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Abstract. In this paper, we parallelize a new algorithm for solving non–
symmetric Toeplitz linear systems. This algorithm embeds the Toeplitz
matrix in a larger structured matrix, then transforms it into an embedded
Cauchy–like matrix by means of trigonometric modifications. Finally, the
algorithm applies a modified QR transformation to triangularize the aug-
mented matrix. The algorithm combines efficiency and stability. It has
been implemented using standard tools and libraries, thereby producing
a portable code. An extensive experimental analysis has been performed
on a cluster of personal computers. Experimental results show that we
can obtain efficiencies that are similar to other fast parallel algorithms,
while obtaining more accurate results with only one iterative refinement
step in the solution.

Keywords: Non–symmetric Toeplitz, Linear Systems, Displacement
Structure, Cauchy–like matrices, Parallel Algorithms, Clusters.

1 Introduction

In this paper, we present a new parallel algorithm for the solution of Toeplitz
linear systems such as

Tx = b , (1)

is presented, where the Toeplitz matrix T ∈ Rn×n has the form T = (tij) =
(ti−j)n−1

i,j=0, and where b, x ∈ Rn are the independent and the solution vector,
respectively.

Many fast algorithms that solve this problem can be found in the litera-
ture; that is, algorithms whose computational cost is O(n2). Almost all these
algorithms produce poor results unless strongly regular matrices are used; that
is, matrices whose leading submatrices are all well–conditioned. Several methods
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have been proposed to improve the solution of (1), including the use of look-ahead
or refinement techniques [1, 2].

It is difficult to obtain efficient parallel versions of fast algorithms, because
they have a reduced computational cost and they also have many dependen-
cies among fine–grain operations. These dependencies produce many commu-
nications, which are a critical factor in obtaining efficient parallel algorithms,
especially on distributed memory computers. This problem could partially ex-
plain the small number of parallel algorithms that exist for dealing with Toeplitz
linear systems. For instance, parallel algorithms that use systolic arrays to solve
Toeplitz systems can be found in [3, 4]. Other parallel algorithms deal only with
positive definite matrices (which are strongly regular) [5], or with symmetric
matrices [6]. There also exist parallel algorithms for shared memory multipro-
cessors [7, 8, 9] and several parallel algorithms have recently been proposed for
distributed architectures [10].

If we apply some of the techniques to improve the stability of the sequential
algorithms that solve (1), it is more difficult to obtain efficient parallel versions.
In this work, we combine the advantages of two important results from [2, 10]
in order to derive a parallel algorithm that exploits the special structure of the
Toeplitz matrices and is both efficient and stable.

Another of our main goals is to offer an efficient parallel algorithm for gen-
eral purpose architectures, i.e. clusters of personal computers. The algorithm pre-
sented in this paper is portable because it is based on the libraries LAPACK [11]
and ScaLAPACK [12] that are sequential and parallel, respectively.

In [10], we proposed two parallel algorithms for the solution of Toeplitz linear
systems. The first algorithm, called PAQR, performs a QR decomposition of T .
This decomposition is modified by a correcting factor that increases the orthog-
onality of the factor Q, so that the algorithm is backward stable and the solution
is more accurate. The main drawback of this algorithm is that it produces poor
speed–up’s for more than two processors. In the second algorithm, called PALU,
the Toeplitz matrix is transformed into a Cauchy–like matrix by means of dis-
crete trigonometric transforms. This algorithm obtains better speed–up’s than
the PAQR algorithm, but produces results that are not very accurate. In this
paper, we present a new parallel algorithm that combines the efficiency of the
PALU algorithm with the stability and precision of the PAQR algorithm.

The structure of this paper is the following. In Section 2, we present the
sequential algorithm. In Section 3 we show how to perform the triangular de-
composition of a Cauchy–like matrix. In Section 4, we describe the parallel al-
gorithm. The experimental results are shown in Section 5, and our conclusions
are presented in the last section.

2 The Sequential Algorithm

The algorithm proposed and parallelized in this paper performs a modified QR
decomposition in order to solve the Toeplitz system (1). This modified QR de-
composition is based on the idea set out in [2] and applied in the PAQR parallel
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algorithm mentioned in the previous section. The modified QR decomposition
can be described as follows.

An augmented matrix M is constructed with the following decomposition

M =
(

TT T TT

T 0

)
=
(

RT 0
Q ∆

)(
R QT

0 −∆T

)
, (2)

where RT and ∆ are lower triangular matrices and Q is a square matrix. Us-
ing exact arithmetic, the factors Q and R in (2) form the QR decomposition
of T (T = QR); however, the computed factor Q may actually lose its orthog-
onality. By introducing the correcting factor ∆, the product (∆−1Q) is almost
orthogonal. We will refer to the decomposition T = ∆(∆−1Q)R as modified QR
decomposition. This factorization is then used to obtain x in the linear system (1)
by using x = R−1(QT ∆−T )∆−1b.

The matrix M is a structured matrix, which means that a fast algorithm
can be used to compute the triangular factorization shown in (2). One of these
algorithms is the Generalized Schur Algorithm. In [10], we proposed a parallel
version of the Generalized Schur Algorithm, but its scalability for more than
two processors is not very good. This fact is mainly due to the form of the so–
called displacement matrices used. To improve its efficiency, we apply the same
transformation technique used in the PALU algorithm to M in order to work
with diagonal displacement matrices. This kind of displacement matrix allows
us to avoid a large number of the communications during the application of the
parallel algorithm.

Structured matrices are characterized by the displacement rank property [13].
We start from the following displacement representation of matrix M (2) with
respect to a displacement matrix F ,

∇M,F = FM − MF = GHGT , F = Z0 ⊕ Z1 , (3)

where Zε ∈ Rn×n is a zero matrix whose first superdiagonal and subdiagonal are
equal to one and whose first and last diagonal entries are equal to ε. The rank
of ∇M,F (3) is 8. Matrices G ∈ R2n×8 and H ∈ R8×8 are called a generator pair.

First, we define

Ŝ = sin
ijπ

n + 1
, i, j = 1, . . . , n, and S =

√
2

n + 1
Ŝ ,

as the unnormalized and the normalized Discrete Sine Transforms (DST), respec-
tively. Matrix S is symmetric and orthogonal. Matrix Z0 can be diagonalized by
means of the DST S; that is, SZ0S = Λ0, where Λ is diagonal.

In the same way, we define

Ĉ = ξj cos
(2i + 1)jπ

2n
, i, j = 0, . . . , n − 1, and C =

√
2
n

Ĉ ,

where ξj = 1/
√

2 for j = 0, and ξj = 1 otherwise, as the unnormalized and the
normalized Discrete Cosine Transforms (DCT), respectively. Matrix C is non–
symmetric and orthogonal. Matrix Z1 can be diagonalized by means of the DCT
C; that is, CT Z1C = Λ1, where Λ1 is diagonal.
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There exist four distinct versions of DST and DCT which are numbered as
I, II, III and IV [14, 15]. Transforms DST and DCT, as defined in this paper,
correspond to DST-I and DCT-II, respectively. We also exploit superfast algo-
rithms that perform the transformation of a vector by DST or DCT in O(n log n)
operations.

Now, we construct the following transformation

S =
(S 0

0 C
)

. (4)

Pre– and post–multiplying equation (3) by S leads us to a displacement repre-
sentation of M with diagonal displacement matrices.

ST (FM − MF )S = ST (GHGT )S ,

(ST FS)(ST MS) − (ST MS)(ST FS) = (ST G)H(ST G)T ,

ΛĈ − ĈΛ = ĜHĜT ,

(5)

where Λ =
(
Λ0 ⊕ Λ1

)
, and Ĉ has the form

Ĉ =
(

CT C CT

C 0

)
=
(S 0

0 CT

)(
TT T TT

T 0

)(S 0
0 C

)
,

with C = CT TS. It is easy to see that, by means of DST and DCT, we obtain a
Cauchy–like linear system from the Toeplitz linear system (1)

(CT TS)(Sx) = (CT b) → Cx̂ = b̂ . (6)

Matrices C and Ĉ are called Cauchy–like matrices and are also structured.
The advantage of using Cauchy–like matrices is that the diagonal form of the
displacement matrix Λ allows us to avoid a great number of communications.

We apply these ideas in the following algorithm to solve (1) in three steps.

1. The computation of generator G (3) and Ĝ = ST G, where S is defined in (4).
2. The computation of the triangular decomposition of matrix Ĉ,

Ĉ =
(

CT C CT

C 0

)
=
(

R̂T 0
Q̂ ∆̂

)(
R̂ Q̂T

0 −∆̂T

)
, (7)

The embedded factors Q̂, R̂ and ∆̂ represent the modified QR decomposition
of matrix C, C = ∆̂(∆̂−1Q̂)R̂.

3. The computation of the solution of the system (6)

x̂ = R̂−1(Q̂T ∆̂−T )∆̂−1b̂ , (8)

and the solution of the Toeplitz system (1), x = Sx̂.
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The form of generator pair (G, H) (3) can be derived analytically as follows:
Given the following partitions of T and TT T ,

T =
(

t0 vT

u T0

)
=
(

T0 v̄
ūT t0

)
, TT T =

(
s0 wT

0
w0 S0

)
=
(

S1 w1
wT

1 s1

)
,

where a vector x̄ represents the vector x =
(
x0 x1 · · · xn−2 xn−1

)T with the

elements placed in the reverse order x̄ =
(
xn−1 xn−2 · · · x1 x0

)T , and given
the following partitions for the resulting vectors u, v, w0 and w1, in the above
partitions,

u =
(

t1
u′

)
=
(

u′′

tn−1

)
, v =

(
t−1
v′

)
=
(

v′′

t−n+1

)
,

w0 =
(

α
w′

0

)
, w1 =

(
w′

1
β

)
,

we obtain the following generator pair

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 t−1 1 0 tn−1 0
w′

0 w′
1 ū′ v′ 0̂ 0̂ ū′′ v′′

0 0 t1 0 0 1 0 t−n+1
t0 + t1 0 0 1 0 0 0 1

u′ v̄′ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂
0 t0 + t−1 1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, H =
(

I4
−I4

)
,

where I4 is the identity of order 4. A demonstration of the form of the generator
can be found in [16]. The computation of Ĝ involves O(n log(n)) operations.

Once the generator has been computed, a fast triangular factorization ((O(n2)
operations) of matrix Ĉ (7) can be performed by means of the process explained
in the following section.

3 Triangular Decomposition of Symmetric Cauchy–Like
Matrices

For the discussion of this section, let us start with the following displacement
representation of a symmetric Cauchy–like matrix C ∈ Rn×n,

ΛC − CΛ = GHGT , (9)

where Λ is diagonal and where (G, H) is the generator pair. For the sake of
convenience, we have used the same letters as in the previous section in this
representation of a general Cauchy–like matrix.

Generally, the displacement representation (9) arises from other displacement
representations, like the displacement representation of a symmetric Toeplitz ma-
trix or another symmetric structured matrix. Matrix C is not explicitly formed in
order to reduce the computational cost; matrix C is implicitly known by means
of matrices G, H and Λ.
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From equation (9), it is clear that any column of C, C:,j , j = 0, . . . , n − 1, of
C can be obtained by solving the Sylvester equation

ΛC:,j − C:,jλj,j = GHGT
j,: ,

and that the (i, j)th element of C can be computed as

Ci,j =
Gi,:HGT

j,:

λi,i − λj,j
, (10)

for all i, j with i �= j, that is, for all the off–diagonal elements of C. We can use
this assumption because all the elements of the diagonal matrix Λ (5) used in
our case are different. With regard to the diagonal elements of C, assume that
they have been computed a priori.

Given the first column of C, we use the following partition of C and Λ,

C =
(

d cT

c C1

)
, Λ =

(
λ 0
0 Λ̂

)
,

with C1, Λ̂ ∈ R(n−1)×(n−1), c ∈ Rn−1 and d, λ ∈ R, to define the following
matrix X,

X =
(

1 0
l In−1

)
, X−1 =

(
1 0
−l In−1

)
,

where l = c/d. By applying X−1(.)X−T to equation (9) we have,

X−1(ΛC − CΛ)X−T =

(X−1ΛX)(X−1CX−T ) − (X−1CX−T )(XT ΛX−T ) =(
λ 0

Λ̂l − λl Λ̂

)(
d 0
0 Csc

)
−
(

d 0
0 Csc

)(
λ lT Λ̂ − λlT

0 Λ̂

)
=

(X−1G)H(X−1G)T ,

where Csc = C1 − (ccT )/d is the Schur complement of C with respect to d. At
this point, we have the first column of L,

(
1 lT

)T , and the first diagonal entry, d,
of the LDLT decomposition of C = LDLT , with L being a lower unit triangular
factor and D diagonal.

Equating the (2, 2) position in the above equation, we have the displacement
representation of the Schur complement of C with respect to its first element,

Λ̂Csc − CscΛ̂ = G1HGT
1 ,

where G1 is the portion of X−1G from the second row down. The process can
now be repeated on the displacement equation of the Schur complement Csc to
get the second column of L and the second diagonal element of D. After n steps,
the LDLT factorization of C is obtained.
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Now, we show how to apply the LDLT decomposition to matrix Ĉ = ST MS (7).
The LDLT factorization of Ĉ can be represented as

Ĉ =
(

CT C CT

C 0

)
=

(
ˆ̄RT 0
ˆ̄Q ˆ̄∆

)(
ˆ̄D1 0
0 − ˆ̄D2

)(
ˆ̄R ˆ̄QT

0 ˆ̄∆T

)
, (11)

where ˆ̄R
T

and ˆ̄∆ are lower unit triangular matrices, and ˆ̄D1 and ˆ̄D2 are diagonal.

From (7) and (11), we have R̂ = ˆ̄D
1
2

1
ˆ̄R, Q̂ = ˆ̄Q ˆ̄D

1
2

1 and ∆̂ = ˆ̄∆ ˆ̄D
1
2

2 , and the

solution of system (1) is x = S ˆ̄R
−1 ˆ̄Q

T ˆ̄∆
−T ˆ̄D

−1

2
ˆ̄∆

−1
b̂.

Diagonal entries of Cauchy–like matrix CT C cannot be computed by means
of (10), so we need an algorithm to obtain them without explicitly computing all
the Cauchy–like matrix entries by means of discrete transforms. An algorithm for
the computation of these entries exists and has a computational cost of O(n log n)
operations. An algorithm for the computation of the entries of OT TT TO, where
O is any of the existing orthogonal trigonometric transforms, can be found in [15].
A more specific algorithm can be found in [16] for the case in which O = S.

4 The Parallel Algorithm

Most of the cost of the parallel algorithm is incurred during the second step,
that is, during the triangular decomposition of the Cauchy–like matrix Ĉ. The
triangularization process deals with the 2n × 8 entries of the generator of Ĉ.
Usually, 2n � 8 and the operations performed in the triangularization process
can be carried out independently on each row of the generator. In order to get
the maximum efficiency in the global parallel algorithm, we have chosen the best
data distribution for the triangular factorization step.

The generator Ĝ of the displacement representation of Ĉ,

ΛĈ − ĈΛ = ĜHĜT ,

is partitioned into 2n/ν blocks of size ν × 8, and they are cyclically distributed
onto an array of p processors, denoted by Pk, for k = 0, . . . , p − 1, in such a
way that block Ĝi, i = 0, . . . , 2n/ν − 1, belongs to processor Pi mod p (Fig. 1).
For simplicity, in the presentation we assume that 2n mod ν = 0, although we
do not have this restriction in the implemented algorithm. This distribution is
performed and managed by ScaLAPACK tools on a one–dimensional mesh of p
processors.

The lower unit triangular factor,

L =

(
ˆ̄R

T
0

ˆ̄Q ˆ̄∆

)
, (12)

obtained by the triangular factorization algorithm, is partitioned into square
blocks of size ν × ν forming a two–dimensional mesh of (2n/ν) × (2n/ν) blocks.
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P0 Ĝ0 L00

P1 Ĝ1 L10 L11

P2 Ĝ2 L20 L21 L22

P0 Ĝ3 L30 L31 L32 L33

P1 Ĝ4 L40 L41 L42 L43 L44

...
...

...
...

...
...

...
. . .

Fig. 1. Example of data distribution for p = 3

Let Li,j be the (i, j)th block of L; then, blocks Li,j , j = 0, . . . , 2n/ν − 1, belong
to processor Pi mod p (Fig. 1). The diagonal elements of matrix D (11) are stored
in the diagonal entries of L (all diagonal entries of L are equal to one).

The block size ν influences the efficiency of the parallel algorithm. Large
values of ν produce a low number of large messages, but the workload is unbal-
anced among the processors, while small values of ν produce a higher number
of smaller messages, but also a better workload balance. Furthermore, the effect
of the block size depends on the hardware platform used, and so the block size
must be chosen by experimental tuning.

Once we know the data distribution among the processors, we briefly de-
scribe the parallel version of the algorithm. The generator is computed in the
first step. The computation of the generator involves a Toeplitz matrix–vector
product and the translation to the Cauchy–like form by means of the trigonomet-
ric transforms. The trigonometric transforms are applied with subroutines from
the library BIHAR [17, 18]. Currently, there are no efficient parallel implementa-
tions of these routines for distributed memory architectures so the trigonometric
transforms will be applied sequentially in this first step of the parallel algorithm.
This first step has a low weight in the total execution time if the problem size
plus one is not a prime number, as will be shown in Section 5.

The block triangular factorization can be described as an iterative process
of 2n/ν steps. When the iteration k starts (Fig. 2), blocks Ĝi such that i < k
have already been zeroed, and blocks Li,j , such that j < k for all i, have also
been computed. Then, during the iteration k, the processor that contains block

0̂ L00

...
...

. . .
0̂ L(k−1)0 . . . L(k−1)(k−1)

Ĝk Lk0 . . . Lk(k−1) Lkk

Ĝk+1 L(k+1)0 . . . L(k+1)(k−1) L(k+1)k

Ĝk+2 L(k+2)0 . . . L(k+2)(k−1) L(k+2)k
...

...
...

...
...

Fig. 2. Iteration example
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Ĝk computes Lk,k, zeroes Ĝk and broadcasts the suitable information to the
rest of the processors. Then, the processors that contain blocks of Ĝ and L with
indexes that are greater than k, compute blocks Li,k and update blocks Ĝi, for
i = k + 1, . . . , 2n/ν − 1. Blocks Li,j , with j > k for all i, have not yet been
referenced at this iteration.

Finally, the third step of the algorithm is carried out by means of calls to
PBLAS routines in order to solve three triangular systems and one matrix–vector
product in parallel. The parallel algorithm is summarized in Algorithm 1.

Algorithm 1. (Algorithm QRMC). Given a non–symmetric Toeplitz matrix
T ∈ Rn×n and an independent vector b ∈ Rn, this algorithm returns the solution
vector x ∈ Rn of the linear system Tx = b using a column array of p processors.

For all Pi, i = 0, . . . , p − 1, do
1. Each processor computes the full generator matrix Ĝ (5) and stores

its own row blocks in order to form the distributed generator (Fig. 1).
2. All processors compute the triangular factor L (12) in parallel using

the parallel triangular decomposition algorithm explained above.
Factor L will be distributed as shown in Fig. 1.

3. All processors compute x̂ by means of (8) using parallel routines
of PBLAS, and P0 computes the solution x = Sx of the linear system.

In order to improve the precision of the results, an iterative refinement can
be applied by repeating the third step of the algorithm.

5 Experimental Results

All experimental analyse were carried out in a cluster with 12 nodes connected
by a Gigabit Ethernet. Each node is a bi–processor board IBM xSeries 330 SMP
composed of two Intel Pentium III at 866 MHz with 512 Mb of RAM and 256
Kb of cache memory.

The first analysis concerns the block size ν. The main conclusion of that
analysis is that the worst results are obtained with small values of ν. The results
improve as ν grows, arriving to the optimum when ν ≈ 50. Thus, the time
spent by the parallel algorithm grows very slowly as we approach the maximum
value of ν = 2n/p (only one block per processor). This performance behaviour
is independent of both the number of processors and the matrix size. A full
experimental analysis of the influence of the block size can be found in [16].

The second experimental analysis deals with the effect of the three main steps
of the parallel algorithm on its total cost. Table 1 shows the time in seconds spent
on each of these steps. First of all, it can be observed that the time used for the
calculus of the generator tends to grow with the problem size, but it shows
large changes for certain values of n. More specifically, the execution time of
the trigonometric transform routines depends on the size of the prime factors
of (n + 1). That is, for problem sizes n = 2800, 3000, 4000, (n + 1) is a prime
number and the divide–and–conquer techniques used in trigonometric transform
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Table 1. Execution time of each step of the parallel algorithm on one processor

n primes of (n + 1) generator factorization system total
calculus step solution time

2000 3 × 23 × 29 0.32 ( 9%) 2.76 (81%) 0.32 ( 9%) 3.24
2200 34 × 71 0.38 ( 9%) 3.47 (82%) 0.39 ( 9%) 4.43
2400 74 0.42 ( 8%) 4.52 (84%) 0.47 ( 9%) 5.34
2600 32 × 172 0.48 ( 7%) 5.49 (84%) 0.55 ( 8%) 6.54
2800 2801 1.58 (17%) 6.81 (75%) 0.74 ( 8%) 9.04
3000 3001 1.79 (17%) 7.77 (75%) 0.84 ( 8%) 10.65
3200 3 × 11 × 97 0.67 ( 6%) 9.48 (86%) 0.82 ( 7%) 10.62
3400 19 × 179 0.76 ( 6%) 10.62 (86%) 0.94 ( 8%) 12.43
3600 13 × 277 0.85 ( 6%) 12.49 (87%) 1.05 ( 7%) 14.26
3800 3 × 7 × 181 0.89 ( 6%) 14.05 (87%) 1.17 ( 7%) 16.15
4000 4001 2.99 (15%) 15.96 (78%) 1.50 ( 7%) 20.24

routines cannot be exploited. However, with the exception of these cases, the
weight (in parenthesis) of this step with respect to the total time is low. The
most costly step is the second one, the “factorization step”. The third step has
a low impact on the total time. If we need to apply an iterative refinement step,
the time for the “system solution” doubles the time shown in Table 1.

Our third experimental analysis is about the precision of the results obtained
with the parallel algorithm. To perform this analysis we use the forward or
relative error, defined as ‖x − x̃‖/‖x‖, where x and x̃ are the exact and the
computed solution respectively. In order to obtain the relative errors, we have
computed the independent vector b = Tx with a known solution x and with all
entries equal to 1.

The matrix used for the experimental analysis of the precision of the solution
and the stability of the algorithm is

T = T0(ε) + εT1 ,

where T0(ε) =
(
t|i−j|

)n−1
i,j=0 is a symmetric Toeplitz matrix with ti = (1/2)i,

for all i �= 0, and t0 = ε. When ε 
 1, all leading principal submatrices of size
3k+1, k = 0, . . . , (n−1)/3 are near–singular. We have used a value of ε = 10−14,
thus, matrix T0 is a non–strongly regular matrix. Classical fast algorithms like
Levinson [19] and superfast algorithms like Bitmead–Anderson [20] fail or may
produce poor results with non–strongly regular matrices. These problems occur
even with well–conditioned matrices, at least for non–symmetric and symmetric
indefinite matrices [21]. The only solution is to apply some additional look–ahead
or refinement techniques in order to stabilize the algorithm and to improve the
accuracy of the solution. Matrix T1 is a randomly formed Toeplitz matrix with
entries belonging to [0, 1]. We use matrix εT1 to obtain a non–symmetric Toeplitz
matrix T with features that are similar to T0.

We will compare the relative error of the QRMC algorithm with two other
parallel algorithms. The first algorithm, called QRMS (QR Modified decomposi-
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Table 2. Forward error

n QRMS LUC QRMC
2000 5.72 × 10−13 3.12 × 10−11 2.78 × 10−10

2300 1.74 × 10−12 2.30 × 10−11 4.62 × 10−10

2600 6.76 × 10−13 3.93 × 10−11 1.71 × 10−09

2900 4.25 × 10−13 9.77 × 10−11 1.05 × 10−09

3200 2.02 × 10−12 6.29 × 10−12 6.20 × 10−10

3500 3.10 × 10−13 9.72 × 10−11 1.88 × 10−09

3800 1.11 × 10−12 2.31 × 10−11 2.87 × 10−10

Table 3. Forward error with one iteration of iterative refinement

n QRMS LUC QRMC
2000 6.07 × 10−16 4.03 × 10−13 5.28 × 10−16

2300 5.19 × 10−16 8.55 × 10−13 4.89 × 10−16

2600 6.15 × 10−16 4.04 × 10−13 3.36 × 10−16

2900 6.67 × 10−16 5.15 × 10−12 3.41 × 10−16

3200 6.67 × 10−16 1.43 × 10−12 5.92 × 10−16

3500 7.03 × 10−16 3.42 × 10−12 2.69 × 10−16

3800 5.16 × 10−16 6.13 × 10−13 6.72 × 10−16

tion with the Generalized Schur Algorithm), corresponds to the PAQR algorithm
mentioned in the introduction and in Section 2 of this paper. The second algo-
rithm, called LUC (LU factorization of a Cauchy–like translation of the Toeplitz
matrix), is described in [10]. Basically, this algorithm performs a transformation
of the Toeplitz system into a Cauchy–like system and computes a LU factoriza-
tion of the resulting matrix.

Table 2 shows that we did not obtain the expected precision in the solution,
that is, a relative error close to the relative error obtained with the QRMS algo-
rithm. This is due to the errors induced by the discrete trigonometric transforms.
The transforms S and C have an undesirable impact on the computation of the
generator and on the solution obtained by the parallel algorithm.

However, the results in Table 3 show that the solution can be greatly improved
by means of only one step of iterative refinement. This refinement uses matrices
ˆ̄R

T
, ˆ̄Q, and ˆ̄∆ that form the L (12). A similar refinement technique can be

applied to the solution obtained with the LUC algorithm, but the precision does
not improve as much as with the QRMC algorithm. In [16], we performed a
similar analysis using the backward error, and we arrived to similar conclusions.

Finally, we analyze the execution time of the QRMC algorithm with several
processors and different problem sizes (Fig. 3). It can be seen that the time
decreases as the number of processors increases.

Fig. 4 allows us to compare the execution time of the three algorithms for
a fixed problem size. The difference in time is mainly due to the size of the
generator used in each case. While LUC works on a generator of size n × 4,
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Fig. 3. Time in seconds of the QRMC algorithm
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Fig. 4. Time in seconds of the three algorithms for n = 4095

QRMS works on a generator of size 2n×6 and QRMC works on a generator of size
2n × 8. The embedding technique used by these last two algorithms to improve
the stability and the precision of their results increases the number of rows from
n to 2n. The number of columns is related to the rank of the displacement
representation. Also, the last step of the QRMS and QRMC algorithms involves
the solution of three triangular systems and a matrix–vector product, while
LUC only solves two triangular systems. In addition, the time shown in Fig. 4
for QRMC includes one step of the iterative refinement solution, which is not
performed in the other two parallel algorithms.

The LUC and QRMC algorithms have very similar behaviours. The execution
time decreases very fast when few processors are used, and decreases more slowly
when the number of processors used increases. In the QRMS algorithm, the
time is only reduced when two processors, or even four processors are used for
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large problems. For more processors, the time increases due to the effect of
the communication cost. Furthermore, QRMS can only be executed on p = 2i

processors, for any integer i. Our goal when developing the QRMC algorithm was
to improve QRMS by means of the Cauchy translation and the results show that
we have reduced the communication cost, obtaining an efficiency that is similar
to the LUC algorithm, while keeping the precision of the results obtained with
the QRMS algorithm. As an example, in the problem in Fig. 4, the relative error
is 2.33 × 10−11 for LUC, 1.48 × 10−12 for QRMS, and 3.13 × 10−16 for QRMC
using only one iteration of iterative refinement in this last case.

6 Conclusions

In this paper, we describe the parallelization of a new algorithm for solving non–
symmetric Toeplitz systems. The parallel algorithm combines the efficiency of
the LUC algorithm and the stability of the QRMS algorithms presented in [10].

This algorithm embeds the original Toeplitz matrix into an augmented matrix
in order to improve its stability and the precision of the results. The application
of only one step of iterative refinement to the solution produces very precise
results. However, as can be observed in [10], this technique alone produces a
non-scalable parallel algorithm due to the high communication cost.

In this paper, we solve this problem by applying trigonometric transforms
that convert the original Toeplitz matrix into a Cauchy–like matrix. This trans-
formation allows us to deal with diagonal displacement matrices, which greatly
reduces the communication cost. The efficiency obtained with this method is sim-
ilar to other less accurate parallel algorithms, while maintaining the accuracy of
the solution.

An experimental analysis of the algorithm was performed in a cluster of per-
sonal computers. Standard tools and libraries, both sequential and parallel, were
used. This has produced a code that is portable to different parallel architectures.

The experimental results show the precision and efficiency of the new parallel
algorithm with few processors (< 10). The scalability of the parallel algorithm is
quite good, considering the low cost of the sequential algorithm that we are par-
allelizing, O(n2). The analysis also shows the negative effect of some steps of the
algorithm in certain cases. Future work should be done to address this problem.
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