

The current implementation also presents some limitations. Because of the com-
plexity of the XML Schema language itself, certain features and operations have been
only supported and included in DBMG when they were considered necessary for gen-
erating client applications [13,67]. For example, dynamic typing using xsi:type is not
fully supported and serialization is not supported at all as parsing has more impor-
tance in the mobile clients we have used to test the approach.

6 Experiments

In this section we use the Air quality mobile client introduced earlier to prove how
the XML instance-based approach can simplify the development of standards-based
geospatial applications. The air quality mobile client must process data retrieved from
a given SOS-based server from which we captured a sample of 2492 XML documents
to be used, along with the SOS schemas (referred as full schemas in the rest this
section), as input to our approach. This sample included responses for each operation
of the server that will be used for the client. The subset of the schemas (referred as
reduced schemas in the rest of this section) used by the sample was calculated and
stored as XML Schema to be used as input to other generators.

The graph of schema components and their relationships, similar to the one in Fig-
ure 4, for the full schemas contains 3333 nodes (schema components) and 4617 arcs
(relationships among components). After applying the schema simplification algo-
rithm it was determined than only 327 components and 423 relationships are needed
to process the input instances [5], representing only 9.81% and 9.16% respectively
of the total number of component and relationships. Special importance among these
components have complex types, which are used as primary concepts to generate
code, that were reduced from 846 to 112 types (13.23%).

Table 1 shows the size of the code produced by different generators from the
full and reduced schemas. Source code generated by DBMG is compiled to com-
pressed jar format and compared with final code generated by XBinder, JAXB-RI16

and XMLBeans17. The last two generators are not targeted to mobile devices but are

16 Java Architecture for XML Binding (JAXB) Reference Implementation: http://jaxb.java.net/.
17 http://xmlbeans.apache.org/

20 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

Table 1 Comparing size of code (KBs) for original and simplified schema sets

XBinder JAXB XMLBeans DBMG

Full 3,626 754 2,822 88
Reduced 567 90 972 88
Libs 100 1,056 2,684 30

Fig. 8 Size of generated code for full schemas

used here as reference to compare the size of similar code for other types of applica-
tions. The last row of the table (Libs) shows the size of the supporting libraries, which
are out of the scope of the simplification algorithm, needed to execute the generated
code in each case.

Figure 8 shows the total size of XML processing code when using the full and
reduced schemas. In both cases, we can see the enormous difference that exists be-
tween the code generated by DBMG and the code generated by other tools. The full
and reduced size for DBMG is the same because it implicitly performs the simplifica-
tion of the schemas before generating source code. It must be noted that serialisation
is not still implemented in DBMG whereas the other generators used in the compari-
son include it. We roughly estimate that including serialisation code in DBMG would
increase the final size in about 30%. To calculate this estimate, we manually wrote
serialization code for a few cases of varying complexity and measured the increase in
size of their compiled files (.class). In all cases we obtained an increase very close to
30%, so we may suggest a similar increase on average because the size of the serial-
ization code depends directly on the numbers of fields contained in every generated
class.

From our experiments, the code generated by DBMG is about 6 times smaller
than the code generated by XBinder from the reduced schemas and about 30 times

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 21

smaller than the code generated from the full schemas. The lack of serialisation sup-
port in DBMG partially explains why the code generated by XBinder is a lot bigger.
The real factor, however, is that XBinder code ensures all the restrictions related to
user-defined simple types and it cannot use instance-based knowledge to simplify the
structure of the generated code. Ensuring all simple type restrictions is an advantage
if the application requires the data to be carefully validated, but it is a disadvantage
in the opposite case, as unneeded verifications increase processor usage and memory
footprint. It is also a disadvantage if invalid XML documents must be processed by
the target application.

When compared to JAXB, using the reduced schemas, the main difference in size
is in the supporting libraries, as the code generated by JAXB is very simple. Still, the
code generated by DBMG is slightly smaller because the step of removing elements
with single child elements and inheritance flattening eliminates a large number of
classes. In all of the cases, XMLBeans has the largest size. This tool is mostly opti-
mised for speed at the expense of generating a more sophisticated and complex code
and the use of larger supporting libraries.

At this point an interesting question would be if the results for this specific appli-
cation can be generalised to other SOS-based or OGC standards-based applications.
To try to answer this question, at least partially, we performed in [14] an empirical
study, already mentioned in Section 4.2.1, with 56 SOS servers revealing that only
29.2% of the components and 34.45% of the complex types of the SOS schemas were
used in a large collection of XML documents gathered from them. Data contained
in those servers was related mainly to environmental variables such as temperature,
pressure, seawater salinity, and rainfall. We used this data as input to DBMG to build
a quasi-generic SOS client for Android [68]. The size of the generated code for XML
processing in compressed jar format was 301 KB.

We have also applied the XML Instance-based approach to build prototypes of
geoprocessing mobile applications based on the Web Processing Service (WPS) stan-
dard [69]. We built a WPS Explorer that allows users to browse the process descrip-
tions of WPS services and a geoprocessing client based on Google Maps that allows
clients to enter simple geometries (points, lines and polygons) used as input to re-
mote processes to execute spatial operations such as buffer, intersection, and area.
For the first application only 11 out of the 99 complex types in the WPS schemas
were needed. For the second application only 18 out of 395 complex types present in
the schemas were necessary to implement the operations mentioned above. The final
size of the whole applications in both cases was around 160 KB.

In [13] we tested the performance of the code generated by DBMG which showed
to add few overhead to the performance of the underlying parser, kXML, when pro-
cessed files were below 100 KB. This indicates that the process of creating and ini-
tializing application objects do not take a significant amount of time. On the other
hand, when file size approaches to 1 MB, the overhead was important (> 1s) because
the amount of memory required to store the processed information forced the execu-
tion of the garbage collector with a higher frequency. We have to keep in mind that
code produced manually can have similar problems if it were necessary to retain most
of the information read from the XML files in memory. Additionally in [70] perfor-
mance experiments to compare DBMG to XBinder in a mobile device, and DBMG to

22 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

XBinder, JAXB and XMLBeans in two PC configurations and using several datasets
were presented. These experiments showed that DBMG outperformed XBinder in
most of the test cases but it was slower than JAXB and XMLBeans in PC configu-
rations. This last point is not a surprise as both generators are meant to be used in
desktop and server applications, On the other hand, kXML is optimised to be used in
resource-constrained devices.

7 Conclusion

The approach presented in this article allows the generation of application-specific
data binding code with the aim of consuming less computational resources. The ap-
proach is based on the assumption that an application does not require all the com-
ponents used in a set of schemas describing data instances of that application. The
approach is thought to be applied not only to XML and XML Schemas but to any
other technologies that play a similar role. Parts of the approach can be applied in
a platform-neutral way, such as calculating the subset of used components, allowing
them to be implemented easily for other platforms or to be combined with existing
code generators. Other parts, such as the code generator itself, are platform-specific
although the presented implementation is designed to be easily extended to generate
source code for different programming languages. Although we present this solution
in the context of geospatial mobile applications it can also be extrapolated to other
domains for which data specifications exist in some form of schema language.

With this solution we attempt to help developers to control to some extend the
complexity of schemas such as those defined by OGC. It can be used as an XML data
binding generation tool to build ready-to-use XML processing code or can be used to
calculate the subset of the schemas used by an application with the aim of reducing
the amount information that must be handled if a manual approach were selected for
the implementation of this code. In any case, a substancial simplification of XML
Schemas sets to the real needs of client applications is assured.

References

1. Lee C, Percivall G (2008) Standards-based computing capabilities for distributed geospatial applica-
tions. Computer 41:50–57

2. López-Pellicer F, Béjar-Hernández R, Florczyk A, Muro-Medrano P, Zarazaga-Soria F (2011) A re-
view of the implementation of OGC Web Services across Europe. International Journal of Spatial
Data Infrastructure Research 6:168–186

3. Anthes G (2011) Invasion of the mobile apps. Commun. ACM 54:16–18
4. Canali C, Colajanni M, Lancellotti R (2009) Performance Evolution of Mobile Web-Based Services.

IEEE Internet Computing 13:60–68
5. Tamayo A, Granell C, Huerta J (2011) Dealing with large schema sets in mobile SOS-based applica-

tions. In: Proceedings of the 2nd International Conference on Computing for Geospatial Research &
Applications, COM.Geo ’11, New York, NY, USA. ACM, pp 1–9

6. Barkstrom B (2011) When is it sensible not to use XML?. Earth Science Informatics 4:45–53
7. Kangasharju J, Lindholm T, Tarkoma S (2007) XML Messaging for Mobile Devices: From Require-

ments to Implementation. Comput. Netw. 51:4634–4654
8. Walker M, Turnbull R, Sim N (2007) Future mobile devices: an overview of emerging device trends,

and the impact on future converged services. BT Technology Journal 25:120–125

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 23

9. Benatallah B, Casati F, Grigori D, Nezhad H, Toumani F (2005) Developing adapters for web services
integration. In: O. Pastor, J. Falca̋o e Cunha (eds.) Advanced Information Systems Engineering,
Lecture Notes in Computer Science, vol. 3520. Springer, pp 415–429

10. Herrington J (2003) Code Generation in Action. Manning Publications Co., Greenwich, CT, USA
11. Van Engelen RA, Gallivan KA (2002) The gSOAP Toolkit for Web Services and Peer-to-Peer Com-

puting Networks. In: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, CCGRID ’02, Washington, DC, USA. IEEE Computer Society

12. Zimmermann O, Milinski S, Craes M, Oellermann F (2004): Second generation web services-oriented
architecture in production in the finance industry. In: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, OOPSLA ’04,
New York, NY, USA. ACM, pp 283–289

13. Tamayo A, Granell C, Huerta J (2011) Instance-based XML data binding for mobile devices. In:
Proceedings of the 3rd International Workshop on Middleware for Pervasive Mobile and Embedded
Computing, M-MPAC’2011. Lisbon, Portugal. ACM

14. Tamayo A, Viciano P, Granell C, Huerta J (2011) Empirical study of sensor observation services
server instances. In: S. Geertman, W. Reinhardt, F. Toppen (eds.) Advancing Geoinformation Science
for a Changing World, Lecture Notes in Geoinformation and Cartography. Springer, pp 185–209

15. Google Android.com (2012) http://www.android.com/. Accessed 28 Nov 2012
16. W3C (2008) Extensible Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/

xml/. Accessed 28 Nov 2012
17. Kay MH (2003) XML five years on: a review of the achievements so far and the challenges ahead. In:

Proceedings of the 2003 ACM symposium on Document engineering, DocEng ’03. ACM, pp 29–31
18. Wilde E (2003) XML technologies dissected. IEEE Internet Computing 7:74–78
19. Wilde E, Glushko RJ (2008) XML fever. Commun. ACM 51:40–46
20. W3C (2004) XML Schema Part 1: Structures Second Ed. http://www.w3.org/TR/xmlschema-1.

Accessed 28 Nov 2012
21. W3C (2005) XML Schema Part 2: Datatypes Second Ed. http://www.w3.org/TR/xmlschema-2.

Accessed 28 Nov 2012
22. Bray T (2003) XML Is Too Hard For Programmers. http://www.tbray.org/ongoing/When/

200x/2003/03/16/XML-Prog. Accessed 28 Nov 2012
23. McLaughlin B (2002) Java and XML Data Binding. O’Reilly & Associates, Inc., Sebastopol, CA,

USA
24. Lämmel R, Meijer E (2007) Revealing the x/o impedance mismatch: changing lead into gold. In:

Proceedings of the 2006 international conference on Datatype-generic programming, SSDGP’06.
Springer, pp 285–367

25. OGC (2006) OpenGIS Web Mapping Server Implementation Specification 1.3.0. http://www.

opengeospatial.org/standards/wms. Accessed 28 Nov 2012
26. OGC (2005) OpenGIS Web Feature Service Implementation Specification 1.1.0. http://www.

opengeospatial.org/standards/wfs. Accessed 28 Nov 2012
27. OGC (2007) Sensor Observation Service 1.0.0. http://www.opengeospatial.org/standards/

sos. Accessed 28 Nov 2012
28. Lu CT, Dos Santos R, Sripada L, Kou Y (2007) Advances in GML for Geospatial Applications.

GeoInformatica 11:131–157
29. OGC (2004) OpenGIS Geography Markup Language (GML) Implementation Specification 3.1.1.

http://www.opengeospatial.org/standards/gml. Accessed 28 Nov 2012
30. OGC (2007) OpenGIS Geography Markup Language (GML) Encoding Standard 3.2.1. http://

www.opengeospatial.org/standards/gml. Accessed 28 Nov 2012
31. OGC (2007) Observations and Measurements - Part 1 - Observation schema. http://www.

opengeospatial.org/standards/om. Accessed 28 Nov 2012
32. Reichardt M (2010) Open standards-based geoprocessing Web services to support the study and man-

agement of hazard and risk. Geomatics, Natural Hazards and Risk 1(2):171–184
33. Foerster T, Schäffer B, Baranski B, Brauner J (2011) Geospatial Web Services for Distributed Pro-

cessing: Applications and Scenarios. In: P. Zhao, L. Di (ed) Geospatial Web Services: Advances in
Information Interoperability. IGI Global, Hershey, pp 245–286

34. Pichler C, Strommer M, Huemer C (2010) Size Matters!? Measuring the Complexity of XML Schema
Mapping Models. In: Proceedings of the IEEE Congress on Services. IEEE, pp 497–502

35. Rahm E (2011) Towards large-scale schema and ontology matching. In: Z. Bellahsene, A. Bonifati,
E. Rahm (eds.) Schema Matching and Mapping, Data-Centric Systems and Applications. Springer,
Berlin, pp 3–27

24 A. Tamayo, C. Granell, L. Dı́az, J. Huerta

36. Villegas A, Olivé A (2010) A method for filtering large conceptual schemas. In: Proceedings of the
29th international conference on Conceptual modeling, ER’10. Springer, Berlin, pp 247–260

37. Käbisch S, Peintner D, Heuer J, Kosch H (2010) Efficient and Flexible XML-Based Data-Exchange
in Microcontroller-Based Sensor Actor Networks. In: Proceedings of the 2010 IEEE 24th Interna-
tional Conference on Advanced Information Networking and Applications Workshops, WAINA ’10.
pp 508–513

38. Kangasharju J, Tarkoma S, Lindholm T (2005) Xebu: A binary format with schema-based optimiza-
tions for XML data. In: Proceedings of the6th International Conference on Web Information Systems
Engineering, volume 3806. Springer, Berlin, pp 528–535

39. W3C (2011) Efficient XML Interchange (EXI) Format 1.0. http://www.w3.org/TR/exi. Accessed
28 Nov 2012

40. Tamayo A, Granell C, Huerta J (2012) Using SWE Standards for Ubiquitous Environmental Sensing:
A Performance Analysis. Sensors 12(9):12026–12051

41. Lindholm T, Kangasharju J (2008) How to edit gigabyte XML files on a mobile phone with XAS,
RefTrees, and RAXS. In: Proceedings of the 5th Annual International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services, Mobiquitous ’08, pp 1–10

42. Tarkoma S, Kangasharju J, Lindholm T, Raatikainen K (2006) Fuego: Experiences with Mobile Data
Communication and Synchronization. In: Proceedings of the 2006 IEEE 17th International Sympo-
sium onPersonal, Indoor and Mobile Radio Communications, pp 1–5

43. Bex GJ, Neven F, Vansummeren S (2007) Inferring XML schema definitions from XML data. In:
Proceedings of the 33rd international conference on Very large data bases, VLDB ’07. VLDB En-
dowment, pp 998–1009

44. Hegewald J, Naumann F, Weis M (2006) XStruct: Efficient Schema Extraction from Multiple and
Large XML Documents. In: Proceedings of the 22nd International Conference on Data Engineering
Workshops. IEEE

45. Min JK, Ahn JY, Chung CW (2003) Efficient extraction of schemas for XML documents. Information
Processing Letters 85(1):7–12

46. Doyle J, Bertolotto M, Wilson D (2010) Evaluating the benefits of multimodal interface design for
CoMPASS–a mobile gis. GeoInformatica 14:135–162

47. Goh D, Sepoetro L, Qi M, Ramakhrisnan R, Theng YL, Puspitasari F, Lim EP (2007): Mobile tagging
and accessibility information sharing using a geospatial digital library. In: D. Goh, T. Cao, I. Slvberg,
E. Rasmussen (ed) Asian Digital Libraries. Looking Back 10 Years and Forging New Frontiers, Lec-
ture Notes in Computer Science, vol. 4822. Springer, Berlin, pp 287–296

48. Nusser S, Miller L, Clarke K, Goodchild M (2003) Geospatial IT for mobile field data collection.
Commun. ACM 46:45–46

49. Simon R, Fröhlich P (2007) A mobile application framework for the geospatial web. In: Proceedings
of the 16th international conference on World Wide Web, WWW ’07. ACM, , pp 381–390

50. Tsou MH (2004) Integrated mobile gis and wireless internet map servers for environmental monitor-
ing and management. Cartography and Geographic Information Science 31(3):153–165

51. Jändmsä and J, Luimula M, Schulte J, Stasch C, Jirka S, Schöandning J (2010) A mobile data collec-
tion framework for the sensor web. In: Proceedings of the Ubiquitous Positioning Indoor Navigation
and Location Based Service (UPINLBS). IEEE, pp 1–8

52. Müller R, Fabritius M, Mock M (2011) An OGC compliant sensor observation service for mobile
sensors. In: S. Geertman, W. Reinhardt, F. Toppen (Ed) Advancing Geoinformation Science for a
Changing World, Lecture Notes in Geoinformation and Cartography. Springer, Berlin, pp 163–184

53. Rouached M, Baccar S, Abid M (2012) RESTful Sensor Web Enablement Services for Wireless Sen-
sor Networks. In: Proceedings of the 2012 IEEE 8th World Congress on Services. IEEE, pp 65–72

54. Hartikainen VM, Liimatainen P, Mikkonen T (2006) On mobile java memory consumption. In: Pro-
ceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. IEEE, pp 1–7

55. Wilson S, Kesselman J (2000) Java Platform Performance: Strategies and Tactics. Addison-Wesley,
Boston

56. Tamayo A, Granell C, Huerta J (2012) Measuring Complexity in OGC Web Services XML Schemas:
Pragmatic Use and Solutions. International Journal of Geographical Information Science 26(6):1109–
1130

57. Martens W, Neven F, Schwentick T, Bex GJ (2006) Expressiveness and Complexity of XML Schema.
ACM Transactions on Database Systems 31:770–813

58. Møller A, Schwartzbach MI (2006) An Introduction to XML And Web Technologies. Addison-
Wesley Longman Publishing, Boston

Personalised Code Generation from Large Schema Sets for Geospatial Mobile Applications 25

59. Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans. Softw.
Eng. 20:476–493

60. Beyer D, Lewerentz C, Simon F (2000) Impact of inheritance on metrics for size, coupling, and
cohesion in object-oriented systems. In: Proceedings of the 10th International Workshop on New
Approaches in Software Measurement. Springer, London, pp 1–17

61. Chirila CB, Ruzsilla M, Crescenzo P, Pescaru D, Ţundrea E (2006) Towards a reengineering tool for
java based on reverse inheritance. In: In Proceedings of the 3rd Romanian-Hungarian Joint Sympo-
sium on Applied Computational Intelligence

62. Bungartz HJ, Eckhardt W, Mehl M, Weinzierl T (2008) Dastgen–a data structure generator for parallel
c++ hpc software. In: Proceedings of the 8th international conference on Computational Science, Part
III. Springer, Berlin, pp 213–222

63. Cicchetti A, Ruscio DD, Eramo R, Pierantonio A (2008) Automating co–evolution in model-driven
engineering. In: Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Com-
puting Conference, Washington, DC, USA. IEEE, pp 222–231

64. Lagorio G, Servetto M, Zucca E (2009) Flattening versus direct semantics for featherweight jigsaw.
In: Proceedsing fo the International Workshop on Foundations of Object Oriented Languages. ACM

65. Bungartz HJ, Eckhardt W, Weinzierl T, Zenger C (2010) A precompiler to reduce the memory foot-
print of multiscale pde solvers in c++. Future Gener. Comput. Syst. 26:175–182

66. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns. Addison-Wesley, Boston
67. Arago P, Tamayo A, Viciano P, Huerta J, Dı́az L (2011) Forest Fire Survey and Processing Tool

for Android-Based Mobile Devices. In: Proceedings of the INSPIRE Conference 2011, Edinburgh,
Scotland

68. Tamayo A, Viciano P, Granell C, Huerta J (2011) Sensor Observation Service Client for Android
Mobile Phones. In: Proceedings of Workshop on Sensor Web Enablement (SWE 2011), Banff, Canada

69. Tamayo A, Granell C, Dı́az L, Huerta J (2012) Building Standards-Based Geoprocessing Mobile
Clients. In: J. Gensel, D. Josselin, D. Vandenbroucke (eds.) Proceedings of the 15th AGILE Interna-
tional Conference on Geographic Information Science (AGILE 2012), Avignon, France

70. Tamayo A (2011) XML Data Binding for Geospatial Mobile Applications. Phd Thesis, Uni-
versitat Jaume I, Castellón de la Plana, Spain http://www3.uji.es/~atamayo/Phd/Phd_

Dissertation-Alain_Tamayo.pdf. Accessed 19 Mar 2013

