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Antonio J. Dorta1, José M. Bad́ıa2, Enrique S. Quintana2,
and Francisco de Sande1

1 Depto. de Estad́ıstica, Investigación Operativa y Computación,
Universidad de La Laguna, 38271, La Laguna, Spain

{ajdorta, fsande}@ull.es
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Abstract. llc is a language designed to extend OpenMP to distributed
memory systems. Work in progress on the implementation of a compiler
that translates llc code and targets distributed memory platforms is
presented. Our approach generates code for communications directly on
top of MPI. We present computational results for two different bench-
mark applications on a PC-cluster platform. The results reflect similar
performances for the llc compiled version and an ad-hoc MPI imple-
mentation, even for applications with fine-grain parallelism.
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1 Introduction

The lack of general purpose high level parallel languages is a major drawback
that limits the spread of High Performance Computing (HPC). There is a divi-
sion between the users who have the needs of HPC techniques and the experts
that design and develop the languages as, in general, the users do not have the
skills necessary to exploit the tools involved in the development of the parallel
applications. Any effort to narrow the gap between users and tools by providing
higher level programming languages and increasing their simplicity of use is thus
welcome.

MPI [1] is currently the most successful tool to develop parallel applications,
due in part to its portability (to both shared and distributed memory architec-
tures) and high performance. As an alternative to MPI, OpenMP [2] has emerged
in the last years as the industry standard for shared memory programming. The
OpenMP Application Programming Interface is based on a small set of compiler
directives together with some library routines and environment variables.
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One of the main drawbacks of MPI is that the development of parallel ap-
plications is highly time consuming as major code modifications are generally
required. In other words, parallelizing a sequential application in MPI requires
a considerable effort and expertise. In a sense, we could say that MPI repre-
sents the assembler language of parallel computing: you can obtain the best
performance but at the cost of quite a high development investment.

On the other hand, the fast expansion of OpenMP comes mainly from its sim-
plicity. A first rough parallel version is easily built as no significative changes are
required in the sequential implementation of the application. However, obtaining
the best performance from an OpenMP program requires some specialized effort
in tuning.

The increasing popularity of commodity clusters, justified by their better
price/performance ratio, is at the source of the recent efforts to translate
OpenMP codes to distributed memory (DM) architectures, even if that implies
a minor loss of performance. Most of the projects to implement OpenMP in
DM environments employ software distributed shared memory systems; see, e.g.,
[3,4,5]. Different approaches are developed by Huang et al. [6], who base their
strategy for the translation in the use of Global Arrays, and Yonezawa et al. [7],
using an array section descriptor called quad to implement their translation.

In this paper we present the language llc, designed to extend OpenMP to
DM systems, and the llc compiler, llCoMP, which has been built on top of MPI.
Our own approach is to generate code for communications directly on top of MPI,
and therefore does not rely on a coherent shared memory mechanism. Through
the use of two code examples, we show the experimental results obtained in a
preliminary implementation of new constructs which have been incorporated into
the language in order to deal with irregular memory access patterns. Compared
to others, the main benefit of our approach is its simplicity. The use of direct
generation of MPI code for the translation of the OpenMP directives conjugates
the simplicity with a reasonable performance.

The remainder of the paper is organized as follows. In Section 2 we outline the
computational model underlying our strategy. We next discuss some implemen-
tation details of the llc compiler in Section 3. Case studies and the experimental
evaluation of a preliminary implementation of the new constructs are given in
Section 4. Finally, we summarize a few concluding remarks and future work in
Section 5.

2 The llc Computational Model

The llCoMP compiler is a source-to-source compiler implemented on top of MPI.
It translates code annotated with llc directives into C code with explicit calls
to MPI routines. The resulting program is then compiled using the native back-
end compiler, and properly linked with the MPI library. Whenever possible, the
llc pragmas are compatible with their counterparts in OpenMP, so that minor
changes are required to obtain a sequential, an MPI, or an OpenMP binary from
the same source code.
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The llc language follows the One Thread is One Set of Processors (OTOSP)
computational model. Although the reader can refer to [8] for detailed informa-
tion, a few comments are given next on the semantics of the model and the
behaviour of the compiler.

The OTOSP model is a DM computational model where all the memory
locations are private to each processor. A key concept of the model is that of
processor set. At the beginning of the program (and also in the sequential parts
of it), all processors available in the system belong to the same unique set. The
processor sets follow a fork-join model of computation: the sets divide (fork)
into subsets as a consequence of the execution of a parallel construct, and they
join back together at the end of the execution of the construct. At any point
of the code, all the processors belonging to the same set replicate the same
computation; that is, they behave as a single thread of execution.

When different processors (sub-)sets join into a single set at the end of a
parallel construct, partner processors exchange the contents of the memory areas
they have modified inside the parallel construct. The replication of computations
performed by processors in the same set, together with the communication of
modified memory areas at the end of the parallel construct, are the mechanisms
used in OTOSP to guarantee a coherent image of the memory.

Although there are different kinds of parallel constructs implemented in the
language, in this paper we focus on the parallel for construct.

3 The llCoMP Compiler

The simplicity of the OTOSP model greatly eases its implementation on DM
systems. In this section we expose the translation of parallel loops performed
by llCoMP. For each of the codes in the NAS Parallel Benchmark [9] (columns
of the table), Table 1 indicates the number of occurrences of the directive in
the corresponding row. All the directives in Table 1 can be assigned a semantic
under the premises of the OTOSP model. Using this semantic, the directives and
also the data scope attribute clauses associated with them can be implemented
using MPI on a DM system. For example, let us consider the implementation

Table 1. Directives in the NAS Parallel Benchmark codes

BT CG EP FT IS LU MG SP
parallel 2 2 1 2 2 3 5 2
for 54 21 1 6 1 29 11 70
parallel for 3 1
master 2 2 1 10 4 2 1 2
single 12 5 2 10
critical 1 1 1 1 1
barrier 1 2 3 1 3
flush 6
threadprivate 1



Implementing OpenMP for Clusters on Top of MPI 151

of a parallel directive: since all the processors are running in parallel at the
beginning of a computation, in our model the parallel directive requires no
translation.

Shared memory variables (in the OpenMP sense) need special care, though.
Specifically, any shared variable in the left-hand side of an assignment statement
inside a parallel loop should be annotated with an llc result or nc result
clause. Both clauses are employed to notify the compiler of a region of the
memory that is potentially modifiable by the set of processors which execute
the loop. Their syntax is similar: the first parameter is a pointer to the memory
region (addr), the second one is the size of that region (size), and the third
parameter, only present in nc result, is the name of the variable holding that
memory region. Directive result is used when all the memory addresses in the
range [addr, addr+size] are (potentially) modified by the processor set. This
is the case, for example, when adjacent positions in a vector are modified. If
there are write accesses to non-contiguous memory regions inside the parallel
loop, these should be notified with the nc result clause.

llCoMP uses Memory Descriptors (MD) to guarantee the consistency of mem-
ory at the end of the execution of a parallel construct. MD are data structures
based on queues which hold the necessary information about memory regions
modified by a processor set. The basic information holded in MD are pairs (ad-
dress, size) that characterize a memory region. Prior to their communication
to other processor sets, these memory regions (pairs) are compacted in order
to minimize the communication overhead. In most of the cases, the commu-
nication pattern involved in the translation of a result or nc result is an
all-to-all pattern. The post-processing performed by a processor receiving a MD
is straightforward: it writes the bytes received in the address annotated in the
MD. In section 4 we present an experiment that has been designed to evaluate
the overhead introduced in the management of MDs.

In [8] we presented several examples of code with the result directive. In
this paper we focus in the implementation of non-contiguous memory access
patterns, the most recent feature incorporated into llCoMP.

1 #pragma omp paral le l for private ( ptr , temp , k , j )
2 for ( i=0; i<Blks−>size1 ; i++) {
3 ptr = Blks−>ptr [ i ] ;
4 temp = 0 . 0 ;
5 k = index1_coordinate ( ptr ) ; // F i r s t e lement in i−th row
6 for ( j=0; j<elements_in_vector_coordinate ( Blks , i ) ; j++) {
7 temp += value_coordinate ( ptr ) ∗
8 x [ index2_coordinate ( ptr ) ∗incx ] ;
9 inc_coordinate ( ptr ) ;

10 }
11 #pragma llc nc_result(&y [ k∗incy ] , 1 , y )
12 y [ k∗incy ] += alpha ∗ temp ;
13 }

Listing 1. A parallelization of the usmv operation
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In particular, consider the code in Listing 1, which shows the paralleliza-
tion using llc of the main loop of the sparse matrix-vector product operation
y = y + αAx, where x and y are both vectors and A is a sparse matrix (this
is known as operation usmv in the Level-2 sparse BLAS). Matrix elements are
stored using a rowwise coordinate format, but we also store pointers to the
first element on each row in vector ptr. In the code, each iteration of the ex-
ternal loop in line 2 performs a dot product between a row of the sparse ma-
trix and vector x, producing one element of the solution vector y. The code
uses three C macros (index1 coordinate(ptr), index2 coordinate(ptr) and
value coordinate(ptr)) in order to access to the row index, column index and
value of an element of the sparse matrix pointed by ptr. A fourth macro, namely
inc coordinate, moves the pointer to the next element in the same row. Values
incx and incy allow the code to access to vectors x and y with strides different
from 1.

A direct parallelization of the code can be obtained having into account
that different dot products are fully independent. Therefore, a parallel for
directive is used in line 1 to indicate that the set of processors executing the loop
in line 2 has to fork to execute the loop. The llc specific directive nc result in
line 11 indicates to the compiler that the value of the y[k*incy] element has to
be “annotated”.

4 Experimental Results

The experiments reported in this section were obtained on a cluster composed
of 32 Intel Pentium Xeon processors running at 2.4 GHz, with 1 GByte of RAM
memory each, and connected through a Myrinet switch. The operating system
of the cluster was Debian Sarge Testing Linux. We used the mpich [10] imple-
mentation on top of the vendor’s communication library GM-1.6.3.

In order to evaluate the performance of the llCoMP translation we have used
two benchmarks: the sparse matrix-vector product usmv, and a Molecular Dynam-
ics (md) simulation code [11]. These benchmarks were selected because they are
composed of irregular, non-contiguous accesses to memory, and also because they
are simple codes representative for a much larger class. Besides, the usmv opera-
tion is a common operation in sparse linear algebra, extremely useful in a a vast
amount of applications arising, among many others, in VLSI design, structural
mechanics and engineering, computational chemistry, and electromagnetics.

Using MPI and llCoMP we developed two parallel versions of the usmv code.
Consider first the parallelization using MPI. For simplicity, we assume vectors
x and y to be both replicated. With A distributed by rows, the matrix-vector
product is performed as a series of inner products which can proceed in parallel.
An all-to-all communication is required at the final stage to replicate the result
y onto all nodes. On the other hand, using llc to implement the product, we
parallelize the external for loop, so that each thread deals with a group of inner
products (see Listing 1). As all threads share vectors x and y, it is not necessary
to perform any additional gathering of partial results in this case.
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Table 2. Execution time (in secs.) for the ad hoc MPI vs. llCoMP parallel versions of
the usmv code. Problem sizes of 30000 and 40000 are employed with sparsity degrees
of 1% and 2%.

ad hoc MPI llCoMP
30000 40000 30000 40000

#Proc. 1% 2% 1% 2% 1% 2% 1% 2%

SEQ 11.09 21.55 26.67 45.16 11.09 21.55 26.67 45.16
2 5.85 11.99 11.59 30.11 8.24 15.15 21.70 34.08
4 3.64 6.65 8.26 16.72 4.85 8.18 10.34 21.34
8 2.23 3.33 4.44 11.39 2.93 4.23 6.42 10.57
16 1.62 2.13 2.86 6.76 1.86 2.68 3.48 6.57
24 1.45 1.82 2.43 6.15 1.80 2.32 3.29 6.23
32 1.27 1.55 2.00 5.25 1.94 2.40 3.02 4.35
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Fig. 1. MPI and llCoMP (result and nc result) speedups for the MD code

Table 2 compares the accumulated execution time of 100 runs for the usmv

code using an ad hoc MPI implementation and the translation produced by
llCoMP. The executions correspond to square sparse random matrices of dimen-
sions 30000, 40000 and sparsity factors of 1% and 2%.

The fine-grain parallelism present in the usmv code and the small amount
of computations performed by this operation are at the source of the limited
speed-up reported in the experiment. Not surprisingly, coarse-grain algorithms
are the best scenario to achieve high performance for the translations provided
by llCoMP. Nevertheless, if we compare the results obtained from an ad hoc
program using MPI with those produced by the llc variant, we can expect
this overhead to be compensated in some situations by the much smaller effort
invested in the development of the parallel code.
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The source code for the md code written in OpenMP can be obtained from
the OpenMP Source Code Repository [12,13]; translation of this code using llc is
straight-forward. With this experiment our aim is to evaluate the overhead intro-
duced by llCoMP in the management of non-regular memory access patterns. The
md code exhibits a regular memory access pattern, but as the nc result clause
is a general case of result, we have implemented it using both clauses. Figure 1
shows the speedup achieved by the md code for three different implementations:
and ad hoc MPI implementation and two different llc implementations using
result and nc result. We observe an almost linear behaviour for all the im-
plementations. For this particular code, no relevant differences are appreciated
when using regular and non-regular memory access patterns.

5 Conclusions and Future Work

We believe that preserving the sequential semantics of the programs is a major
key to achieve the objective of alleviating the difficulties in the development of
parallel applications. Surely the extension of the OpenMP programming para-
digm to the DM case is a desirable goal. At the present time the technology and
the ideas are not mature enough as to show a clear path to the solution of the
problem and, in this line, our own approach does not intend to compete with
other authors’ work. We show that a compiler working under the premises of
the OTOSP computational model and using direct generation of MPI code for
communications can produce acceptable results, even in the case of fine-grain
parallel algorithms.

Work in progress in our project includes the following issues:

– To unburden the final user of the specification of memory regions to be
communicated (using the result clauses).

– To explore the potential sources of improvement for the compiler prototype.
– To collect OpenMP applications suitable to be targeted by the llCoMP com-

piler.
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