
J. Dongarra et al. (Eds.): PVM/MPI’99, LNCS 1697, pp. 372-379, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Solving the Inverse Toeplitz Eigenproblem Using
ScaLAPACK and MPI*

J.M. Badía1 and A.M. Vidal2

1 Dpto. Informática., Univ Jaume I. 12071, Castellón, Spain.
badia@inf.uji.es

2 Dpto. Sistemas Informáticos y Computación. Univ. Politécnica de Valencia.
46071, Valencia, Spain.

avidal@dsic.upv.es

Abstract. In this paper we present a parallel algorithm for solving the inverse
eigenvalue problem for real symmetric Toeplitz matrices. The algorithm is
implemented using the parallel library ScaLAPACK, based on the
communication model MPI. Experimental results are reported on a SGI Power
Challenge and on a cluster of PC's connected by a Myrinet network. The results
show that the algorithm is portable and scalable.

1 Introduction

The sequential and parallel linear algebra libraries LAPACK and ScaLAPACK, re-
spectively, have become basic tools to tackle any kind of numerical problems in Phys-
ics and in Engineering.

ScaLAPACK [1] is a library of linear algebra routines for message-passing distrib-
uted memory computers. As in LAPACK, ScaLAPACK routines are based in block-
oriented algorithms to minimize the data movement between different levels of the
memory hierarchy. The main ScaLAPACK components are BLACS and PBLAS.
BLACS is a message-passing library, which includes a set of routines to perform the
communications that appear in parallel linear algebra algorithms. There are implemen-
tations of the BLACS library using MPI [2], PVM and other message-passing envi-
ronments. PBLAS includes parallel versions of Level 1, 2 and 3 BLAS routines im-
plemented for distributed memory using the message-passing programming model.

In this work, we analyze the parallel solution of a complex linear algebra problem
using the ScaLAPACK library and the message-passing environment MPI. The prob-
lem is the inverse eigenvalue problem for Real Symmetric Toeplitz (RST) matrices.

* This paper was partially supported by the project CICYT TIC96-1062-C03: “Parallel Algo-

rithms for the computation of the eigenvalues of sparse and structured matrices”.

 Solving the Inverse Toeplitz Eigenproblem Using ScaLPACK and MPI 373

Let t = t0, t1, L, tn −1[] where ti are real numbers. We say T t() is a real symmet-
ric Toeplitz matrix, generated by t, if

T t() = t i − j()
i, j =1

n
.

This type of matrices appears in relation with the solution of several problems in
different areas of Physics and Engineering. Moreover, the problem is specially appro-
priate for a parallel implementation due to its big computational cost.

In this paper we present a parallel implementation for solving the previous prob-
lem. Moreover, we report the experimental performance on two machines, a SGI
Power Challenge multiprocessor and a cluster of PC's linked by a Myrinet network. In
the last case, we compare the experimental results obtained with two different versions
of the MPI environment. These versions have been specifically implemented for this
gigabit network. A more detailed description of the method and of the experimental
results can be found in [3].

The rest of the paper has the following structure: in section 2 we briefly describe
the problem to be solved; in section 3 we present the sequential method utilized; the
parallelization problem is studied in section 4, and last, in section 5 we report the
obtained experimental results.

2 The Inverse Eigenvalue Problem

Let us denote of the eigenvalues of the matrix T t() by λ1 t() ≤ λ2 t() ≤ K≤ λn t() .
We say an eigenvector, x = x1, x2 , K, xn[] , of matrix T t() is symmetric if

xj = xn− j +1, 1 ≤ j ≤ n

and is skew-symmetric if

xj = −xn− j+1, 1 ≤ j ≤ n .

Moreover, we will call even (odd) eigenvalues to those eigenvalues associated with
the symmetric (skew-symmetric).

In [4] it is shown that if r = n 2 , s = n 2 , and T is a RST matrix of order n,
then ℜ n has an orthonormal basis consisting of r symmetric and s skew-symmetric
eigenvectors of T.

In addition, there exist a set of properties of Toeplitz matrices which allows us to
calculate the odd and even eigenvalues separately. This calculation is performed from
T by constructing two matrices with half order each, thus providing a substantial sav-
ing in the computational time.

In [5] a method for solving the inverse Toeplitz eigenvalue problem, equivalent to
the Newton method, is proposed. This algorithm is improved in [6] by adequately
exploiting the previous properties of Toeplitz matrices.

Now, we state the problem to be solved in similar terms to those in [6]:

 J.M. Badia and A.M. Vidal 374

Given n real numbers µ1 ≤ µ2 ≤ K ≤ µr and ν1 ≤ ν2 ≤ K ≤ ν s , find an n-vector t
such that

µi t() = µ i, 1 ≤ i ≤ r, and ν i t()= ν i , 1 ≤ i ≤ s ,

where the values µi t() and ν i t() are, respectively, the even and odd eigenvalues of
the RST matrix T t() .

3 Sequential Algorithm

In this section we briefly describe algorithmically, the sequential method proposed in
[6] for solving the inverse eigenvalue problem for a RST matrix.

First, we denote by p1 t(), K, pr t() the symmetric eigenvectors of T t() , and by
q1 t(), K, qs t() the skew-symmetric eigenvectors. In addition we denote the target
spectrum as

 Λ = µ1, µ 2, K , µr , ν1, ν2 , K, ν s[], (1)

where the even and odd spectra have been separated and reordered in increasing or-
der.

Let t0 be an n-vector, and let Λ be the target spectrum such as it is defined in (1).
The basic idea of the algorithm is the following: by using t0 as an starting generator,
compute a sequence tm, m=1, 2,..., as the solution of the equations

pi tm −1()T
T t m()pi t m−1()= µi , 1≤ i ≤ r

q j t m −1()T T t m()qj t m −1()= µ j , 1 ≤ j ≤ s.
 (2)

The solution of these equations can be rewritten as the solution of a linear system
of size n=r+s.

If we denote by Λ t() the spectrum of T t() and by Λ the target spectrum, we can
express the distance between both spectra as

σ t;Λ()= Λ t()− Λ 2 . (3)

We will say that the above method has converged if

σ t m ;Λ()< ε0 . (4)

for some integer m, where ε0 defines the desired precision for the result.
We will define a basic iterative algorithm alg1 with the following specification:

ALGORITHM [D',t,fails] = alg1(t0, n, D, eps0)

Given an initial generator t
0
 of size n, a target spectrum D, and a real value eps

0

which defines the desired precision in (4), alg1 returns the generator t of a RST
matrix, its computed spectrum D’ and a boolean value fails which indicates if the
algorithm has failed to converge (5).

 Solving the Inverse Toeplitz Eigenproblem Using ScaLPACK and MPI 375

In each iteration of the previous algorithm, the initial task is to construct the matrix
of the linear system, which allows us to solve (2). This is performed from the eigen-
vectors of the RST matrix computed in the previous iteration. Then, the linear system
is solved, and its solution provides a new generator for RST matrix. The spectrum of
this matrix is computed and the convergence is reached if (4) is verified.

As the Newton method does not converge globally, the algorithm alg1 does not
necessary converge to the solution of the problem. We say that the Algorithm 1 has
failed if

σ t k ;Λ()≥ σ t k −1;Λ()≥ ε0 . (5)

In [6] an improvement of alg1 is proposed. The algorithm is organized in two
stages: During the first stage, if the algorithm fails, a new target spectrum such as

1− ρ()Λ + ρΛ t k −1() (6)

is proposed, where ρ is a real value in (0,1). During this first stage the value of ρ is
modified until the convergence to the target spectrum is reached linearly, with a less
restrictive stopping criterion. From this new point the second stage starts and the algo-
rithm alg1 is utilized in order to converge to the target spectrum quadratically. This
algorithm can be specified as follows:

Algorithm 2. Given an initial generator t0 of size n, a target spectrum D, real values eps0, eps1
and alfa, associated to the convergence criteria of the linear and quadratic stage, and a real
value dro, the following algorithm returns the generator t of a RST matrix, its computed
spectrum D' and a boolean value fails which indicates if the algorithm failed to converge.

ALGORITHM [D',t,fails] = alg2(t0,n,D,eps0,eps1,alfa,dro)
BEGIN
 [D', t, fails] = alg1(t0, n, D, eps0)
 IF fails THEN (* linear stage *)
 [D(t0), P] = compute_spectrum(t0, n)
 ro = 0.1; error = ||D(t0) - D||
 WHILE (error > eps1) AND (ro < 1) DO
 Dmod = (1 - ro) * D + ro * D(tk)
 [D(tk+1), tk+1, fails] = alg1(tk, n, Dmod, alfa*error)
 IF fails THEN
 ro = ro + dro; tk = t0
 ELSE
 tk = tk+1
 ENDIF
 error = ||D(tk) - D||
 ENDWHILE
 IF (ro > 1) THEN
 fails = TRUE
 ELSE (* quadratic stage *)

 J.M. Badia and A.M. Vidal 376

 [D', t, fails] = alg1(tk, n, D, eps0)
 ENDIF
 ENDIF
END.

In the previous algorithm the subroutine [D(t), P] = compute_spectrum(t,
n) returns the eigenvalues D(t) and eigenvectors P of a matrix T t() of size nxn.
This subroutine exploits the properties mentioned in section 2, halving the cost of
computing the spectrum, and maintains separated the even and odd spectra.

3 Parallel Algorithm

In order to parallelize the above method we have used the numerical linear algebra
library ScaLAPACK. We try to obtain a portable and scalable algorithm for distrib-
uted memory systems. We have also used the message-passing interface MPI to ex-
ploit the excellent implementations of this environment. The parallel algorithm is
implemented in a mesh of processors using an SPMD model, and the matrices are
distributed using a block cyclic scheme.

Algorithm 2 is based on four subroutines. The first subroutine computes the spec-
trum of a RST matrix using the spectra of two smaller symmetric matrices. To per-
form this task we have used the ScaLAPACK routine PDSYEV. As the eigenvectors of
the two matrices are independently distributed in the mesh, we have redistributed them
in order to have a global distribution of the eigenvectors of the full matrix.

The two first parts in figure 1 show that the spectrum of a matrix of size 17, for ex-
ample, has a different distribution if we distribute the full matrix or if we distribute
separately the even and odd spectra. To obtain a global distribution by concatenating
both spectra in each processor, we have to perform a redistribution of the eigenvec-
tors. This is performed minimizing the communications, by sending the last odd ei-
genvectors from the last processors in order to complete the same number of blocks of
the even spectrum in all processors. After performing this redistribution, the eigenvec-
tors location is reported in the lower part of figure 1. We have also to redistribute the
eigenvalues to maintain the correspondence during all the iterative process.

1 2 3 4 5 6 7 8 9
P0 P1 P2 P0P1

10 11 12 13 14 15 16 17
P0 P0 P1 P2

separated

1 2 3 4 5 6 7 8 9
P0 P1 P2 P0P1

10 11 12 13 14 15 16 17
P0 P1 P2P2global

1 2 3 4 5 6 7 8 9
P0 P1 P2 P0P1

10 11 12 13 14151617
P0 P2P1P2

Skew-symmetricSymmetric

redistributed

Fig. 1. Global, separated and redistributed odd and even spectra.

 Solving the Inverse Toeplitz Eigenproblem Using ScaLPACK and MPI 377

The second routine utilized in our parallel algorithm constructs the coefficient ma-
trix of the linear system from the eigenvectors of the TRS matrix. We gather all the
eigenvectors in the first row of processors in order to ease the construction of the
matrix. Then, we scatter the constructed matrix among all processors in order to solve
the system of equations.

Finally, the third and fourth basic routines utilized in our parallel algorithm are the
ScaLAPACK routines PDGETRF and PDGETRS. These routines solve in parallel a
general linear system of equations. A complete scheme of computations and commu-
nications in the algorithm is reported in figure 2.

Computation and gathering
of the eigenvectors

Scattering of matrix C
and solution of the system

Redistribution of the eigenvectors
and construction of matrix C

Fig. 2. Computations and communications in the parallel algorithm.

We have performed all communications using the BLACS routines and the auxil-
iary matrix redistribution routines included in ScaLAPACK, [1]. In both cases all the
communications are based on the MPI environment.

4 Experimental Analysis

4.1 Sequential Algorithm

In the case of the sequential version of algorithm 2, we have performed a set of tests
similar to the one presented in [6]. In our case the tests have been developed with a
Fortran version of the program and with larger matrices (n=1200). In all performed
tests the algorithm converges, except when the spectrum contains large clusters of
eigenvalues. In this case a heuristic convergence strategy is proposed in [6].

We have tested the algorithm with three classes of starting generators t0 and the
best generators are of the class proposed in [6]. Regarding to this, we have observed
that using a slight modification of the starting generator used by Trench the conver-
gence always occurs during the quadratic stage of the algorithm or from a value of
ρ=0.1 obtained during the linear stage.

We have completed the analysis of the sequential case testing the behaviour of the
algorithm with 15 classes of spectra with different distributions of the eigenvalues.
The algorithm converged in all cases except when large clusters of eigenvalues are
present. A more detailed description of the algorithms can be found in [3].

 J.M. Badia and A.M. Vidal 378

4.2 Parallel Algorithm

First we test the parallel algorithm on a shared memory multiprocessor, the SGI Power
Challenge, using 10 MIPS R10000 processors. In this machine the communications
are “emulated” on the shared memory, so we cannot fully interpret the results as those
of a message-passing model.

Figure 3 shows that the speedups obtained with small matrices are even smaller
than 1 for 10 processors. However, executing the algorithm with large matrices we can
even achieve superspeedups. This behaviour of the algorithm is due to the large com-
munications overhead involved. With matrices of large dimension, the effect of the
communications is reduced with respect to the computational cost, thus allowing bet-
ter speedups.

We have also studied the enormous influence in the results of the configuration of
the mesh. The best results are always obtained with meshes of type 1xP, while poorer
results are obtained with meshes of type Px1. This behaviour of the algorithm is due
to its communications scheme. As shown in figure 2, the larger is the number of col-
umn processors in the mesh, the smaller is the cost of gathering and scattering the
matrices in each iteration of the algorithm.

Matrix size

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

200 400 800 1200

1x10

2x5

5x2

10x1

Configuration of the mesh

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

1 x p 2 x (p/2) (p/2) x 2 p x 1

2

4

6

8

10

Processors

Fig. 3. Speedup vs. matrix size with p=10 and Speedup vs. configuration of the mesh with
n=1200. Results obtained in the Power Challenge.

An experimental analysis has also been performed on a cluster of PCs connected by
a Myrinet network and using two different versions of MPI environment. The speed-
ups obtained are smaller than those in the Power Challenge. Notice that in this case we
are using an architecture that has a distributed memory and a smaller ratio between
computational cost and communications cost. However, in the case of large matrices
we also obtain large speedups in this class of architecture.

Finally, in figure 4 we compare the performance obtained using two versions of the
MPI environment implemented on the top of a Myrinet network. The GM version has
been implemented by the vendor of the network and offers better performances for our
problem that the BIP version, implemented in the Laboratory for High Performance
Computing in Lyon.

 Solving the Inverse Toeplitz Eigenproblem Using ScaLPACK and MPI 379

Configuration of the mesh

Sp
ee

du
p

0

1

2

3

4

5

6

7

1xp 2x(p/2) 4x(p/4) 8x(p/8) px1

2

4

8

16

Processors

Configuration of the mesh

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

10

1xp 2x(p/2) 4x(p/4) 8x(p/8) px1

2

4

8

16

Processors

Fig. 4. Evolution of the speedups using different configurations of the mesh (n=1200). Results
in a cluster of PCs and using two versions of the MPI environment (BIP and GM).

5 Conclusions

In this paper we show a scalable and portable parallel algorithm to solve the inverse
eigenproblem of real symmetric Toeplitz matrices. We have obtained an efficient
implementation of the algorithm that allows us to solve large problems with a enor-
mous sequential cost. This parallel algorithm can be used to test the convergence of
the method using different classes of starting generators and a larger test matrix set.

The results show the convergence of the algorithm in all cases except when the
spectrum contains large clusters of eigenvalues. The experimental analysis performed
shows scalable speedups, both in a shared memory multicomputer, a SGI Power Chal-
lenge, and in a cluster of Pentium II processors connected by a Myrinet network.

The parallelization of the method implies the redistribution of a lot of data in each
iteration. The communications cost limits the performance in the case of small matri-
ces. Moreover, we have seen that, given the communications scheme of the algorithm,
the best results are obtained with horizontal meshes (1xP), while poorer results are
obtained when we increment the number of rows of processors.

References

1. Blackford, L.S., et al.: ScaLAPACK Users' Guide., (1997), Philadelphia: SIAM Press.
2. Snir, M., et al.: MPI. The complete reference. Scientific and Engineering Computation, ed. J.

Kowalik. (1996), Cambridge: The MIT Press.
3. Badia, J.M. and A.M. Vidal: Parallel Solution of the Inverse Eigenproblem for Real Sym-

metric Toeplitz Matrices. (1999). Technical Report DI01-04/99. Dpt. Informática, Univ.
Jaume I: Castellon.

4. Cantoni, A. and F. Butler: Eigenvalues and eigenvectors of symmetric centrosymmetric
matrices. Lin. Alg. Appl., (1976) (13): p. 275--288.

5. Laurie, D.P.: A Numerical Approach to the Inverse Toeplitz Eigenproblem. SIAM J. Sci.
Sta. Comput., (1988). 9(2): p. 401--405.

6. Trench, W.F.: Numerical Solution of the Inverse Eigenvalue Problem for Real Symmetric
Toeplitz Matrices. SIAM J. Sci. Comput., (1997). 18(6): p. 1722--1736.

	1 Introduction
	2 The Inverse Eigenvalue Problem
	3 Sequential Algorithm
	3 Parallel Algorithm
	4 Experimental Analysis
	4.1 Sequential Algorithm
	4.2 Parallel Algorithm

	5 Conclusions
	References

