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1. Introduction

In this paper, we present a new parallel algorithm that solves the following system of linear
equations

T x = b, (1)

where T ∈ Rn×n is a block–Toeplitz matrix defined as

T =




B0 B−1 . . . B1−n/ν

B1 B0
...

. . .
. . .

Bn/ν−1 . . . B0




, (2)

with each Bi ∈ Rν×ν , for i = 1 − n/ν, . . . , n/ν − 1, being a non-structured matrix and
with b, x ∈ Rn being the independent and the unknown vectors, respectively.



252 ALONSO, BADÍA AND VIDAL

The same proposed algorithm can be used with a slight modification to solve the linear
system T̂ x̂ = b̂, where T̂ is a Toeplitz–block matrix defined as

T̂ =




T0,0 T0,1 . . . T0,ν−1

T1,0 T1,1
...

Tν−1,0 . . . Tν−1,ν−1


 , (3)

where each Ti j ∈ Rn/ν×n/ν , for i, j = 0, . . . , ν − 1, is a scalar Toeplitz matrix and b̂, x̂ ∈
Rn are the independent and the unknown vectors, respectively. Systems (2) and (3) are
related because matrix T̂ can be obtained from matrix T by means of a permutation matrix
P .

Many different methods can be used to solve (1). In this paper, the normal equations
T T T x = T T b are solved in order to obtain the solution of the linear system. This is not
a recommended method for the solution of non-structured linear systems. Nevertheless, it
can offer an accurate solution if T is a Toeplitz–like matrix in same cases. This is mainly
due to the fact that algorithms used for the Toeplitz–like case do not build the product T T T
explicitly.

The usual solution of a Toeplitz–block system (3) is carried out by transforming the
system matrix into the corresponding block–Toeplitz form (2) using the permutation matrix
P mentioned above. This method allows us to use BLAS3–type operations, and it offers very
efficient results. However, this method is very difficult to parallelize in a distributed memory
architecture. The dependency among small granularity operations forces very frequent and
expensive communications.

The parallel algorithm proposed in this work directly solves a Toeplitz–block system (3)
by means of the solution of the normal equations. If the system matrix has a block–Toeplitz
structure (2), then the systems matrix is transformed into the corresponding block–Toeplitz
structure. In the following sections, we will show that our parallel algorithm avoids most
of the communications of the previous methods by exploiting the structure of the Toeplitz–
block matrices. The communications of our algorithm are reduced to only one broadcast in
each iteration. Furthermore, the communication cost has been reduced even more by means
of packing techniques that reduce the number of such broadcasts.

Another important aspect concerning the execution time of the parallel algorithm pro-
posed is the pattern used to access the data stored in the local memory of each processor.
Our experimental analysis shows that different patterns to access memory have a great im-
pact on the the execution time. This factor is specially important in the case of algorithms
with an asymptotic cost of O(n2) operations. In order to reduce the memory access time,
our parallel algorithm always tries to access matrix elements stored in consecutive memory
positions

The experimental results obtained from a cluster of personal computers show a great
reduction in the execution time when the number of processors is increased. Furthermore,
the algorithm is backward–stable and provides a very accurate solution. In addition, the
parallel algorithm is portable because it is implemented using free–source computation and
communication libraries.
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The rest of this paper is structured as follows. In the following section, we give a brief
description of the preceding work on the solution of Toeplitz systems. The concept of
displacement structure of Toeplitz–like matrices is reviewed in the following sections,
focusing on the block–Toeplitz case. In Section 5, a well-known algorithm for solving
the normal equations with a cost of O(n2) is shown. In Section 6, our proposed parallel
algorithm is described in detail. The experimental results are shown in Section 7. Finally,
some conclusions are presented in the last section.

2. State of the art

In 1979, Kailath, Kung y Morf introduced the concept of displacement rank and showed
that Toeplitz matrices have a very low displacement rank. Moreover, Toeplitz-like matri-
ces, including block–Toeplitz and Toeplitz–block matrices, also have a very low displace-
ment rank. Matrices of this kind arise in many applications in physics and engineering
[22].

Regarding the solution of the system (1) in the scalar case, that is when ν = 1, many
more references can be found than in the case of block–Toeplitz or Toeplitz–block systems.

There exist fast algorithms that exploit the structure of Toeplitz–like matrices to solve
the system (1) with a cost of O(n2) operations, instead of the O(n3) operations of classical
algorithms that do not exploit the special structure of Toeplitz–like matrices. Algorithms of
this kind can be divided into Levinson-type, if they perform a decomposition of matrix T −1,
and Schur-type, if they perform the decomposition of T . However, Schur-type algorithms
have become very popular because they better exploit matrix properties such as low rank
displacement or band structure; they have better numerical properties when dealing with
positive definite matrices [8] and they can be better parallelized [24].

Block Schur-type algorithms can be found in [25, 30, 34]. More recently, Thirumalai [32]
developed several block algorithms that use BLAS3 operations in order to increase their
performance.

Schur-type algorithms apply the Generalized Schur Algorithm to solve (1) with block–
Toeplitz matrices (2). If we are dealing with a Toeplitz–block matrix, we must first permute
it into a block Toeplitz form. Other algorithms [21] solve the block linear system by directly
applying scalar operations.

Another different approach to solve system (1) is based on the Gokhberg–Semencul
inversion formulas. The parameter of these formulas can be computed by solving an in-
terpolation problem, as shown in [23, 33], or the solution of the system can be obtained
with methods based on the properties of Sylvester matrices [10, 11, 12, 26]. Algorithms
of this kind use a look-ahead technique and an iterative refinement in order to improve the
accuracy of the solution. However, there exist cases in which this method does not work
as well as in the scalar case, as mentioned in [33]. Other algorithms based on inversion
formulas and rational interpolation can be found in [1, 18].

There are few algorithms that solve system (1) in parallel. A great number of these
algorithms use systolic architectures [31], and they solve some specific problems arising
in digital signal analysis. One important limitation of these algorithms is that they can
only be applied to positive definite matrices. Some algorithms for more general parallel
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platforms exist, but they can only be used with particular kinds of Toeplitz matrices, like
tridiagonal or banded [15]. Other parallel algorithms have also been developed based on
iterative methods [27]. There also exist some parallel Levinson-type algorithms to solve
Toeplitz [19] and block–Toeplitz [14] equation systems on shared-memory multiprocessors.

However, there exist very few parallel algorithms for solving block–Toeplitz systems
on distributed–memory multicomputers. We will describe some of them [16, 17] in the
following sections.

3. Displacement structure

We define the displacement rank ∇F,A of a matrix M ∈ Rm×n with respect to two lower
triangular matrices F ∈ Rm×m and A ∈ Rn×n , called displacement matrices, as

∇F,A = M − F M AT . (4)

We say that a matrix M is structured or that it has a low displacement rank if the rank r
of ∇F,A is very small compared with the rank of M (r � n). The diagonal entries of F and
A satisfy 1 − fi a j �= 0 for all i and j , iff matrix ∇F,A has a unique factorization, such as

∇F,A = G BT . (5)

Matrices G ∈ Rm×r and B ∈ Rn×r are called generators of A.
In the symmetric case, the displacement Equation (4) of M has the following form:

∇F = M − F M F T = G J GT , (6)

with J ∈ Rr×r being the signature matrix. The signature matrix is diagonal and all its
entries are 1 or −1. The number of 1 and −1 values is equal to the number of positive and
negative eigenvalues of ∇F , respectively. Matrices G and J in (6) are called a generator pair
or M .

Toeplitz matrices are structured matrices, that is, they have a very low displacement rank.
For example, if T ∈ Rn×n is a Toeplitz symmetric matrix,

T =




t0 t−1 . . . t1−n

t1 t0
. . .

. . .

tn−1 . . . t0




,

then

∇Z = T − Z T Z T = G J GT , (7)
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where the displacement matrix Z ∈ Rn×n has the following form

Z =




0

1 0

. . .
. . .

1 0




, (8)

and the generator pair of (7) is

G = 1√
t0




t0 0

t1 t1
...

...

tn−1 tn−1




J =
(

1 0

0 −1

)
.

It can be seen that the displacement rank of T is 2, independently of its size.
The Generalized Schur Algorithm (GSA) obtains a fast triangular factorization of matrices

with displacement structure. The triangular decomposition of structured matrices is fast
because the GSA operates on the n × r entries of the generator instead of on the n × n
entries of the whole matrix. In each of the n iterations of the algorithm, the generator
or the generator pair is transformed to the proper form using a unitary transformation. A
generator in proper form has only one nonzero entry in its first nonzero row. The proper
form is obtained by means of a unitary transformation � such that

G��−T BT = (G�)(B�−1)T = G p BT
p , ��−T = I,

if the displacement matrix is non-symmetric, and

G�J�T GT = (G�)J (G�)T = G p J GT
p , �J�T = J,

if the displacement matrix is symmetric, where p denotes the generator in proper form.
The GSA exploits the property that the successive Schur complements of a structured

matrix are also structured matrices. Therefore, the generator of a Schur complement can
be obtained from the previous one by using the same transformation process. This can be
proved as follows. Consider a structured matrix M ∈ Rn×n with the form (4), with m1,1 = 1
and with u, v ∈ Rn being the first column and row, respectively. Then, we define the matrix

S = M − uvT =
(

0 0

0 C

)
, (9)

where C ∈ R(n−1)×(n−1) is the Schur complement of M with respect to m1,1.
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The displacement of matrix S can be obtained as

S − F S AT = M − uvT − F(M − uvT )AT

= M − F M AT − uvT + FuvT AT

= G BT − uvT + FuvT AT

= [G −u Fu] [B v Av]T .

If the generators are in the proper form, then

S − F S AT = [G −u Fu] [B v Av]T

= [Fu G1:n,2:r ] [Av B1:n,2:r ]T

= G ′ B ′T . (10)

The Schur algorithm computes the LU decomposition of matrix M , with L and U ∈
Rn×n , where L is a unit lower triangular matrix and U is an upper triangular matrix. This
decomposition is computed from the generator pair G BT (5). The first column of L and the
first row of U are the same as the first columns of G and B, respectively.

By applying (10) to G BT , we obtain the generators G ′ B ′T for the displacement of matrix
S (9) with respect to m1,1, and so we obtain the displacement of the Schur complement C
of M . The second column of L and the second row of U are the same as the first columns
of G ′ and B ′ respectively. We obtain the LU decomposition of M by repeating this process
as shown in Algorithm 1.

Algorithm 1 (GSA). Given a generator pair G and B for the displacement of the struc-
tured matrix M with respect to matrices F and A (4), the following algorithm returns the
triangular factors L and U of M.

for i = 1, . . . , n
1. Choose and apply a unitary transformation that transforms

generators G and B to the proper form.
2. The first column of G is the i th column of L,

while the first column of B is the i th row of U.
3. Assign FG1:n,1 to the first row of G and

AB1:n,1 to the first column of B.
end for

Algorithm 1 can be further generalized by allowing us to choose the elements of the
first row of the generators to be zeroed in order to transform the generator to the proper
form [21]. It is also possible to apply a certain number of iterations p < n of the algorithm
in order to obtain a partial decomposition of M and the Schur complement generator of M
with respect to the principal sub-matrix of size p.
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4. Displacement structure for block matrices

Block–Toeplitz matrices (2) and Toeplitz–block matrices (3) are structured (also called
Toeplitz-like) matrices.

Given a block–Toeplitz matrix T , its displacement representation can be defined as

T − FT F T =




B0 B−1 . . . B1−n/ν

B1 0 . . . 0
...

...
...

Bn/ν−1 0 . . . 0




, (11)

where F is the following displacement matrix of size n

F = Z ν =




0

Iν 0

. . .
. . .

Iν 0




, (12)

with Z being the displacement matrix defined in (8), ν the block size and Iν the identity
matrix of size ν. That is, the displacement matrix F is a zero matrix of size n with ones in
the (ν + 1)th sub-diagonal.

The form of the displacement generators of T can be obtained analytically [32]. Schur-
type algorithms can be used to compute the lower triangular factor L of T = L LT in the
symmetric positive definite case, or the lower triangular factor L and the diagonal factor D
of T = L DLT in the non-definite symmetric case, or the lower triangular factor L and the
upper triangular factor U of T = LU in the non-symmetric case.

Matrices T (2) and T̂ (3) are related by a permutation matrix P ∈ Rn×n whose elements
are

pi, j =
{

1 if j = ((i − 1) mod ν)ν + ((i − 1) div ν) + 1

0 in other case
, ∀ i, j = 1, . . . , n,

where div is the quotient of the integer division and mod is the remainder. It is easy to
see that T̂ = PT PT and that P PT = PT P = I , with I being the identity matrix. A
displacement representation of T̂ can be obtained from (11) using the previous relation,

P(T − FT F T )PT = PT PT − (P F PT )(PT PT )(P F PT )T = T̂ − F̂ T̂ F̂
T
,

where F̂ = P F PT for the matrix F defined in (12).
The displacement matrix F̂ can be written as

F̂ = P F PT = P Z ν PT = Zn/ν ⊕ · · · ⊕ Zn/ν,
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that is, matrix F̂ is block diagonal and has the form

F̂ =




Zn/ν

. . .

Zn/ν


 , (13)

with each block of the diagonal being the displacement matrix Z (8) of size n/ν.

5. Solution of the normal equations

In order to solve the linear system (1), we consider the normal equation system

T T T x = T T b. (14)

associated to the least squares problem

min
x

‖T x − b‖.

The triangular Cholesky decomposition of T T T = RT R leads us to the semi-normal
equations

RT Rx = T T b, (15)

where R is the upper triangular factor of the Q R decomposition of T .
In many cases, solving (1) by means of the solution of the normal equations is not

recommended because the condition number κ(T T T ) can be as large as κ(T )2 [20, Section
5.3]. However, this method can be used in the Toeplitz case because, as has been proved
in [6] using the results in [8] and [7], the computed triangular factor R̃ satisfies

‖R̃
T

R̃ − T T T ‖ = O(ε‖T T T ‖),

therefore, the error bound does not depend on κ(T T T ).
Furthermore, it is also shown in [6] that

‖T x̃ − b‖
‖T ‖‖x‖ = O(εκ(T )),

with x̃ being the computed solution after solving the matrix product and the two triangular
systems in (15).

Moreover, factor R in (15) can be computed using the GSA with a cost of O(n2), and the
semi-normal Equations (15) can be solved with O(n2) additional operations. The GSA can
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be used to perform the triangular decomposition of T T T because T T T is structured. The
rank of the displacement representation of T T T for a scalar matrix T is 4.

With respect to the stability of the GSA, an algorithm that solves a well conditioned
equation system is said to be weakly stable if ‖x̃ − x‖/‖x‖ is small [6, 9]. The GSA applied
to the normal equations is weakly stable. This result can be sufficient in many practical
applications.

The GSA can fail if the matrix to decompose is not strongly regular, that is, if any
of its leading sub-matrices is singular. If the leading sub-matrices are ill-conditioned, the
algorithm does not fail, but it obtains inaccurate results. Nevertheless, the product T T T is
a symmetric positive definite matrix so it is strongly regular.

Applying the GSA to T T T instead of T is more expensive because we have 4
columns in the generator instead of the 2 columns of the generator for the displace-
ment representation of T ; however, we do not need to apply any look-ahead or any
other technique to improve the stability of the algorithm and the accuracy of the
results.

In addition, we can always increase the accuracy of the solution by applying some iterative
refinement step such as the following. Let x̃1 be the computed solution after solving the
system (15) by using an approximated decomposition

T T T + δT T T = R̃
T

R̃.

The iterative refinement consists of computing the residual vector

r1 = T T b − T T T x1, (16)

and solving the linear system

R̃
T

R̃ �x1 = r1, (17)

in order to obtain the correction factor �x1. The precision of the computed solution of the
linear system (1) increases by applying

x2 = x1 + �x1. (18)

This process can be repeated as many times as necessary to improve the accuracy of the
results.

A block version of the GSA can be applied to solve the normal equations with block–
Toeplitz matrices (2). In this case, the displacement of the product T T T has the following
form

T T T − FT T T F T = G J GT , (19)
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where F is the displacement matrix of size n defined in (12), G is the generator, which in
this case is a matrix of size n × 4ν, and where J = I2ν ⊕ −I2ν is the signature matrix.

The generator G has the following form

G =




S0 0 0 0

S1 T T
−1 S1 T T

n/ν−1

S2 T T
−2 S2 T T

n/ν−2

...
...

...
...

Sn/ν−1 T T
1−n/ν Sn/ν−1 T T

1




, (20)

where

S = T T U R−1, U =




T0

T1

...

Tn/ν−1




, R = qr(U ), (21)

with qr(U ) being the sub-matrix R1:ν,1:ν of the factor R in the Q R decomposition of U .
R denotes the upper triangular factor of the Cholesky decomposition of U T U such that
U T U = RT R.

6. The parallel algorithm

The first approaches to solve system (1) in parallel by applying the normal equations
are based on the triangular decomposition of T T T . If we are dealing with a Toeplitz–
block matrix T̂ , this matrix is first permuted into a block–Toeplitz form T using
P (13).

In [16, 17, 32], S. Thirumalai presents an efficient block algorithm to perform the previous
decomposition. This algorithm uses a method that is similar to the one in LAPACK [2] to
compute and apply Householder transformations [3, 28] following a notation called W Y .
The algorithm obtains good performance by applying BLAS3 operations.

Following a different approach, Kailath and Chun [21], propose a GSA to solve (1) with
block–Toeplitz or Toeplitz–block matrices without having to perform any permutation. Their
algorithm is based on scalar operations, which the authors consider to be advantageous for
systolic or DSP architectures.

The parallel algorithm of S. Thirumalai consists of an iterative process with two basic
steps: (1) the transformation of the generators to the proper form and (2) the displacement
of a column. The algorithm can be described as follows. Let us begin with a generator
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partitioned into two columns of blocks such as

G0 =




G0,0 G0,1

G1,0 G1,1

G2,0 G2,1

...
...

Gn/ν,0 Gn/ν,1




,

where the super-index shows the iteration number. The first step of the iteration transforms
this generator to the proper form by zeroing block G0,1,

G̃
0 =




G̃0,0 0

G̃1,0 G̃1,1

G̃2,0 G̃2,1

...
...

G̃n/ν,0 G̃n/ν,1




. (22)

The second step of the iteration down-shifts the first block column by applying a dis-
placement matrix F (12), and obtains the following reduced generator

G1 =




0 0

G̃0,0 G̃1,1

G̃1,0 G̃2,1

...
...

G̃n/ν−1,0 G̃n/ν,1




. (23)

If we distribute the generator by block rows on an array of processors, we have to perform
two kinds of communications on each iteration:

– A broadcast of the parameters of the unitary transformation that zeroes block Gi,1.
– A parallel point-to-point communication among adjacent processors to perform the shift.

The sequential version of the method is very efficient, as shown in [17, 32]. However, the
parallel implementation has a large communication cost. The effect of the communications
increases if we take into account the small computational cost of this method when applied
to structured matrices. The behaviour of this algorithm has been experimentally confirmed
by its authors on distributed memory multicomputers [16].
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6.1. Reducing the communication cost

One of the main improvements of our parallel algorithm over the previous one is the
elimination of the point-to-point communications during the displacement step. Our
parallel algorithm works on the generator Ĝ of the displacement representation of

T̂
T

T̂ ,

T̂
T

T̂ − F̂ T̂
T

T̂ F̂
T = Ĝ J Ĝ

T
, (24)

where T̂ = PT PT , Ĝ = PG y F̂ = P F PT . The main advantage of dealing with a Toeplitz–
block instead of working with the block–Toeplitz representation is that the displacement
matrix F̂ has the block diagonal form shown in (13). Therefore, the shift (or product F̂G1:n,0)
in each iteration of the algorithm can be performed independently on each block of n/ν

rows. If we distribute a different block or group of blocks on each processor, we avoid the
communications among adjacent processors during the displacement steps of the algorithm.
Hence, the only communications necessary in the resulting algorithm are the broadcasts of
the transformation parameters in each iteration.

However, if we use this technique, we cannot apply the transformations in a blocked way,
as proposed in [17]. Instead, we have to perform a displacement after transforming each
row of the generator to the proper form. In this sense, we use a method that is similar to
the one proposed in [21], although we always take the first column of the generator as the
pivot column.

Let us detail the main steps of each iteration of our parallel triangularization process. As
an example, we use a small Toeplitz–block matrix T̂ ∈ R12×12 with ν × ν = 3 × 3 blocks
of size n/ν × n/ν = 4 × 4. The generator of the displacement of T̂ T T̂ is Ĝ ∈ R12×12.
We distribute the blocks of this generator cyclically by blocks of n/ν = 4 rows in an array
of 3 processors P0, P1 and P2, as shown in Figure 1, where x denotes each element of
the generator. We have added a subindex to the elements of the first column to show the
displacement step.

During the first step of the first iteration, the algorithm computes the unitary transforma-
tion � that zeroes all the entries of the first row of the generator except for the first one.
This step is locally performed by P0. The parameters of � are broadcast to the rest of the
processors. The result of this first step is shown in Figure 2, where x̃ represents modified
entries.

During the second step of the first iteration, the first column of the generator is
shifted by applying F̂G1:n,1. As F̂ is a block diagonal matrix (13), this shift is in-
dependently performed on each block, and thus, it can be performed locally because
each block belongs completely to one processor (Figure 3). It can be observed that all
the elements of the first column remain in their own processor, as shown by the sub-
indexes.

In Figure 4, we have extracted the elements of the first column from the first block in
the previous example. All the entries of the block remain in the same processor during the
entire the iteration.
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P0

x1 x x x x x x x x x x x
x2 x x x x x x x x x x x
x3 x x x x x x x x x x x
x4 x x x x x x x x x x x

P1

x5 x x x x x x x x x x x
x6 x x x x x x x x x x x
x7 x x x x x x x x x x x
x8 x x x x x x x x x x x

P2

x9 x x x x x x x x x x x
x10 x x x x x x x x x x x
x11 x x x x x x x x x x x
x12 x x x x x x x x x x x

Figure 1. Initial state of the Generator.

P0

x̃1 0 0 0 0 0 0 0 0 0 0 0
x̃2 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃3 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃4 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

P1

x̃5 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃6 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃7 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃8 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

P2

x̃9 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃10 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃11 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃12 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

Figure 2. Generator after computing and applying � to zero all the entries of the first row except for the first
one.

P0 ↓
0 0 0 0 0 0 0 0 0 0 0 0
x̃1 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃2 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃3 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

P1 ↓
0 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃5 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃6 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃7 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

P2 ↓
0 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃9 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃10 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃11 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

Figure 3. Generator after the shift step.
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P0

x1

x2

x3

x4

transformation →

x̃1

x̃2

x̃3

x̃4

shift →

0
↓
x̃1

↓
x̃2

↓
x̃3

Figure 4. Main steps of the first iteration on processor P0.

6.2. Implementation of the unitary transformations

Although our algorithm does not exploit the blocked application of the transformations
shown in [17], the hyperbolic transformations used on each iteration produce more accurate
results. In [29], it is shown that if the hyperbolic transformations are applied directly
as in [17], the GSA may be unstable, while if they are applied in a factorized way, the
algorithm is stable.

More specifically, our algorithm uses the transformation method presented in [13]. The
hyperbolic transformation � ∈ R4ν×4ν consists of two Householder reflections and an
elementary hyperbolic rotation. If g = (g1 . . . g2ν g2ν+1 . . . g4ν) is the first non-zero row
of the generator, then the hyperbolic transformation has the following form

� =
(

�1 0

0 I

)(
I 0

0 �2

)
�3, (25)

where �1 ∈ R2ν×2ν is a Householder reflection that zeroes the first 2ν element of g, except
for the first one,

(g′
1 0 · · · 0) ← (g1g2 · · · g2ν)�1,

�2 ∈ R2ν×2ν is a Householder reflection that zeroes the last 2ν elements of g except for the
first one,

(g′
2ν+10 · · · 0) ← (g2ν+1g2ν+2 · · · g4ν)�2,

and �3 ∈ R4ν×4ν is an elementary hyperbolic rotation that zeroes the element g′
2ν+1 of g

using g′
1 as pivot element. The hyperbolic rotation is computed and applied using the OD

method described in [13]. It can be easily seen that �J�T = J , with J = I2ν ⊕ −I2ν .

6.3. Implementation of the parallel algorithm

The parallel algorithm presented in this paper uses a message-passing model on a distributed-
memory multicomputer of a logical array of p processors. The algorithm solves system (1),
where T is a block–Toeplitz matrix (2). It can be divided into three main steps:
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Algorithm 2 (Parallel Algorithm for the system solution). This algorithm solves the system
T x = b in parallel, where T is a block–Toeplitz matrix of the form (2), b is the independent
vector, and x is the solution vector.

1. Parallel computation of the generator for the displacement of T̂
T

T̂ , where T̂ is a
Toeplitz–block matrix (3).

2. Cholesky triangularization of the product T̂
T

T̂ = L LT using the Parallel GSA
(Algorithm 3).

3. Parallel solution of the system by means of

x ← T̂
T

b, (26)

x ← L−1x, (27)

x ← L−T x, (28)

x ← Px, (29)

where P is the permutation matrix that transforms T̂ to T .

The first step of Algorithm 2, the parallel computation of the generator Ĝ, begins with
the computation of the generator G (20) and then permutes it using P . Each processor
has all the data of the problem, T1−n/ν, . . . , T0, . . . , Tn/ν−1, including b, so each processor
independently computes blocks Ŝi , i = 0, . . . , ν − 1 of matrix Ŝ that belongs to it,

Ŝ = P S = PT T U R−1 =




Ŝ0

...

Ŝν−1


 . (30)

Now, we need to compute the R factor of the QR factorization of U (21). Factor R can be
computed in one processor and broadcast to the rest in order to perform the product U R−1.
However, we have chosen to replicate the Q R factorization of U on all the processors so
that the communication is avoided. The computational cost of computing R is lower than
the communication cost of broadcasting R, especially in networks with a high latency. For
the computation of Ŝ (30), each computed row of S is placed in the correct memory location
of the processor according to the permutation matrix P , avoiding the interchange of rows
in memory after the computation of S.

The second step of our parallel algorithm is the most costly step. It is described in
Algorithm 3.

Algorithm 3 (Parallel GSA to decompose the normal equations). Given the generator

Ĝ ∈ Rn×4ν of the displacement of matrix T̂
T

T̂ (3) with respect to F̂ (24), which is cyclically
distributed by blocks on an array of p processors with a block size of n/ν×4ν, the following
algorithm returns the lower triangular factor L distributed in ν blocks of n/ν rows so that

T̂
T

T̂ = L LT .
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Each processor Pk, with k = 0, . . . , p − 1, performs the following steps:

for i = 1, . . . , n
if Gi,1:4ν ∈ Pk

1. Choose a unitary transformation �i (25)
that zeroes all the elements of Gi,1:4ν except for the first one.

2. Li,i ← Gi,1.
3. Broadcast the transformation to the rest of processors.

else
1. Receive the transformation �i .

end if
for j = i + 1, . . . , n

if G j,1:4ν ∈ Pk

1. Apply transformation �i to G j,1:4ν .
2. L j,i ← G j,1.
if G j−1,1:4ν ∈ Pk

G j,1 ← L j−1,i .
else

G j,1 ← 0.
end if

end if
end for

end for

Algorithm 3 summarizes the steps shown for the iteration example in Figures 1, 2 and 3
taking into account that, in the i th iteration, the first column of Ĝ is the i th column of L .
Algorithm 3 is a parallel version of Algorithm 1 for the symmetric case.

We would like to emphasize that only one broadcast is performed in each iteration. The
shift of the first column of the generator is performed independently on each block, and
therefore locally in each processor.

The theoretical computational cost of Algorithm 3 is O( n2ν
p ) floating point operations.

For the theoretical analysis of the communication time, let us represent the cost involved
in sending a message of size n as β + nα, where β represents the latency time to start a
message transmission and α represents the time needed to send a floating point real number.
The theoretical communication cost of Algorithm 3 is

n(β + (4ν + 4)α),

where 4ν + 4 is the number of values to represent each unitary transformation �.
This communication cost shows the relative weight of performing n broadcasts. In

distributed-memory multicomputers, it is very inefficient to send a large number of small
messages. In order to alleviate this problem, we have reduced the number of broadcasts by
increasing the size of the messages. We have modified Algorithm 3 so that each processor
computes and applies n/ν transformations and broadcasts them in the same message. The
rest of the processors receive the message and apply n/ν consecutive transformations. This
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modification of the algorithm gives a communication cost of

ν

(
β + n

ν
(4ν + 4)α

)
.

The choice of the best number of transformations to be packed in each message has very
important effects on the performance of the parallel algorithm. We determined experimen-
tally that packing all the transformations of a block does not produce the best performance.
In the implemented parallel algorithm, we have chosen a value η ∈ [1, nν] for the number
of transformations to be packed in each message. This value has been determined experi-
mentally and depends on the characteristics of the architecture.

Let us detail the development of the communications following the example in
Section 6.1, and with η = 2. During the first iteration, the algorithm computes a uni-
tary transformation �1 that zeroes all of the elements in the first row of the generator except
the first one, and then applies it to the rest of the block. This step is performed in processor
P0 (Figure 5). Then, the algorithm shifts the first column of the block one position down
(Figure 6). The next iteration (i = 2) begins with the computation of the unitary transfor-
mation �2 that zeroes all the entries of the second row except the first one, and then applies
this transformation to the rest of the lower rows in the block (Figure 7). By x ′

i we represent
entries modified by �2. After applying the second transformation, the first column of the
block is again shifted one position down (Figure 8).

P0

x̃1 0 0 0 0 0 0 0 0 0 0 0
x̃2 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃3 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃4 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

Figure 5. Example of the triangularization process with η = 2. After computing and applying �1.

P0 ↓
0 0 0 0 0 0 0 0 0 0 0 0
x̃1 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃2 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃
x̃3 x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃ x̃

Figure 6. Example of the triangularization process with η = 2. After shifting the first column of the actual block.

P0

0 0 0 0 0 0 0 0 0 0 0 0
x̃ ′

1 0 0 0 0 0 0 0 0 0 0 0
x̃ ′

2 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
3 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

Figure 7. Example of the triangularization process with η = 2. After computing and applying �2.
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P0 ↓
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
x̃ ′

1 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
2 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

Figure 8. Example of the triangularization process with η = 2. After shifting the first column of the actual block.

P0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
x̃ ′

1 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
2 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

P1

0 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

y1 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
5 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
6 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

P2

0 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

y2 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
9 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

x̃ ′
10 x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′ x̃ ′

Figure 9. Example of triangularization process with η = 2. After updating rows 5 to 12 of Ĝ by processors P1

and P2.

The previous two iterations have been locally performed in P0. Now, since η = 2,
the parameters of transformations �1 and �2 are packed and broadcasted to the rest of
the processors in the same message. The rest of the processors receive �1 and �2 and
update their local rows, shifting the first column of each block one position down after each
transformation. The form of the generator Ĝ after the first two iterations of the parallel
algorithm is shown in Figure 9. Entries y1 and y2 represent new values produced by the
algorithm, i.e., let ( x5 x · · · x ) be the first row of P1 before any computation; this row is
modified as follows

(x̃5 x̃ · · · x̃) ← (x5 x · · · x)�1

(0 x̃ · · · x̃) ← (x̃5 x̃ · · · x̃) (shift)

(y1 x̃ ′ · · · x̃ ′) ← (0 x̃ · · · x̃)�2.

The theoretical communication cost of this version of the parallel algorithm is given by

η

(
β + n

η
(4ν + 4)α

)
,

with η ∈ [1, n/ν]. This version significantly reduces the communication cost of the parallel
algorithm although it complicates the implementation.
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Finally, the third step of the parallel algorithm (Algorithm 2) consists of four basic

operations. A matrix-vector product T̂
T

b = PT T b (26) that can be carried out in parallel
without any communication, because all processors have the first row and column of blocks
of T and the array b. Each processor computes and saves its local rows of PT T b following
the same distribution as Ĝ and L . The two triangular systems (27) and (28) are solved
in parallel using a parallel PBLAS routine included in the parallel linear algebra package
ScaLAPACK [4]. The last matrix-vector product (29) is performed in P0 after gathering the
elements of vector x from the rest of the processors. The last product is necessary only if
T is block–Toeplitz matrix and not in the Toeplitz–block case.

7. Experimental analysis

7.1. Experimental environment

All the experiments presented in this section were performed on a cluster of 32 Intel Pentium-
II processors (300 MHz, 128 MBytes of RAM), connected with a Myrinet network [5]. Tests
with a specific version of MPI for this platform (GM-MPICH) showed a latency time of
33 µs. and a bandwidth of 33 Mbytes/s.

All the algorithms were implemented in Fortran 77. Several mathematical libraries were
used. First, ScaLAPACK parallel library was used to distribute the data and to solve tri-
angular systems of equations in parallel. Optimized versions of the sequential BLAS and
LAPACK libraries were used to perform basic local operations on each processor.

7.2. Topology and data distribution

The ScaLAPACK parallel library includes routines which allow us to easily and efficiently
manage data that is distributed onto a logical bi-dimensional mesh of processors. Each
processor within the mesh is identified by a pair of coordinates and the data is distributed
using a block cyclic bi-dimensional scheme.

Our algorithm uses a unidimensional p × 1 mesh of processors. The generator Ĝ is
cyclically distributed by row blocks in that unidimensional mesh. There is not much con-
currency in the updating of each row, so a bi-dimensional mesh is not suitable. The use of
a bi-dimensional mesh forces us to interchange columns during the updating process. This
greatly increases the communication cost without taking much advantage of the additional
concurrency because the number of columns of the generator is small.

Let us now discuss the effect of the memory access pattern on the performance of the
algorithm. Routines included in the ScaLAPACK library work on entries of matrices stored
consecutively in memory by columns. This layout is very inefficient in some phases of our
algorithm, specifically during the computation �i and the updating of each row. Memory
access has a great impact on the execution time; therefore, care must be taken with the
arrangement of the elements in memory in order to optimize the use of fast cache memories.

In order to reduce the memory access time in our algorithm, we use two different logical
topologies in steps 2 and 3 of Algorithm 2 (Figures 10 and 11). In step 1, we distribute Ĝ

T
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P0 P1 P2 P3
g g g g
g g g g
g g g g
g g g g

g g g g
g g g g
g g g g
g g g g

g g g g
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g g g g
g g g g
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g g g g

ĜT
0 ĜT
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Figure 10. Distribution of Ĝ and L in steps 1 and 2 of Algorithm 2.
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L1
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b

b1

P2
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L3

b
b
b
b

b3

Figure 11. Distribution of the triangular factor L and vector b in step 3 of Algorithm 2.

in a logical row of processors instead of distributing Ĝ in a logical column as shown in the
theoretical presentation in the previous sections. Thus, the row entries of the generator Ĝ
are stored in consecutive memory positions. In Figure 10, all elements between lines are
consecutively stored in memory. In each iteration of step 2 of Algorithm 2, a new column
of the triangular factor L is computed. This column is stored in memory as if the topology
were a logical column of processors instead of a logical row in order to allow access to
adjacent elements in memory. With this modification, both the entries of Ĝ and the entries
of L are stored in consecutive memory positions.

After step 2, we need to change the logical grid from a logical row of processors (1 × p)
to a logical column (p ×1 ). This is necessary because PBLAS routines need to have L
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stored in memory as shown in Figure 11. The change of topology is carried out by using
the ScaLAPACK concept of context. The p processors involved in the computation belong
to two different contexts at the same time. In one context, the processors are arranged in a
row while, in the other context, the processors are arranged in a column. The change from
one context to the other does not imply computation nor communication cost, but only a
change in the coordinated notation of each processor within the logical grid. Note that the
distribution of factor L is the same in both figures; the only difference is that the second
figure represents L while the first one represents its transpose.

7.3. Test matrices

The experimental results shown in the following sections were obtained with KMS (Kac-
Murdock-Szegö) scalar matrices and with randomly generated scalar matrices. KMS ma-
trices are defined as

t0 = ε, ti = t−i =
(

1

2

)i

, i = 1, 2, . . . , n, (31)

where ti and t−i are the values of the first row and column of a Toeplitz matrix T ∈ Rn×n ,
respectively. If ε is small (i.e. ε = 10−14), the leading sub-matrices of order 3m + 1
(m = 0, 1, . . .) are very ill-conditioned.

Scalar Toeplitz matrices can be seen as (2) and (3) matrices with an arbitrary block size
ν. In the experiments, we took the same scalar matrices as block matrices with different
block sizes. Matrices preserve conditioning and regularity despite the block size.

7.4. Results of the sequential algorithm

Our first experimental analysis shows the relative weight of each of the three main steps
of Algorithm 2 in only one processor. Table 1 includes time in seconds of each step for a
fixed matrix dimension using different block sizes. These times show that the most costly
step is devoted to the factorization of the matrix (Algorithm 3), while the computation of
the generator represents a small part of the global cost. The third step, depends only on the
matrix size and not on the block size; this is why the run time does not vary with the block
size.

7.5. Parallelization of each step of the algorithm

Table 2 shows the time (speedup) of steps 1 and 2 of Algorithm 2 with different block
sizes. Computing the generator (step 1) is a highly parallel process that does not involve
communications. The efficiency of this step is only reduced by the computation of factor
R (30), which is replicated in each processor. The results for step 2 were taken with the
best message size η in each case. Step 2 of the algorithm obtained very good results when
we increased the block size, producing super-speedups in some cases. Super-speedups can
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Table 1. Time in seconds of each step of Algorithm 2 in one processor
with different block sizes ν (n = 1080)

ν Step 1 Step 2 Step 3 Total

2 0.12 (11.2%) 0.88 (82.2%) 0.07 (6.5%) 1.07
4 0.14 (7.9%) 1.56 (88.1%) 0.07 (4.0%) 1.77
6 0.27 (9.2%) 2.58 (88.4%) 0.07 (2.4%) 2.92
8 0.45 (14.2%) 2.64 (83.5%) 0.07 (2.2%) 3.16

10 0.40 (12.2%) 2.82 (85.7%) 0.07 (2.1%) 3.29
15 0.59 (14.6%) 3.38 (83.7%) 0.07 (1.7%) 4.04
20 0.67 (13.6%) 4.19 (85.0%) 0.07 (1.4%) 4.93
30 1.08 (14.2%) 6.48 (84.9%) 0.07 (0.9%) 7.63

Table 2. Time in seconds of steps 1 and 2 of Algorithm 2 with different block sizes and processors

Step 1 Step 2

ν 1 2 4 8 1 2 4 8

10 0.40 0.20 (2.00) 0.13 (3.08) 0.09 (4.44) 2.84 1.51 (1.88) 0.89 (3.19) 0.60 (4.73)
15 0.59 0.32 (1.84) 0.17 (3.47) 0.09 (6.56) 3.49 1.78 (1.96) 1.00 (3.49) 0.62 (5.63)
20 0.66 0.34 (1.94) 0.18 (3.67) 0.12 (5.50) 4.09 1.94 (2.11) 1.07 (3.82) 0.66 (6.20)
30 1.06 0.53 (2.00) 0.31 (3.42) 0.18 (5.89) 6.33 2.60 (2.43) 1.33 (4.76) 0.79 (8.01)
40 1.59 0.66 (2.41) 0.37 (4.30) 0.23 (6.91) 8.16 3.58 (2.28) 1.61 (5.07) 0.93 (8.77)
45 1.89 0.77 (2.45) 0.45 (4.20) 0.28 (6.75) 9.36 4.14 (2.26) 1.73 (5.41) 1.02 (9.18)

be expected when we deal with low-cost algorithms where the memory access and the use
of the cache have a large impact on the cost. If one processor is used to solve the problem,
this processor has to access about n2/2 elements in memory; if p processors are used to
solve the problem, each one only has to access approximately n2/(2× p) elements, thereby
reducing the probability of cache misses.

7.6. Optimization of the communications

Figure 12 shows the run time of the parallel algorithm as a function of η. This parameter
represents the number of unitary transformations packed in each message in the Schur
triangularization. The optimal choice for this parameter is found to be in the range 1 and
n/ν and, as we showed in the previous figure, it is independent of the number of processors.
The optimal value depends on the relation between the size of the problem n and the block
size ν. Our experiments show that this value can be approximated by

η ≈ n

3ν
,

for the target machine used in the experiments.
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Figure 12. Time in seconds of step 2 of Algorithm 2 varying the number of transformations per message η.
(n = 1080 and ν = 30).

7.7. Results of the parallel algorithm

The maximum number of processors that can be used in our algorithm is given by the
number of blocks of the permuted matrix (3). This value is ν, which is the block size of the
original block–Toeplitz matrix (2).

Figure 13 shows the run time of the parallel algorithm as a function of the block
size ν and the number of processors. The time spent by the algorithm greatly decreases
when we increase the number of processors, and this speedup is larger for large block
sizes. Although the number of columns of the generator grows with the block size, this
additional cost is compensated by the possibility of using more processors. Figure 13
also shows that the minimum time of the algorithm for different values of ν is quite
similar.

The experimental analysis shows that it might be interesting to use the parallel algorithm
even with scalar Toeplitz matrices. The value 0.86 s. shown in Figure 13 represents the time
spent by the sequential GSA to solve a scalar system of dimension n = 1080. Since a scalar
Toeplitz matrix can also be seen as a block–Toeplitz matrix, if we choose the appropriate
block size and the number of processors, the parallel algorithm for block–Toeplitz systems
improves even the sequential algorithm for scalar matrices.

Table 3 shows the efficiency of the parallel algorithm with two different block sizes ν that
are larger than the number of available processors (p = 32). The results are better with a large
block size because the parallelism of the algorithm increases with the number of columns of
the generator. Even with relatively small matrices (n = 360), the parallel algorithm obtains a
good efficiency, taking into account the small computational cost (O(n2) operations). These
results confirm that we have greatly reduced the effect of the communication cost of the
parallel algorithm.
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Table 3. Efficiency of the parallel algorithm with different problem and block sizes

n 360 720 1080 1440

ν 36 (%) 40 (%) 36 (%) 40 (%) 36 (%) 40 (%) 36 (%) 40 (%)

2 98.6 96.2 123.6 125.7 123.5 122.9 112.8 111.2
4 80.7 81.5 110.9 116.5 121.2 122.0 119.4 120.3
8 59.2 62.5 90.1 95.5 99.6 104.7 98.4 109.5

16 34.1 39.1 61.8 68.2 74.4 77.5 71.4 82.5
32 17.1 19.5 36.0 39.8 45.4 47.6 42.1 52.1

Figure 13. Time in seconds of the parallel algorithm for different block sizes ν. (n = 1080).

7.8. Precision of the results

The accuracy of the solution was measured using the relative error of the system solution
given by

‖x̃ − x‖
‖x‖ (32)

where vector x in (1) has all its elements equal to 1 and x̃ is the computed solution. Table 4
shows the value of ε for the KMS matrix, the condition number of the system matrix T , the
condition number of the product T T T and the relative error with different block sizes. It
follows that, when ε = 10−14, we obtain worse results due to the condition number of T T T ,
which is κ(T T T ) ≈ κ2(T ). However, the precision of the solution does not depend on the
regularity of T , because the algorithm works on the product T T T , and a positive definite
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Table 4. Relative error with different block sizes for KMS
matrices of dimension n = 128

T1 T2 T3

ε 10−14 1.0 105

κ(T ) 211.51 9.0 1.0
κ(T T T ) 0.45 × 105 80.8 1.0
ν = 1 9.80 × 10−14 5.69 × 10−15 2.43 × 10−16

ν = 2 4.40 × 10−13 8.37 × 10−15 4.33 × 10−16

ν = 4 2.28 × 10−13 7.56 × 10−15 4.43 × 10−16

ν = 8 1.63 × 10−13 5.34 × 10−15 6.20 × 10−16

ν = 16 1.71 × 10−13 6.13 × 10−15 6.84 × 10−16

ν = 32 4.69 × 10−13 8.02 × 10−15 5.84 × 10−16

Table 5. Relative error with different block sizes for KMS matrices of
dimension n = 128 and one iteration of iterative refinement

T1 T2 T3

ε 10−14 1.0 105

κ(T ) 211.51 9.0 1.0
κ(T T T ) 0.45 × 105 80.8 1.0
ν = 1 7.05 × 10−15 5.51 × 10−16 1.86 × 10−16

ν = 2 7.60 × 10−15 4.23 × 10−16 2.19 × 10−17

ν = 4 8.70 × 10−16 3.18 × 10−16 0.0
ν = 8 1.10 × 10−15 1.97 × 10−16 0.0
ν = 16 1.34 × 10−15 1.45 × 10−16 0.0
ν = 32 1.94 × 10−15 8.83 × 10−17 0.0

matrix is strongly regular. Recall that classical fast algorithms are only stable with strongly
regular matrices, at least if no additional technique is used to stabilize the algorithm.

Our parallel algorithm offers the possibility of improving the accuracy of the solution by
applying some iterations of iterative refinement, as shown in Section 5. This post-process
implies a cost that is equivalent to step 3 of Algorithm 2 (Table 1); that is, two matrix–
vector products and the solution of two triangular systems. Table 5 shows the relative error
in the same cases as in Table 4 after applying one iterative refinement step. The precision
is improved with every class of matrix.

Table 6 shows the relative error with randomly generated block–Toeplitz matrices. The el-
ements of these matrices are uniformly distributed among −1.0 and 1.0. The table also shows
the condition number of matrix T and the matrix product T T T . In all cases, κ(T ) ≈ κ(T T T )
holds. Table 6 shows the precision of the solution after 0, 1 and 2 iterations of iterative re-
finement. It can be seen that the accuracy of the solution depends on the condition number of
the matrix (or the product T T T ). However, by applying only one iterative refinement step,
the precision of the result is always reduced to values that are very similar to the machine
precision (≈0.22 × 10−15). Indeed, the application of more refinement steps could produce
even worse results.
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Table 6. Relative error with different block sizes and different numbers of refinement steps for randomly
generated matrices of dimension n = 128

κ(T ) κ(T T T ) 0 1 2

ν = 1 104.57 1.09 × 104 0.75 × 10−13 0.15 × 10−14 0.84 × 10−15

ν = 2 118.57 1.41 × 104 0.23 × 10−12 0.97 × 10−15 0.99 × 10−15

ν = 4 85.95 7.39 × 103 0.28 × 10−10 0.37 × 10−14 0.62 × 10−14

ν = 8 161.69 2.61 × 104 0.31 × 10−12 0.61 × 10−15 0.60 × 10−15

ν = 16 3685.9 1.36 × 107 0.11 × 10−9 0.97 × 10−15 0.13 × 10−14

ν = 32 858.56 7.37 × 105 0.61 × 10−11 0.25 × 10−14 0.26 × 10−14

8. Conclusions

Algorithms that exploit the displacement structure property of a matrix are called fast
algorithms and have a cost of order O(n2). The parallelization of algorithm of this kind
in multicomputers is difficult due to the influence of the communications. In the case of
fast algorithms to solve Toeplitz systems, this problem is even worse due to the strong
dependency among the successive steps of the algorithms.

In this paper, we present an efficient parallel algorithm to solve block–Toeplitz and
Toeplitz–block linear systems of equations based on the GSA. Our algorithm works with
the second type of matrices, while previous approaches work on the first type.

The two main contributions of our parallel algorithm consist of reducing the communica-
tion cost and using an appropriate memory access scheme. We have considerably reduced
the communication cost by using a data distribution that allows us to perform the shift of
the first column of the generator locally on each processor. Therefore, we avoid a lot of
communications and reduce the number of messages to only one broadcast per iteration.
Moreover, we have reduced the cost of the communications by means of a suitable pack-
ing of transformations that allows us to reduce the number of messages transmitted in the
computation.

Our algorithm improves the memory access pattern by using the best logical topology
in each step of the algorithm. This adaptation of the topology can be obtained by using
different ScaLAPACK contexts. The use of different topologies allows the algorithm to
access as many consecutive positions in memory as possible, and better exploits the speed
of the cache memories.

The experimental analysis on a cluster of personal computers shows good efficiencies
even with 32 processors. The accuracy of the solution is good and it is independent of the
regularity of the matrix. It can also be improved by applying iterative refinement.

Furthermore, the parallel algorithm is portable because it is implemented using standard
tools and libraries such as LAPACK and ScaLAPACK.
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