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In this paper we discuss the application of an hybrid programming paradigm that combines
message-passing (MPI) with shared memory programming (OpenMP). We apply this model to the
parallel solution of two basic problems: the sparse matrix-vector product and the dynamic program-
ming problem. We compare the results of the hybrid model withthe application of a pure MPI model
on a cluster of dual Intel Xeon processors. The experimentalresults show that the behavior of both
models depend, among other factors, on the application and on the size of the problems. While with
the dynamic programming problem we obtain very good speedups, in the case of the matrix-vector
product the algorithms do not take very good profit of the dualprocessors.

1. Introduction

The GNU Scientific Library (GSL) [6] is a collection of hundreds of routines for numerical sci-
entific computations written in ANSI C, which includes codesfor complex arithmetic, matrices and
vectors, linear algebra, integration, statistics, and optimization, among others. The reason GSL was
never parallelized seems to be the lack of a globally accepted standard for developing parallel ap-
plications. We believe that with the introduction of OpenMPand MPI the situation has changed
substantially. OpenMP [8] has become a standardde factofor exploiting parallelism usingthreads,
while MPI [7] is nowadays accepted as the standard interfacefor developing parallel applications
following the message-passing programming model.

On the other hand, the application of parallelism has increased in recent years partly due to the
arising of the clusters of personal computers. This kind of parallel architecture can be easily up-
graded and offers a very good performance/price relation. Clusters are naturally programmed using
the message-passing model. However, most recent clusters are composed of nodes that are small
shared-memory multiprocessors containing from 2 to 8 standard personal computers. A trend of
these hybrid parallel computers could be the inclusion of multi-core processors, while SMPs are
being clustered to increase the number of CPUs of the architecture.

It seems that a natural, efficient and portable way to take profit of hybrid architectures is to com-
bine the MPI library to communicate the different nodes, with OpenMP to run several threads on the
processors included in each node of the cluster [11], [3], [1].

This hybrid paradigm allows us to exploit efficiently the shared memory without having to add
MPI communications within each node. Besides, this paradigm could combine coarse grain par-
allelism among the nodes with fine grain parallelism within them, exploiting besides the dynamic
load balancing possibilities of the OpenMP model. However,there is not guarantee that the hy-
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brid model obtains better performance that a pure MPI implementation, [2]. Besides, other parallel
programming models can also be used on clusters of SMPs [9].

In this paper we investigate the parallelization of a specific part of GSL using the hybrid parallel
model, and we compare it with the use of a pure message-passing model based on the MPI library.
In Section 2 we elaborate our first case study, describing a parallelization of the sparse matrix-vector
product addressed to SMPs, and the experimental results. InSection 3 we perform the same kind
of description and analysis in the case of the dynamic programming problem. Finally, concluding
remarks follow in Section 4.

2. Case study I: sparse matrix-vector product

Sparse matrices arise in a vast amount of areas, some as different as structural analysis, pattern
matching, control of processes, tomography, or chemistry applications, to name a few. Surprisingly
enough, GSL does not include routines for sparse linear algebra computations. This can only be
explained by the painful lack of standards in this area: Onlyvery recently the BLAS Technical
Forum came with a standard [5] for the interface design of theBasic Linear Algebra Subprograms
(BLAS) for unstructured sparse matrices.

The implementation, parallelization, and performance of sparse computations strongly depend
on the storage scheme employed for the sparse matrix which, in many cases, is dictated by the
application the data arises in.

Two of the most widely-used storage schemes for sparse matrices are the coordinate and the
Harwell-Boeing (or compressed sparse array) formats [4]. As there seems to be no definitive ad-
vantage of any of the above-mentioned schemes, in our codes we employ a variant of the rowwise
coordinate format.

Our approach to deal with parallel platforms consists in dividing the matrix intop blocks of rows
with, approximately, the same size. Each process operates then with the elements of its correspond-
ing block of rows.

The following (simplified) data structure is used to manage distributed sparse matrices on each
processor:

1: typedef struct {
2: size_t local_size1; // local row size
3: size_t local_size2; // Global column size
4: size_t local_nz; // Global non-zeros
5: int ** rowptr; // pointers to rows
6: void * local_data;
7: } internal_dmdd_sparse_matrix;

In this structure,rowptr stores pointers to the init of each row in the vectorlocal data . This
vector stores the matrix elements in the processor by rows. Each element is stored as three adjacent
values:(row index, column index, element value) . We have chosen this storage scheme
instead of the three vectors of the classical coordinate format in order to improve the locality in the
access to the elements of the matrix.

2.1. Parallelizing the Sparse Matrix-Vector Product
We describe next the parallel implementation of the sparse matrix-vector

y ← y + α · A · x,
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where a (dense) vectory, of lengthm, is updated with the product of anm × n sparse matrixA
times a (dense) vectorx, with n elements, scaled by a valueα. Notice that this is by far the most
common operation arising in sparse linear algebra [10], as it preserves sparsity ofA while allowing to
employ codes that exploit the zeroes in the matrix to reduce the computational cost of the operation.
For simplicity, we ignore hereafter the more general case, whereA can be replaced in (2.1) by its
transpose or its conjugate transpose.

First we will describe the parallelization of the product using a message-passing model, and then
we will describe how we can modify it so that each process executes several threads on a shared-
memory environment.

The (sparse) matrix-vector product is usually implementedas a sequence ofsaxpyoperations or
dot products, with one of them being preferred over the otherdepending on the target architecture
and, in sparse algebra, the specifics of the data storage.

In our approach, taking into account the rowwise storage of the data, we decided to implement
the parallel sparse matrix-vector product as a sequence of dot products. In order to describe the code
we assume that the vectorx involved in the product is initially replicated by all processes. We also
consider a block partitioning of vectory = (y0, y1, . . . , yp−1), with approximately an equal number
of elements per block, and a partition of the sparse matrixA by blocks of roughlym/p rows as

A =
(

AT
0
, AT

1
, . . . , AT

p−1

)T

.
The parallelism of the rowwise version of the product arisesfrom the fact that every dot product

among a row of the distributed matrixA and the replied vectorx can be performed fully in parallel
to obtain different elements of the solution vectory. Therefore, the code executed on each process
in the pure message-passing version of the product is the following:

1: for (i = 0; i < local_size1; i++) {
2: pos = rowptr[i]; // first element in row i
3: k = row_index(pos);
4: temp = 0.0;
5: for (j = 0; j < nz_in_row(i); j++) {
6: temp += value_in(pos) * x[k];
7: inc_coordinate(pos);
8: }
9: y[k] += alpha * temp;
10: }

In the previous code,row index(pos) is a macro that obtains the row index of the matrix ele-
ment from the positionpos in local data . Another C macro,nz in row(i) , returns the number
of non-zero elements in thei-th row. Finally, inc coordinate(pos) shifts the positionpos to
the next element of the matrix.

Once each process has computed a block of the solution vectory, a collective communication
(of type MPI Allgather ) is required to replicate the results. This operation is (almost) perfectly
balanced as all processes have a close number of elements ofy.

Let us now describe the hybrid version of the algorithm. Suppose that each MPI process is exe-
cuted on a node that is a shared memory multiprocessor. An easy and portable way to take profit of
this kind of architecture is to use OpenMP in order to distribute the computations of each process
among the different processors of each node. Exploiting thesame idea about the parallelism of the
matrix-vector product than before, we can compute in parallel the iterations of the outer loop of the
previous algorithm, corresponding to independent dot products. This idea can be implemented by
adding the following directive:
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#pragma omp parallel for private (pos, k, temp, j)

just before the outer loop. A certain amount of dot products are thus computed by each thread and the
threads only need to be synchronized once, on termination ofthe outer loop. If the non-zero elements
of the matrix are not evenly distributed among the differentrows, a dynamic scheduling of the threads
provides a better load balancing. This could be one of the main advantages of using OpenMP
threads on each node instead of MPI processes, where load balancing should be implemented by the
programmer by means of an appropriate data and task distribution.

It is worth noticing that the global communication among theMPI processes is performed once
finished the OpenMP parallel region. The different threads have partially contributed to the compu-
tation of the solution vector corresponding to the each MPI process. Then, the master thread on each
node can access that information and perform the global communication. Since the communication
is out of the OpenMP parallel region, theoretically a non-thread safe version of MPI could be used.

2.2. Experimental analysis
Our experimental platform is a dual-SMP cluster of 34 nodes.Each node consists of two Intel

Xeon Processors at 2.4 Ghz., 1GB of RAM and 512 KB of L2 cache. The nodes are connected
through a Myrinet network with a bandwidth of 2Gb/s. Each node runs a Linux kernel version
2.4.24bi and we used Intel icc compiler version 7.1 with the option -O3. The algorithms have been
implemented with the MPI v.1.2.5 compiled with the-ch gm option in order to exploit the GM
communication library of the Myrinet network.

We have performed experiments with three versions of the parallel matrix-vector product:

• An uniprocessorversion in which we run the pure MPI algorithm using only one of the pro-
cessors of each node.

• A pure MPI version in which we have run the same pure MPI algorithm spawning two MPI
processes on each node. In order to exploit the shared memoryfor the intra-node communica-
tions we used the option--gm-numa-shmem of thempirun.ch gmcommand.

• A hybrid MPI+OpenMPversion in which we run a MPI process per node and this process
spawns two OpenMP threads to perform the computation.

We have tested the performance of the three versions with different problem sizes (sparsity and
matrix size) and using different number of processors. The left-hand side of Fig. 1 shows the speed-
ups of the parallel algorithms with respect to the sequential algorithm. The figure shows the results
for matrices of two sizes: 30.000 (30k) and 40.000 (40k), both cases with an sparsity of 2%.

The speed-ups are far from the optimal values. This is mainlydue to the effect of the commu-
nication cost in an application with a computation cost depending on a small number of non-zero
elements. On the other hand, as we use random generated matrices, the number of non-zero elements
on each processor is balanced, and so the number of flops. However the distribution of the elements
in the columns is quite different on the different processors, producing a different access pattern to
the memory and unbalancing the total computational cost.

The experiments show also that the speed-up of the hybrid version overcomes the speed-up of
the uniprocessor version when we take profit of the dual nodesof the machine. However the pure
MPI version of this application in our experimental environment is only better than the uniprocessor
version for some problem sizes, for example, matrices with 40k rows. We can also see that, as we
increase the size of the matrix the speed-up of the pure MPI version approaches the speed-up of
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Figure 1.Performance of the parallel versions of the sparse matrix-vector product.

the hybrid version, and in some cases even surpasses it. In order to analyze the use of the hybrid
architecture we plot in the right-hand side of Fig. 1 theNode speed-up[2]. Given a fixed number of
nodes, this parameter is the ratio between the time spent using the two processors on each node and
using only one processor per node. The figure shows that the results obtained are always suboptimal
(< 2). In some cases, the pure MPI versions offers node speed-upsless than1, which means that it
would have been better to run only one process per node than torun two processes trying to use both
processors.

We could expect that, for a fixed number of processors, the uniprocessor version offers better
results than the pure and hybrid versions, because in the last two cases the two processes or threads
running on each node have to share its resources (memory, network, etc.). However, the results
shown in Fig. 1 are worse than expected even having into account the previous kind of collision. The
detailed justification of the experimental results requires a deeper analysis of the influence of several
factors, including the communication and computation costs, the use and access to the memory, etc.
We intend to develop this analysis of the application and theexperimental environment in a near
future.

3. Case study II: dynamic programming

Dynamic programming (DP) is an important problem-solving technique that has been widely
used in various fields such as control theory, operations research, biology and computer science.
Dynamic programming is a useful method when the solution of aproblem can be expressed as the
result of a sequence of decisions. The method enumerates alldecision sequences and selects the
best among them. Dynamic Programming often reduces the amount of enumeration drastically by
avoiding the consideration of decision sequences that willnot deliver optimal solutions. An optimal
sequence of decisions is obtained by making explicit use of the principle of optimality. This approach
derivates into a general recurrence formula where, on a multistage-problem, the optimal values for
subproblems involvingi decisions are computed in terms of subproblems involvingi− 1 decisions.

For instance, in the Single Resource Allocation Problem, weneed to allocateM units of an indi-
visible resource toN tasks so that the sum of the effectiveness is maximized. The problem can be
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formally stated as:

max z =
N

∑

j=1

fj(xj) subject to
N

∑

j=1

xj = M,

wherefj(xj) gives the benefit of allocatingxj units of resource to taskj.
Now denote byG[i][x] the optimal benefit of the subproblem and consider the firsti tasks andx

units of resource. The dynamic programming recurrence equations are then formulated as follows:

G[i][x] = max{G[i− 1][x− j] + fi(j) : 0 < j ≤ x}, i = 2, ..., N,
G[1][x] = f1(x), 0 < x ≤ M, and
G[i][x] = 0, i = 1, ..., N ; x = 0.

The valueG[N ][M ] gives the total income for the optimization problem and, in order to be com-
puted, the dynamic programming tableG is needed in advance.

3.1. Parallelizing the Dynamic Programming Problem
The Dynamic Programming table is necessary to obtain the optimal solution, and the values of the

table must be computed following the order imposed by the dependences of the recurrence equations.
A simple parallelization of this operation on a distributed-memory platform using MPI replicates
the table on all nodes. WithG distributed by columns, the processes compute in parallel the entries
belonging to the same row of the table, with the rows being computed sequentially from top to
bottom. We next show the code executed on themyid MPI process:

1: for (i = 0; i <= N_TASKS; i++) {
2: for (x = displs[myid]; x < displs[myid + 1]; x++) {
3: G[i][x] = ( * f)(i, 0);
4: for (j = 0; j <= x; j++) {
5: fix = G[i - 1][x - j] + ( * f)(i, j);
6: if (G[i][x] > fix)
7: G[i][x] = fix;
8: }
9: }
10: MPI_Allgatherv(&G[i][displs[myid]], ... );
11: }

An all-to-all communication operation is performed to replicate every row. Since the inner loop
(0 < j ≤ x) is not constant, we follow a block distribution with variable block sizes. The sizes of
the blocks are computed so that they minimize the load imbalance. The number of columns assigned
to each processor are computed as an arithmetic progression, and the starting indexes are stored
in vectordispls . This evaluation also forces the use of different parallel regions in the OpenMP
version.

The following code summarizes the hybrid version of the algorithm.

1: #pragma omp parallel private(...)
2: for (i = 0; i <= N_TASKS; i++)
3: for (x = th_displs[th_id]; x < th_displs[th_id + 1]; x++)
4: // idem than in the pure MPI version
5: #pragma omp barrier
6: #pragma omp master
7: MPI_Allgatherv(&G[i][th_displs[th_id]], ... );
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The hybrid algorithm exploits the same kind of parallelism than the pure MPI version on each
node. The columns assigned to each MPI process, and so the iterations of the loop on line 3, are
distributed among several OpenMP threads. In order to balance the load we can distribute a different
number of columns to each thread following the same kind of distribution than in the pure MPI
version. The starting column assigned to each thread is stored in vectorth displs .

On the other hand, each time the algorithm finishes the computations corresponding to one of the
rows of the matrix, the MPI processes have to perform anall-to-all communication operation. This
communication can only be performed when all the threads have finished their iterations of the loop
on line 3, and so we added an OpenMP barrier on line 5. Besides,we used aomp master directive
to guarantee that only the master thread participates on theMPI communication.

3.2. Experimental analysis
In order to perform the experimental analysis of this secondcase of study we used the same exper-

imental environment that with the sparse matrix-vector product. We tested the same three versions
of the algorithm (uniprocessor, pure MPI and hybrid MPI + OpenMP) with different problem sizes:
1000 (1k) and 3000 (3k).

The left-hand side of Fig. 2 reports the speed-ups of the three versions of the algorithm. The
speed-ups are very good for all the versions of the algorithmand they increase with the size of the
problem. We can even observe super-linear speed-ups with the largest problem, that are probably a
consequence of a better use of the cache memory in the parallel algorithms.

Regarding the relative behavior of the three versions of thealgorithm, we can see that both, the
pure MPI and the hybrid version, continue the almost linear increasing of the speed-ups of the
uniprocessor version when we exploit both processors of thenodes. The right-hand side of the
figure 2 shows that the node speed-ups are always larger than 1and in some cases even larger than
2. Moreover, the node speed-ups increase with the problem size, and they are almost independent of
the number of nodes in the case of the largest problem size.

Besides, for the largest problem size, the hybrid parallelization offers better speed-ups than the
pure MPI one. The performance behavior, is reversed for the smallest problem size where speed-ups
of the pure MPI code surpass the speed-ups of the hybrid version.

Although even better performances could be achieved using tuned tiled block-cyclic paralleliza-
tions, this requires information on the optimal tile sizes apriori. Since these sizes are architectural
and problem dependent, the approach seems to be hardly suitable for a general purpose library.

4. Conclusions

In this paper we study different models to parallelize algorithms on clusters of SMPs. Specifically
we study two basic models: a pure MPI model and a hybrid MPI + OpenMP model. In the first case
a MPI process is executed on each processor. In this second model an MPI process is executed on
each node and OpenMP threads cooperate to perform the task assigned to each process.

In order to compare both models we used two applications: thesparse matrix-vector product and
the dynamic programming problem. Both applications use different schemes of parallelization. In
the matrix-vector product the algorithm starts by computing the product without communications,
and then an all-to-all communication is performed to gatherthe result in all the processes. The
dynamic programming problem is solved by means of succession of steps. Each one starts with a
computation phase and finishes with a communication phase that synchronizes all the processes.

The experimental results on a cluster of dual processors show that the performance mainly depends
on the application and on the problem size. While in the case of the dynamic programming problem
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Figure 2.Performance of the parallel versions of the dynamic programming problem.

we obtain very good speed-ups, the results are not so good in the case of the matrix-vector product.
In the first case both parallel models take profit of the dual node clearly increasing the speed-ups of
the algorithm executed on one processor of each node. However, in the case of the matrix-vector
product the results using both processors per node are better than the results using one processor per
node only in some cases. Finally, the programming model thatobtains the best results depend in
both applications on the size of the problem.
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