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In this paper we discuss the application of an hybrid prognamg paradigm that combines
message-passing (MPI) with shared memory programmingr(Rpg. We apply this model to the
parallel solution of two basic problems: the sparse mategtor product and the dynamic program-
ming problem. We compare the results of the hybrid model thighapplication of a pure MPI model
on a cluster of dual Intel Xeon processors. The experimeesallts show that the behavior of both
models depend, among other factors, on the application mmtideosize of the problems. While with
the dynamic programming problem we obtain very good spegdnphe case of the matrix-vector
product the algorithms do not take very good profit of the gwatessors.

1. Introduction

The GNU Scientific Library (GSL) [6] is a collection of hundi®of routines for numerical sci-
entific computations written in ANSI C, which includes codeiscomplex arithmetic, matrices and
vectors, linear algebra, integration, statistics, andhoipation, among others. The reason GSL was
never parallelized seems to be the lack of a globally acdegtndard for developing parallel ap-
plications. We believe that with the introduction of Openldifd MPI the situation has changed
substantially. OpenMP [8] has become a standiréactofor exploiting parallelism usinghreads
while MPI [7] is nowadays accepted as the standard inteffiacdeveloping parallel applications
following the message-passing programming model.

On the other hand, the application of parallelism has iregdan recent years partly due to the
arising of the clusters of personal computers. This kindarafel architecture can be easily up-
graded and offers a very good performance/price relatidust€rs are naturally programmed using
the message-passing model. However, most recent clusteeromposed of nodes that are small
shared-memory multiprocessors containing from 2 to 8 stahgersonal computers. A trend of
these hybrid parallel computers could be the inclusion oftisore processors, while SMPs are
being clustered to increase the number of CPUs of the aothite

It seems that a natural, efficient and portable way to takétmfohybrid architectures is to com-
bine the MPI library to communicate the different nodeshvipenMP to run several threads on the
processors included in each node of the cluster [11], [3], [1

This hybrid paradigm allows us to exploit efficiently the ssthmemory without having to add
MPI communications within each node. Besides, this paradiguld combine coarse grain par-
allelism among the nodes with fine grain parallelism withiarh, exploiting besides the dynamic
load balancing possibilities of the OpenMP model. Howetlegre is not guarantee that the hy-
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brid model obtains better performance that a pure MPI implgation, [2]. Besides, other parallel
programming models can also be used on clusters of SMPs [9].

In this paper we investigate the parallelization of a spegifirt of GSL using the hybrid parallel
model, and we compare it with the use of a pure message-pgassidel based on the MPI library.
In Section 2 we elaborate our first case study, describingalpbzation of the sparse matrix-vector
product addressed to SMPs, and the experimental resulSedtion 3 we perform the same kind
of description and analysis in the case of the dynamic progrimg problem. Finally, concluding
remarks follow in Section 4.

2. Casestudy I: sparse matrix-vector product

Sparse matrices arise in a vast amount of areas, some a®ulifées structural analysis, pattern
matching, control of processes, tomography, or chemigiplieations, to name a few. Surprisingly
enough, GSL does not include routines for sparse lineabedgeomputations. This can only be
explained by the painful lack of standards in this area: Qugy recently the BLAS Technical
Forum came with a standard [5] for the interface design oBBasic Linear Algebra Subprograms
(BLAS) for unstructured sparse matrices.

The implementation, parallelization, and performanceparse computations strongly depend
on the storage scheme employed for the sparse matrix whicmany cases, is dictated by the
application the data arises in.

Two of the most widely-used storage schemes for sparse aestdre the coordinate and the
Harwell-Boeing (or compressed sparse array) formats [4.there seems to be no definitive ad-
vantage of any of the above-mentioned schemes, in our coeesnploy a variant of the rowwise
coordinate format.

Our approach to deal with parallel platforms consists indiing the matrix intgp blocks of rows
with, approximately, the same size. Each process opefaasiith the elements of its correspond-
ing block of rows.

The following (simplified) data structure is used to manarithuted sparse matrices on each
processor:

1. typedef struct {

2: size_t local_sizel; /I local row size

3 size_t local_size2; /I Global column size
4: size_t local_nz; /I Global non-zeros
5: int  * rowptr; // pointers to rows

6: void =+local_data;

7: } internal_dmdd_sparse_matrix;

In this structurerowptr stores pointers to the init of each row in the vedtaal _data . This
vector stores the matrix elements in the processor by roash Element is stored as three adjacent
values:(row _index, column _index, element _value) . We have chosen this storage scheme
instead of the three vectors of the classical coordinatedbin order to improve the locality in the
access to the elements of the matrix.

2.1. Parallelizing the Sparse Matrix-Vector Product
We describe next the parallel implementation of the spaisgixavector

y—y+ta- Az,
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where a (dense) vectar, of lengthm, is updated with the product of an x n sparse matrix4
times a (dense) vectar, with n elements, scaled by a value Notice that this is by far the most
common operation arising in sparse linear algebra [10},asserves sparsity of while allowing to
employ codes that exploit the zeroes in the matrix to redaeeomputational cost of the operation.
For simplicity, we ignore hereafter the more general casereeA can be replaced in (2.1) by its
transpose or its conjugate transpose.

First we will describe the parallelization of the producingsa message-passing model, and then
we will describe how we can modify it so that each process wescseveral threads on a shared-
memory environment.

The (sparse) matrix-vector product is usually implemeted sequence saxpyoperations or
dot products, with one of them being preferred over the odleg@ending on the target architecture
and, in sparse algebra, the specifics of the data storage.

In our approach, taking into account the rowwise storagdefdata, we decided to implement
the parallel sparse matrix-vector product as a sequenaat prdducts. In order to describe the code
we assume that the vectornvolved in the product is initially replicated by all prasses. We also
consider a block partitioning of vectgr= (vo, v1, - - ., yp—1), With approximately an equal number
of elements per block, and a partition of the sparse madrixy blocks of roughlym/p rows as
A= (Ap,Af,... A7)

The parallelism of the rowwise version of the product arises) the fact that every dot product
among a row of the distributed matrik and the replied vectar can be performed fully in parallel
to obtain different elements of the solution vecyorTherefore, the code executed on each process
in the pure message-passing version of the product is tlenioly:

=

for (i = 0; i < local_sizel; i++) {
pos = rowptr[i]; // first element in row i
k = row_index(pos);
temp = 0.0;
for = 0; j < nz_in_row(i); j++) {
temp += value_in(pos) * X[K];
inc_coordinate(pos);

}
y[k] += alpha * temp;

BQoNoahlkwnN

0: }

In the previous codepw _index(pos) is a macro that obtains the row index of the matrix ele-
ment from the positiopos in local _data . Another C macronz _in _row(i) , returns the number
of non-zero elements in theh  row. Finally,inc _coordinate(pos) shifts the positiorpos to
the next element of the matrix.

Once each process has computed a block of the solution vgctorcollective communication
(of type MPI_Allgather ) is required to replicate the results. This operation im(at) perfectly
balanced as all processes have a close number of elements of

Let us now describe the hybrid version of the algorithm. Sigepthat each MPI process is exe-
cuted on a node that is a shared memory multiprocessor. Anagaisportable way to take profit of
this kind of architecture is to use OpenMP in order to disti#the computations of each process
among the different processors of each node. Exploiting#mee idea about the parallelism of the
matrix-vector product than before, we can compute in palrtiie iterations of the outer loop of the
previous algorithm, corresponding to independent dot yetsd This idea can be implemented by
adding the following directive:
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#pragma omp parallel for private (pos, k, temp, j)

just before the outer loop. A certain amount of dot prodursiaus computed by each thread and the
threads only need to be synchronized once, on terminatithreafuter loop. If the non-zero elements
of the matrix are not evenly distributed among the differents, a dynamic scheduling of the threads
provides a better load balancing. This could be one of thenradvantages of using OpenMP
threads on each node instead of MPI processes, where laatcbhad should be implemented by the
programmer by means of an appropriate data and task distribu

It is worth noticing that the global communication among el processes is performed once
finished the OpenMP parallel region. The different threaaeelpartially contributed to the compu-
tation of the solution vector corresponding to the each MBtess. Then, the master thread on each
node can access that information and perform the global agmuation. Since the communication
is out of the OpenMP parallel region, theoretically a nore#td safe version of MPI could be used.

2.2. Experimental analysis

Our experimental platform is a dual-SMP cluster of 34 nodeach node consists of two Intel
Xeon Processors at 2.4 Ghz., 1GB of RAM and 512 KB of L2 cachlee fiodes are connected
through a Myrinet network with a bandwidth of 2Gb/s. Each eéwedns a Linux kernel version
2.4.24bi and we used Intel icc compiler version 7.1 with thgam -O3. The algorithms have been
implemented with the MPI v.1.2.5 compiled with theh _gm option in order to exploit the GM
communication library of the Myrinet network.

We have performed experiments with three versions of thalleamatrix-vector product:

e An uniprocessowersion in which we run the pure MPI algorithm using only ofi¢h@ pro-
cessors of each node.

e A pure MPIversion in which we have run the same pure MPI algorithm sjpagvtwo MPI
processes on each node. In order to exploit the shared mdardhe intra-node communica-
tions we used the optioagm-numa-shmem of thempirun.ch _gmcommand.

e A hybrid MPI+OpenMPversion in which we run a MPI process per node and this process
spawns two OpenMP threads to perform the computation.

We have tested the performance of the three versions witéreift problem sizes (sparsity and
matrix size) and using different number of processors. €fiehland side of Fig. 1 shows the speed-
ups of the parallel algorithms with respect to the sequkakirithm. The figure shows the results
for matrices of two sizes: 30.000 (30k) and 40.000 (40k)hlwaises with an sparsity of 2%.

The speed-ups are far from the optimal values. This is malaby to the effect of the commu-
nication cost in an application with a computation cost aeleg on a small number of non-zero
elements. On the other hand, as we use random generatedasgtnie number of non-zero elements
on each processor is balanced, and so the number of flops.vdothe distribution of the elements
in the columns is quite different on the different processproducing a different access pattern to
the memory and unbalancing the total computational cost.

The experiments show also that the speed-up of the hybrgloreovercomes the speed-up of
the uniprocessor version when we take profit of the dual noflése machine. However the pure
MPI version of this application in our experimental envinoent is only better than the uniprocessor
version for some problem sizes, for example, matrices withréws. We can also see that, as we
increase the size of the matrix the speed-up of the pure MBiare approaches the speed-up of
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Figure 1.Performance of the parallel versions of the sparse ma&dter product.

the hybrid version, and in some cases even surpasses itdén tar analyze the use of the hybrid
architecture we plot in the right-hand side of Fig. 1 Nade speed-uf2]. Given a fixed number of
nodes, this parameter is the ratio between the time sperg tls two processors on each node and
using only one processor per node. The figure shows thatshés@btained are always suboptimal
(< 2). In some cases, the pure MPI versions offers node speekbspthanl, which means that it
would have been better to run only one process per node thian tao processes trying to use both
processors.

We could expect that, for a fixed number of processors, thpracessor version offers better
results than the pure and hybrid versions, because in thehagases the two processes or threads
running on each node have to share its resources (memovypnketetc.). However, the results
shown in Fig. 1 are worse than expected even having into attioe previous kind of collision. The
detailed justification of the experimental results requa@eeper analysis of the influence of several
factors, including the communication and computationg,dsie use and access to the memory, etc.
We intend to develop this analysis of the application andetkgerimental environment in a near
future.

3. Casestudy I1: dynamic programming

Dynamic programming (DP) is an important problem-solvieghnique that has been widely
used in various fields such as control theory, operationsarel, biology and computer science.
Dynamic programming is a useful method when the solution mfodblem can be expressed as the
result of a sequence of decisions. The method enumeratdsasfiion sequences and selects the
best among them. Dynamic Programming often reduces the r@nebenumeration drastically by
avoiding the consideration of decision sequences thanatldeliver optimal solutions. An optimal
sequence of decisions is obtained by making explicit usesgptinciple of optimality. This approach
derivates into a general recurrence formula where, on astadge-problem, the optimal values for
subproblems involving decisions are computed in terms of subproblems involvird decisions.

For instance, in the Single Resource Allocation Problemneed to allocaté/ units of an indi-
visible resource tadV tasks so that the sum of the effectiveness is maximized. Tdiglgm can be
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formally stated as:

N N
max z = Y _ f;(z;) subjecttod z; =M,

j=1 Jj=1
wheref;(x;) gives the benefit of allocating; units of resource to task

Now denote byG|:][x] the optimal benefit of the subproblem and consider thefitatks and:
units of resource. The dynamic programming recurrencetemsaare then formulated as follows:

Glill] = max{Gi—1][z—j]+ fi(j): 0<j<a}, i=2,..,N,
G[l]lz] = fi(z), 0<z< M, and
Glilz] = 0, i=1,...,N: z=0.

The valueG[N][M] gives the total income for the optimization problem and, ideo to be com-
puted, the dynamic programming taliles needed in advance.

3.1. Parallelizing the Dynamic Programming Problem

The Dynamic Programming table is necessary to obtain thmapsolution, and the values of the
table must be computed following the order imposed by thedéences of the recurrence equations.
A simple parallelization of this operation on a distribut@@mory platform using MPI replicates
the table on all nodes. Wity distributed by columns, the processes compute in parake¢htries
belonging to the same row of the table, with the rows beingmaed sequentially from top to
bottom. We next show the code executed onithgd MPI process:

1. for (i = 0; i <= N_TASKS; i++) {

2: for (x = displs[myid]; x < displs[myid + 1]; x++) {
3: Glillx] = ( *f)(, 0);

4: for j = 0; ] <= x5 j++) {

5: fix = G[i - 1][x - j] + ( *f)(i, ]);
6: if (G[i][x] > fix)

7. Glil[x] = fix;

8: }

9: }

10: MPI1_Allgatherv(&G[i][displs[myid]], ... );

11: }

An all-to-all communication operation is performed to replicate evew:. 18ince the inner loop
(0 < j < z) is not constant, we follow a block distribution with varlatblock sizes. The sizes of
the blocks are computed so that they minimize the load inmgalaThe number of columns assigned
to each processor are computed as an arithmetic progressidrthe starting indexes are stored
in vectordispls . This evaluation also forces the use of different paragions in the OpenMP
version.

The following code summarizes the hybrid version of the atgo.

1 #pragma omp parallel private(...)

2 for (i = 0; i <= N_TASKS; i++)

3 for (x = th_displs[th_id]; x < th_displs[th_id + 1]; x++)
4. /I idem than in the pure MPI version

5 #pragma omp barrier

6 #pragma omp master

7 MPI1_Allgatherv(&Gli][th_displs[th_id]], ... );
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The hybrid algorithm exploits the same kind of paralleligmart the pure MPI version on each
node. The columns assigned to each MPI process, and so thgoits of the loop on line 3, are
distributed among several OpenMP threads. In order to baltre load we can distribute a different
number of columns to each thread following the same kind sfrithution than in the pure MPI
version. The starting column assigned to each thread isgtorvectorth _displs

On the other hand, each time the algorithm finishes the caatipns corresponding to one of the
rows of the matrix, the MPI processes have to performalato-all communication operation. This
communication can only be performed when all the threads fimished their iterations of the loop
on line 3, and so we added an OpenMP barrier on line 5. Besiessed @amp master directive
to guarantee that only the master thread participates obMBHeommunication.

3.2. Experimental analysis

In order to perform the experimental analysis of this secas# of study we used the same exper-
imental environment that with the sparse matrix-vectodpad. We tested the same three versions
of the algorithm (uniprocessor, pure MPI and hybrid MPI + @dé) with different problem sizes:
1000 (1k) and 3000 (3K).

The left-hand side of Fig. 2 reports the speed-ups of theethiegsions of the algorithm. The
speed-ups are very good for all the versions of the algordhththey increase with the size of the
problem. We can even observe super-linear speed-ups weitlarest problem, that are probably a
consequence of a better use of the cache memory in the patgteithms.

Regarding the relative behavior of the three versions oftherithm, we can see that both, the
pure MPI and the hybrid version, continue the almost lineardasing of the speed-ups of the
uniprocessor version when we exploit both processors ohtites. The right-hand side of the
figure 2 shows that the node speed-ups are always larger thad ih some cases even larger than
2. Moreover, the node speed-ups increase with the problemamd they are almost independent of
the number of nodes in the case of the largest problem size.

Besides, for the largest problem size, the hybrid paraliéiibn offers better speed-ups than the
pure MPI one. The performance behavior, is reversed forrttalest problem size where speed-ups
of the pure MPI code surpass the speed-ups of the hybridoversi

Although even better performances could be achieved usimggttiled block-cyclic paralleliza-
tions, this requires information on the optimal tile sizgw@ri. Since these sizes are architectural
and problem dependent, the approach seems to be hardlglsddaa general purpose library.

4. Conclusions

In this paper we study different models to parallelize alfpons on clusters of SMPs. Specifically
we study two basic models: a pure MPI model and a hybrid MPI1 er®fP model. In the first case
a MPI process is executed on each processor. In this secodel @ MPI process is executed on
each node and OpenMP threads cooperate to perform the saghed to each process.

In order to compare both models we used two applicationssphese matrix-vector product and
the dynamic programming problem. Both applications uskeint schemes of parallelization. In
the matrix-vector product the algorithm starts by compytime product without communications,
and then an all-to-all communication is performed to gatherresult in all the processes. The
dynamic programming problem is solved by means of succesdigteps. Each one starts with a
computation phase and finishes with a communication phaseyhchronizes all the processes.

The experimental results on a cluster of dual processoxs stad the performance mainly depends
on the application and on the problem size. While in the caigeadynamic programming problem
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Figure 2.Performance of the parallel versions of the dynamic prognarg problem.

we obtain very good speed-ups, the results are not so gobeé icesse of the matrix-vector product.
In the first case both parallel models take profit of the dudendearly increasing the speed-ups of
the algorithm executed on one processor of each node. Howewhe case of the matrix-vector
product the results using both processors per node are tiettethe results using one processor per
node only in some cases. Finally, the programming modeldhtgins the best results depend in
both applications on the size of the problem.
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