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Abstract. In this paper we present two parallel algorithms to solve
non-symmetric Toeplitz systems of linear equations. The first algorithm
performs a modified QR factorization of the matrix by using the gener-
alized Schur algorithm. The second one is based on the transformation
of the Toeplitz matrix into a Cauchy-like matrix in order to reduce the
communication cost. Both sequential methods have small computational
cost. This fact makes it difficult to implement efficient parallel algo-
rithms. We have tested the efficiency and stability of the algorithms on
a cluster of personal computers. The results show the speed-up reaches
the number of processors in many cases and both algorithms offer an
accurate solution of the linear system. Besides, we have used public do-
main computation and communication libraries in order to get portable
codes.

1 Introduction

In this paper we present two new parallel algorithms based on “fast” sequential
methods for solving Toeplitz linear systems:

Tx = b , (1)

where T ∈ Rn×n is a Toeplitz matrix of the form T = (tij) = (ti−j) for i, j =
0, . . . , n− 1, b ∈ Rn, and x ∈ Rn is the solution vector.

Fast algorithms for solving Toeplitz linear systems are based on the displace-
ment rank property of this kind of matrix. There is a group of algorithms called
Schur-type that offers more possibilities to implement parallel versions.

Regarding the accuracy of the results, almost all the algorithms that solve
Toeplitz systems produce poor results except with strongly regular matrices, that
is, matrices with all their leading submatrices well conditioned. Several meth-
ods are proposed to improve the solution, including look-ahead or refinement
techniques [6,3].
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Our aim in this work is to offer stable and efficient algorithms for general pur-
pose architectures. Our codes are portable because we extensively use standard
libraries like LAPACK [4], ScaLAPACK [5] and BIHAR [10].

The first parallel algorithm presented in this paper solves (1) by means of a
modified QR decomposition of T proposed in [3] that improves the accuracy of
the solution.

Our second parallel algorithm makes a LU factorization of a Cauchy-like
matrix resulting from applying fast trigonometric transformations to the Toeplitz
matrix. We exploit Cauchy-like matrices in order to reduce the communication
cost avoiding a lot of communications present in the classical fast algorithms.

In the next two sections both parallel algorithms are described. Section 4
includes the experimental analysis and comparison of the algorithms in a cluster
of personal computers. Finally, some conclusions are presented.

2 QR Factorization of T

The concept of displacement structure was first introduced in [8] to describe
the special structure of Toeplitz and Toeplitz-like matrices. Given a symmetric
matrixM ∈ Rn×n, and a lower triangular matrix F ∈ Rn×n, we call displacement
of M with respect to F to the matrix ∇FM defined as:

∇FM = M − FMFT = GJGT . (2)

We say that matrix M has displacement structure with respect to F , if the rank
r of ∇FM , is considerably lower than n [9]. Matrix G ∈ Rn×r is called generator
and J = (Ip ⊕−Iq), r = p + q, is the signature matrix, where p the number of
positive eigenvalues of ∇FM and q the number of negative eigenvalues.

The Generalized Schur Algorithm (GSA) uses the generator pair (G, J) to
factorize matrices with the previous structure in O(rn) operations. Applying
GSA to the appropriate matrix we can obtain different factorizations (QR, LU,
etc.) of a Toeplitz matrix T . In this paper we use the following matrices

M =
(
TTT TT

T 0

)
, F =

(
Z 0
0 Z

)
, (3)

where Z = (zij)i,j=1,...,n is the down shift matrix, being zij = 1 if i + 1 = j
and 0 otherwise. The QR factorization of a Toeplitz matrix can be obtained by
applying n steps of the algorithm GSA to the generator pair (G, J),

M =
(
TTT TT

T 0

)
=

(
RT

Q

)
(I)

(
R QT

)
+

(
0 0
0 −I

)
, (4)

such as TTT = RTR where R is upper triangular, T = QR and QQT − I = 0.
The displacement rank of M (4) is 5, and the generator can be found in [3].

However, it is not possible to guarantee the stability of the GSA algorithm
and the perfect orthogonality of factorQ. To solve this problem, we have incorpo-
rated two basic modifications suggested in [3] to our algorithm. First, 2n steps of
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Fig. 1. Example of row block cyclic distribution with ν = 2 of a generator matrix
G ∈ R18×6 (case ill-conditioned matrix T ), and the triangular matrix L ∈ R12×12 in
a mesh of 3 × 1 processors. The figure shows the PAQR at the middle of the step
5. Entries g are generator entries while r, q and δ denote entries of RT , Q and ∆
respectively. Entries r̄ and q̄ denote the colummn of L computed at step 5 while entries
with ′ denote values that will be computed in the following steps from 6 to 12.

the GSA algorithm are applied to produce the following triangular factorization:

LL̂T =
(
RT 0
Q ∆

) (
R QT

0 −∆T

)
, (5)

so that (∆−1Q) is orthogonal and the Toeplitz system (1) can then be solved
using, x = R−1(QT∆−T )∆−1b.

Secondly, if matrix T is ill-conditioned, that is, if κ(T ) > 1/
√
ε, being ε

the machine precision, then the algorithm GSA can fail. To avoid this problem
a modified matrix M with a displacement rank of 6 is factorized in order to
guarantee the backward stability. For a deeper discussion see [3].

The computation of generator G involves matrix-vector products that can
be performed in parallel without communications. The generator is distributed
cyclically by blocks of ν (n mod ν = 0) rows in a one-dimensional mesh of p× 1
processors denoted as Pk, k = 0, . . . , p−1 (see Fig. 1). We use a one-dimensional
topology because the generator has only 5 or 6 columns and the operations are
applied in parallel on different groups of rows.

The parallel algorithm that we call PAQR (Parallel Algorithm for the QR
decomposition of T ) proceeds as follows.

1. Compute generator G.
2. Compute QR factorization, for i = 1, . . . , n,

a) Processor Pk owning row i of G (gi) chooses a J-unitary transformation
Θi (ΘiJΘi = J) such as giΘi =

(
x 0 . . . 0

)
iff gTi Jgi > 0 or giΘi =(

0 . . . 0 x
)

otherwise, and broadcasts Θi.
b) The rest of processors update their rows j = i+1, . . . , 2n of G, G← GΘi.

Column i of L is the first (or the last) column of G.
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c) Update g, g ← Fg, being g the first (or the last) column of G.
3. Compute x = R−1(QT∆−T )∆−1b by calling some routines of PBLAS.

Step 2c implies a shift one position down the i-th to n entries of g on the one
hand, and the n+1 to 2n entries of g on the other hand. This last operation of the
iteration i requires a point-to-point communication between adjacent processors,
and involves a great amount of the total time of the parallel algorithm. In order
to reduce the communication cost, all elements to be sent from a given processor
Pk to processor Pmod(k+1,p) are packed in a unique message.

3 LU Factorization of T

We can avoid the shifting operation on each iteration (step 2c) on the PAQR if
we transform the Toeplitz matrix into a Cauchy-like matrix. This greatly reduces
the communication cost of the parallel algorithm.

We say that C is a Cauchy-like matrix if it is the unique solution of the
displacement equation

Ω C − C Λ = G HT , (6)

where Ω = diag(ω1, . . . , ωn), Λ = diag(λ1, . . . , λn), and we call matrices G and
H of size n× r generators.

Given a Toeplitz matrix T , its displacement equation can be expressed as

Z00 T − T ZT11 = Ĝ ĤT . (7)

In the displacement equation (7), Zεψ = Z + ZT + εe1e
T
1 + ψene

T
n where e1

and en are the first and last columns of the identity matrix respectively and
ε, ψ ∈ {0, 1}. An explicit form for Ĝ and ĤT can be found in [1].

There exist real discrete trigonometric transformations associated with the
FFT that diagonalize the matrix Zεψ in O(n log(n)) operations. The discrete sine
transformation S00 (DST-I) diagonalizes Z00, while the discrete cosine trans-
formation S11 (DCT-II) diagonalizes Z11 [1,7]. Using the mentioned transfor-
mations, we can convert the displacement equation (7) into the displacement
equation (6).

Given a Cauchy-like matrix C (6), its LU factorization can be obtained where
L is a unit lower triangular matrix and U is an upper triangular matrix. The
algorithm proceeds as follows. In the first step, the first column of C is computed
by solving

ΩC:,j − C:,jΛ = GHT
j,: .

Let us partition C and to define matrices X and Y as

C =
(
d u
l C1

)
, X =

(
1 0

ld−1 I

)
, Y =

(
1 d−1

0 I

)
,

then C can be factorized as

C = X

(
d 0
0 Cs

)
Y ,
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where Cs is the Schur complement of C regarding its first element d. Further,
let Ω and Λ be conformally partitioned Ω =

(
Ω1 ⊕Ω2

)
and Λ =

(
Λ1 ⊕ Λ2

)
.

Applying the transformation X−1(.)Y −1 to (6) we obtain the following equation

Ω2 Cs − Cs Λ2 = G1 H
T
1 , (8)

where G1 is the portion of X−1G from the second row down and H1 is the
portion of Y −1H from the second row down. The first column of L in the LU
factorization is

(
1 d−1lT

)T while the first row of U is
(
d u

)
. The process can

now be repeated on the displacement equation (8) of the Schur complement of
C with respect to d, Cs, to get the second column of L and row of U .

In the algorithm PALU we have used the same unidimensional mesh topology
as in the first one. The generators G and H have been distributed cyclically by
blocks of ν rows as it was made with generatorG in the previous algorithm PAQR
(see Fig. 1). The computed lower triangular factors L and UT are distributed as
the factor L in PAQR.

The parallel algorithm performs a block version of the algorithm described
above. Let the following partition for generators G and H and matrix C be,

(
G1
G2

)
,

(
H1
H2

)
, C =

(
C11 C12
C21 C22

)
=

(
L1
L2

) (
U1 U2

)
+

(
0 0
0 Cs

)
,

where G1, H1 ∈ Rν×4 and G2, H2 ∈ R(n−ν)×4, L1, U1 ∈ Rν×ν are lower and
upper triangular factors respectively, L2, U

T
2 ∈ R(n−ν)×ν and Cs is the Schur

complement of C regarding its principal submatrix C11. At the first step of the
parallel algorithm, processor P0 (processor having the firsts blocks G1 and H1 of
the generators) computes the LU factorization of C11 = L1U1. Next, processor
P0 broadcasts blocks G1 and H1 properly updated. The rest of processors receive
blocks G1 and H1, compute their blocks of factors L2 and U2 and update their
blocks of G2 and H2. G2 and H2 are the generators for a displacement equation
of Cs of the form (6). The following steps of the algorithm proceed in the same
way.

4 Experimental Results

We have performed the experimental analysis of both algorithms on a cluster of
personal computers. Each node of this cluster is a Intel Pentium II-300MHz with
128 Mbytes of memory. The nodes are connected through a Myrinet network [2].
The time required for one of these nodes to perform a flop is approximately
1.55 × 10−3 µs. On the other hand, we model by β + nτ the time required to
send a message of size n between two nodes. The latency time of the network is
β = 62 µs, while the time to transfer each double precision real value is 0.021 µs.

Table 1 shows the time spent by both parallel algorithms to solve Toeplitz
systems of different matrix sizes using only one processor. We can see how the
main part of PAQR is devoted to the modified QR decomposition while the
largest time spent in PALU is devoted to the LU factorization of a Cauchy–like
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Table 1. Time in seconds (percentage of the total time) of each of the three main
steps of both algorithms executed in one processor

PAQR PALU
n n + 1 Calc. gen. Mod. QR System Calc. gen. LU System

1000 (7 · 11 · 13) 0.01 (1%) 0.82 (86%) 0.12 (13%) 0.01 (2%) 0.39 (93%) 0.02 (5%)
1200 (1201) 0.03 (2%) 1.36 (88%) 0.16 (10%) 0.27 (29%) 0.61 (66%) 0.04 (4%)
1400 (3 · 467) 0.04 (2%) 1.84 (88%) 0.22 (10%) 0.08 (8%) 0.84 (87%) 0.05 (5%)
1600 (1601) 0.05 (2%) 2.38 (87%) 0.30 (11%) 0.47 (29%) 1.10 (67%) 0.06 (4%)
1800 (1801) 0.07 (2%) 3.04 (87%) 0.38 (11%) 0.60 (29%) 1.41 (67%) 0.08 (4%)
2000 (3 · 23 · 29) 0.08 (2%) 3.68 (87%) 0.47 (11%) 0.03 (2%) 1.73 (94%) 0.09 (5%)

matrix. The time required to compute the generator in PAQR is almost negligi-
ble. However, the study of the generator computation in PALU, that involves the
Toeplitz to Cauchy–like translation, shows an interesting behavior. The speed
of this process depends on the decomposition in prime factors of n + 1 (second
column of Table 1). The time spent in this step is little as far as the prime factors
are little. The final step of the algorithms, that involves several triangular sys-
tems solution and matrix–vector products, are carried out by subroutines of the
BLAS library optimized for the target machine and it takes a small percentage
of the total time.

One important factor that affects the performance of both parallel algorithms
is the block size denoted by ν. The value of ν fixes the number of messages
and their sizes, therefore, determines the load-balance between computations
and communications. In our experiments with PAQR we have seen that with
matrices of a size smaller than n = 1536, the best block size is n/p, but, with
larger matrices, the best block size depends on the size of the matrix. In the case
of the algorithm PALU the best value of ν in our cluster is 31.

Table 2 shows time and speed-up of both parallel algorithms up to 8 proces-
sors. Algorithm PAQR always improves its sequential version as the number of
processors increases. The speed-up obtained with this parallel algorithm are not
very good but always grows with the problem size. The limited performance is
due to the influence of the communications forced by the down shift of a col-
umn of the generator in each iteration. Another constraint of PAQR is the great
amount of memory required but the use of several processors allows us to deal
with bigger problems.

On the other hand, it can be seen that PALU obtains better time and speed-
up than PAQR. However, the first step is a sequential process. This fact limits the
maximum speed-up when the prime factors of n + 1 are large and the number
of processors increases, as it can be seen if we compare the speed-ups with
matrices of sizes 1800 and 2000 in Table 2. For a matrix of size n = 4095 we
have obtained an efficiency about 65% in 16 processors. Another advantage of
the second parallel algorithm is that it can deal with larger matrices than PAQR.

To analyze the stability of the algorithms we have used the matrix T =
T0 + ξT1 where T0 is a symmetric Toeplitz matrix called KMS (Kac-Murdock-
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Table 2. Time in seconds (speed-up) of the parallel algorithm PAQR

PAQR PALU
n/p = 1 2 4 8 1 2 4 8
1000 0.95 0.87 (1.09) 0.73 (1.30) 0.60 (1.58) 0.45 0.25 (1.80) 0.14 (3.21) 0.10 (4.50)
1200 1.54 1.20 (1.28) 0.97 (1.59) 0.82 (1.88) 0.94 0.66 (1.42) 0.45 (2.09) 0.38 (2.47)
1400 2.10 1.59 (1.32) 1.26 (1.67) 0.99 (2.12) 1.01 0.60 (1.68) 0.34 (2.97) 0.23 (4.39)
1600 2.74 2.02 (1.36) 1.56 (1.76) 1.21 (2.26) 1.70 1.14 (1.49) 0.85 (2.00) 0.65 (2.62)
1800 3.40 2.46 (1.38) 1.85 (1.84) 1.46 (2.33) 2.16 1.45 (1.49) 1.08 (2.00) 0.82 (2.63)
2000 4.23 2.96 (1.43) 2.21 (1.91) 1.68 (2.52) 2.01 1.07 (1.88) 0.63 (3.19) 0.30 (6.70)

Table 3. Forward and backward errors of both parallel algorithms

PAQR PALU
n(cols) Back. error For. error Back. error For. error
1000 (6) 8.47 × 10−14 6.40 × 10−3 4.16 × 10−12 1.07 × 10−5

1200 (5) 1.20 × 10−15 1.20 × 10−13 4.79 × 10−12 1.83 × 10−11

1400 (5) 1.10 × 10−15 8.17 × 10−13 6.70 × 10−12 1.68 × 10−11

1600 (6) 2.79 × 10−13 5.01 × 10−2 6.69 × 10−13 1.05 × 10−11

1800 (5) 3.90 × 10−15 1.15 × 10−12 1.16 × 10−11 6.72 × 10−11

2000 (5) 8.73 × 10−16 5.75 × 10−13 1.40 × 10−11 3.12 × 10−11

Szegö) whose elements are t0 = ε and ti = t−i =
( 1

2

)i for i = 1, 2, . . . , n− 1, and
matrix T1 is randomly generated. We have chosen ε = ξ = 10−14. In this case
the leading submatrices of T with sizes 3m+ 1, m = 0, 1, . . . are ill conditioned.
Classical Levinson and Schur-type algorithms break down or produce bad results
with that matrix because it is not strongly regular. The right-hand side vector b
has been chosen in such a way so that the exact solution x is a vector where all
elements have a value of one. Now, we have been able to obtain the backward
and forward errors,

‖T x̃− b‖
‖T‖ · ‖x̃‖+ ‖b‖ and

‖x̃− x‖
‖x‖ ,

where x̃ is the computed solution.
Table 3 shows both errors with the two parallel algorithms. The first column

shows the matrix sizes and also shows the number of columns of the generator in
the algorithm PAQR. When n = 3m+ 1 for a given m, κ(T ) ≈ 1014. Backward
errors of PAQR are good because it produces a corrected QR factorization over
the product TTT which is strongly regular. However, if T is ill conditioned
(n = 1000, 1600), then κ(TTT ) � κ(T ). The Cauchy-like matrix preserves the
conditioning of the original Toeplitz matrix. As PAQR works with TTT while
PALU deals with the transformed matrix T , PALU produces smaller forward
errors than PAQR with ill-conditioned matrices.
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5 Conclusions

Both algorithms presented in this paper parallelize fast sequential methods that
exploit the displacement structure of Toeplitz matrices. Despite the small com-
putational cost, both parallel algorithms improve their sequential versions. The
implemented algorithms are portable because they are based on standard se-
quential and parallel libraries. They have been tested on a cluster of personal
computers, but they can be used on any distributed memory architecture.

Algorithm PAQR involves many communications and has a fine–grain paral-
lelism. This produces small speed–ups in our cluster of personal computers, but
the time is reduced with the number of processors. Algorithm PAQR is more
backward–stable than PALU in all cases and more accurate for well–conditioned
matrices. On the contrary, algorithm PALU avoids a great number of commu-
nications and increases the overlapping between computation and communica-
tions. Although its efficiency can be affected by the cost of the initial Toeplitz–
to–Cauchy transformation, for large matrices with a decomposition of n + 1 in
small primes we can expect a good efficiency with several processors. Algorithm
PALU is more forward–stable with ill–conditioned matrices.
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