Parallel Computation of the Eigenstructure of Toeplitz-plus-Hankel
matrices on Multicomputers

José M. Badia “ and Antonio M. Vidal "

Departamento de Sistemas Informdticos y Computacién
Universidad Politécnica de Valencia
46071 Valencia, Spain
E-mail: cpjmb@dsic.upv.es

Abstract

In this paper we present four parallel algorithms to compute any group of
eigenvalues and eigenvectors of a Toeplitz-plus-Hankel matrix. These
algorithms parallelize a method that combines the bisection technique with a
fast root-finding procedure to obtain each eigenvalue. We design a parallel
algorithm that applies a static distribution of the calculations among processors
and three algorithms that use the farming technique to dynamically balance the
load. All the algorithms have been implemented on a Multicomputer based on
a network of transputers. We also present a study of the experimental
performances and compare the different algorithms. The results obtained are in
many cases very near to the maximum theoretical performances we can expect.

1. Introduction

The main goal of this paper is to describe four parallel algorithms so that we can
efficiently obtain any group of eigenvalues and eigenvectors of Toeplitz-plus-Hankel
matrices. Besides we present a detailed study of the experimental performances of these
algorithms on a distributed memory multiprocessor.

This kind of matrices appears in signal and control theory when we apply boundary
element methods [7], [8]. When we design parallel algorithms that deal with structured
matrices we have to take into account two aspects of the problem. First, we try to
parallelize sequential algorithms that exploit the structure of the matrices to obtain better
performances. Second, we try to exploit the potential parallelism of the sequential method
to obtain the maximum performance.

In this case we have parallelized an algorithm presented by Trench in [13]. This
algorithm uses sequences of Sturm and combines bisection with a root-finding procedure to
obtain each eigenvalue. This kind of technique has been widely applied to symmetric
tridiagonal matrices [10] and more recently has been used with symmetric Toeplitz
matrices [12] and with banded symmetric Toeplitz matrices [14].

As far as the parallelization of the sequential method is concerned, we have used some
ideas that have been previously applied to tridiagonal matrices [2], [6] and to symmetric
Toeplitz matrices [1] and we have adapted the method to the case of Toeplitz-plus-Hankel
matrices. As we will see in the following sections, we have used basically two schemes: a
technique with a static distribution of the computations and a farming technique to
dynamically balance the load.

In section 2 we briefly analyze the theoretical basis of the sequential method and we
outline the main ideas of the sequential algorithm. In section 3 we describe the parallel
machine we have used and we show the experimental results of the sequential algorithm.
In section 4 we describe the parallel algorithms and we present the results when we run

* Partially supported by the ESPRIT III Basic Research Programm of the EC under contract No. 9072 (Project
GEPPCOM), and partially supported by Spanish CICYT project TIC-91-1157-C03-02

them on a multicomputer. Finally, in section 5 we analyze the experimental performances
and we compare the parallel algorithms that we have implemented.

2. Theoretical basis and sequential algorithm

Given a symmetric matrix A € R that is the result of adding a symmetric Toeplitz
matrix T and a Hankel matrix Hy, our objective is to compute any group of eigenvalues
and eigenvectors of Ap.

First we recall what we mean by Toeplitz and by Hankel matrix. From the point of
view of its structure, a Toeplitz matrix is such that all its entries are constant along each
diagonal. On the other hand, a Hankel matrix has its entries constant along each northeast-
southwest diagonal. Therefore it is possible to determine both kinds of matrices from a
single vector. In the case of a symmetric Toeplitz matrix we use the vector

t=[to, tr, ..., tna]T
and in the case of a Hankel matrix we use the vector

h=[hg hy, ..., hon1]T

We can then define the matrix A, = Tn+ Hp as the matrix whose elements are

Ty = by I

i+j-2) ij:1,2,...,n

The basic idea of the sequential algorithm is to use sequences of Sturm to delimit the
position of every eigenvalue on the real axis. Given that Ap is a symmetric matrix all its
eigenvalues are real.

To define the sequences we will refer to

m
A =(ai) 1I<Sm<n
2 ij=1

m

where every Ap, is the leading submatrix of Ap of size mxm. Using these matrices we
define the sequence of Sturm of Ap inA as

Pon) =1
Related to the sequence of Sturm we can define the following sequence
A
qm(l)zm 1<m<n (1)
pm—l ()’)

As it can bee seen in [13] there is a lower unit triangular matrix Ly (A) such that

Ly (A — AL JLE () = diag(qq (), gy (W), -+, q,, (1)

Thus, from the Sylvester Law of Inertia [3] it occurs that the number of negative
elements of the sequence (1) is equal to the number of eigenvalues of A, smaller than A.

Then it is possible to apply a bisection technique that uses the sequence (1) to obtain

any eigenvalue of a Toeplitz-plus-Hankel matrix. In fact it is possible to apply this method
to compute the eigenvalues of any symmetric matrix, but the cost to obtain each eigenvalue
in the general case is O(n3d).

However Trench [13] includes the Toeplitz-plus-Hankel matrices in a more general
type of matrices called ESH (Efficiently Structured Hermitian). These matrices enable us to

obtain each eigenvalue with a cost O(n?2) using the sequences in (1). A matrix is ESH if it is
possible to compute the last column of all the inverse matrices (Am- AMm)1 (1< m < n) with
a cost O(n2). The Toeplitz-plus-Hankel matrices comply with this condition. We can also
include as ESH matrices the symmetric Toeplitz ones.

The property mentioned above enables us to use a "fast" algorithm to compute the
inverse of a Toeplitz-plus-Hankel matrix given by Heining, Jankowski and Rost [4]. This

algorithm allows computing the last column of (An-Aly) ! using five recurrence formulae

and with a cost O(n2). Moreover this algorithm allows us to obtain the elements of the
sequence (1) during the inversion process.

Let us outline the main ideas of the sequential algorithm. We will use two results
related to the sequence (1). First the number of negative elements in this sequence will

server us to isolate the eigenvalues. Second the we will use the value of qn(A) whose zeros
are the eigenvalues of Ap. The last result will allow us to extract each eigenvalue with any
accuracy allowed by the machine.

To obtain a single eigenvalue A we use an interval (a, b) that contains it and that can
be obtained using the Gershgoring circles of Ap [3]. We first perform the isolation phase
using repeated bisection to compute an interval (ak, ak+1) that only contains the eigenvalue
Ak of Ap and no other eigenvalue of A, or Ap-1. With this condition qn(}) is continuos in
this interval. In a second phase of extraction we use a root-finding procedure which is
faster than the plain bisection to compute the eigenvalue as the zeros of the function qn(A)
in the interval (ak, ak+1)-

This method also allows us to compute any group of eigenvalues. In this case we
combine the technique we have previously described with a queue of intervals. We begin
by defining an interval (a, b) that contains all the eigenvalues to compute using
Gershgoring circles. Next, we apply repeated bisection to isolate the first eigenvalue we are
looking for. During this process of bisection we store in the queue the intervals generated
that contain at least one eigenvalue. Once we have isolated the first eigenvalue, we proceed
to its extraction using a root-finding procedure just as we did when we wanted to obtain a
single eigenvalue. Once this eigenvalue has been obtained we take a new interval of the
queue and we repeat the whole process to compute its first eigenvalue. This technique
guarantees that we can obtain any group of eigenvalues in a finite number of steps and the
process finishes when the queue is empty. An algorithmic description of this method in the
case of symmetric Toeplitz matrices can be found in [1].

Regarding the computation of the associated eigenvectors, the algorithm that computes
the sequence (1) provides us, without any additional cost, the eigenvector from one of the
five recurrence formulae mentioned above.

3. Parallel architecture and sequential results

We have used a distributed memory multiprocessor to implement both the sequential
and all the parallel algorithms. The Parsys SN-1000 or Supernode [9] is a multicomputer
based on a network of T800 transputers. The topology of the interconnection network can
be defined by the user by software. The implementation of all the algorithms on this
machine has been performed using the parallel language Occam-2 [5] that was specifically
created to program the transputer microprocessor.

To obtain the results of the sequential algorithm we have used a single T800 transputer.
In all the executions we obtain all the eigenvalues of matrices randomly generated. In this
paper we will only deal with aspects regarding the cost of the algorithm. A detailed
analysis of the numerical stability of the sequential method can be found in [13].

The results of all the tables are in seconds and represent the mean time to obtain all the
eigenvalues of 3 matrices of each size. The analysis has been carried out with matrices of
sizes 32, 64, 128 and 256.

32 64 128 256
225 186.2 1417.2 11416.2

Figure 1. Times in seconds for the sequential algorithm.
4. Parallel algorithms
4.1. Parallelism of the method

In this section we briefly describe the different types of parallelism that we can apply
to the sequential method of section 2.

First, we could try to parallelize the algorithm to compute the sequence (1) for a given
value of A. However this algorithm basically deals with recurrence formulae and thus it is
difficult to parallelize. Second, all the processors could cooperate to obtain the sequence (1)
for different values of A. We can then use a multisection method instead of the bisection
method. Using the third type of parallelism every processor could compute a different
group of eigenvalues in parallel with the rest.

When we are trying to obtain a large group of eigenvalues the third type of parallelism
is the most appropriate and thus this is the parallelism that we use in all our algorithms.

4.2. Algorithm with static load balance. SEP

The basic idea of this algorithm is to exploit the fact that the computation of each
eigenvalue can be performed independently of the computation of the rest. Basically, we
distribute the computation of a group of the eigenvalues on each processor.

We have used a bidirectional array topology to implement the algorithm. First we
define the initial interval that contains all the eigenvalues to compute using Gershgoring
circles. Next we distribute the computation of the eigenvalues among the processor in such
a way that each processor computes the same number of eigenvalues or at most one more
than the rest. Then, every processor applies to the initial interval the sequential method of
section 2 to compute its eigenvalues.

The following table shows the time in seconds that we need to compute all the
eigenvalues of the same matrices randomly generated used in the case of the sequential
algorithm. The results have been obtained using bidirectional arrays with 2, 4, 8 and 16
processors.

2 4 8 16
32 11,97 6,58 3,82 2,63
64 96,04 50,57 29,16 18,03
128 748,56 385,22 206,92 123,84
256 5765,34 2940,22 1558,37 905,35

Figure 2. Times in seconds of the SEP algorithm.

4.3. Algorithm with dynamic load balance. FARM

The algorithm with static distribution we have presented in the previous section
distributes the computation of the same number of eigenvalues among each processor.
However this does not guarantee that all the processors perform the same quantity of
operations. In fact this algorithm does not obtain the maximum performances due to a
certain load unbalance.

A possible solution of this problem is to dynamically distribute the load among the
processors. We have used a farming technique to achieve this distribution. This method has
been already applied to the case of tridiagonal matrices [11] and more recently to the case
of symmetric Toeplitz matrices [1].

We have also used a bidirectional array topology to implement this algorithm. The first
processor, that we will call farmer, is in charge of distributing the calculations among the
rest of processors of the farm, the workers. The farmer manages a queue of intervals
containing at least one eigenvalue and it sends intervals to the farm each time a processor
has finished the computation of an eigenvalue. As far as the rest of processors are
concerned they wait an interval, then they apply the sequential procedure to isolate and
extract its first eigenvalue and finally they send the result to the farmer indicating that they
are ready to receive a new interval. During the bisection process the non empty intervals
produced are sent to the farmer and this processor stores the intervals in the queue to
redistribute them dynamically.

The next table shows the results obtained with this algorithm in the same cases used
for the SEP algorithm

2 4 8 16
32 12,48 6,68 3,85 2,71
64 100,02 51,26 27,35 16,21
128 755,98 384,07 197,97 110,45
256 6070,16 3060,60 1576,05 830,66

Figure 3. Times in seconds of the FARM algorithm.

The following figure allows us to study the load balance achieved with the SEP and
FARM algorithms. In this figure we can see the number of "iterations", that is, the number
of executions of the algorithm to compute the sequence (1), that every processor performs.
We present the result in the case of a matrix of size 256 and using 16 processors. We can see
that the SEP algorithm has a certain load unbalance in the number of iterations although
every processor computes the same number of eigenvalues. However this problem is
notably reduced in the FARM algorithm showing the advantage of using a dynamic
distribution technique.

Load balance

220 +
200 4
@ 180
§ SEP
S 160
s | ————- FARM
= 1404
120 4+
100 ———+—+—+—+—+—+—+—+—+—+—+—+—
— NN <K O O INOO ONO = AN <H IO O
o B o B o B o TR o B o B |
pl‘OCQSSOI‘

Figure 4. Load balance among the processors. p=16, n=256.

4.4. Algorithms with multiple farms

Although the FARM algorithm efficiently balances the load when we work with large
matrices, it presents some problems when we use long arrays of processors and small
matrices. These problems occur because the processors closer to the farmer compute the
main part of the eigenvalues and the last processors, in the worst case, remain idle during
all the process.

The solution to this problem is to reduce the length of the arrays using several farms
connected to different links of the farmer. Using this strategy the processor farmer
concurrently manages the different farms and distributes the calculations among their
processors. Every processor worker executes the same process that in the case of the FARM
algorithm. We have implemented two algorithms using this technique, respectively the
DFARM algorithm that uses two farms and the TFARM algorithm that uses three farms.

The following two tables show the results achieved with these algorithms when we
compute all the eigenvalues of the same matrices used for the previous algorithms.

2 4 8 16
32 12.17 6.53 3.84 2.57
64 99.33 51.02 27.15 15.86
128 754.90 382.19 197.81 110.01
256 6068.99 3064.10 1576.82 830.55

Figure 5. Times in seconds for the DFARM algorithm.

4 8 16
32 6,41 3,72 2,59
64 50,81 27,15 15,68
128 381,94 197,69 109,48
256 3065,78 1574,17 828,85

Figure 6. Times in seconds for the TFARM algorithm.

5. Comparison of performances

We use the speedup in order to analyze and compare the experimental performances
of the algorithms. This parameter enables us to study the improvement achieved using the

parallel algorithm over the sequential version executed in one transputer.

2 4 8 16
SEP FARM SEP FARM SEP FARM SEP FARM
32 1.88 1.81 343 3.37 5.90 5.85 8.59 8.32
64 1.94 1.86 3.68 3.63 6.39 6.81 10.33 11.49
128 1.89 1.87 3.68 3.69 6.85 7.16 11.44 12.83
256 1.98 1.88 3.88 3.73 7.33 7.24 12.61 13.74
Figure 7. Speedups of the SEP and FARM algorithms.
2 4 8 16
DFARM | DFARM | TFARM | DFARM | TFARM | DFARM | TFARM
32 1.85 3.45 3.52 5.87 6.06 8.76 8.70
64 1.87 3.65 3.66 6.86 6.86 11.74 11.87
128 1.88 3.71 3.71 7.16 7.17 12.88 12.94
256 1.88 3.73 3.72 7.24 7.25 13.75 13.77

Figure 8. Speedups of the DFARM and TFARM algorithms.

The two previous tables show the speedups of the parallel algorithms obtained from
the execution times we have shown in sections 3 and 4. The first aspect we can point out is
that the results are quite close to the theoretical maximum in the majority of the cases. This
effect is more notable with large matrices and with short arrays of processors.

Regarding the comparison of the parallel algorithm, the next figure serves us to
compare its behaviour when we modify the size of the matrices. In this case we represent
the speedups obtained using 16 processors.

Comparison of algorithms

16

15

14 A SEP
o A
5 12 ____— | —o—FARM
e A
o, 10 A . DFARM
Do

8 —0O0—— TFARM

7

6 } } |

64 128 256
Size

Figure 9. Comparison of the algorithms modifying the size.

We can see that the results achieved with the SEP algorithm are worse than those
obtained with the three algorithms that use the farming technique. This is due to the better
load balance achieved in the last case as we showed in figure 4. As far as the three
algorithms of type farm are concerned, they achieve very similar performances although in
the majority of the cases we obtain better results using several farms.

6. Conclusions

In this paper we have verified that it is possible to efficiently parallelize a method to
obtain any group of eigenvalues and eigenvectors of Toeplitz-plus-Hankel matrices.

The use of a distributed memory multiprocessor and the appropriate distribution of the
computations among the processors allows us to obtain experimental performances close to
the theoretical maximum ones.

The analysis of the experimental results shows that the dynamic distribution of the
computations improves the performances of a static distribution, even though it introduces
communications in the algorithm.

Acknowledgement

The authors thank professor William Trench for providing them the software of the
sequential algorithm that has served as the basis of the parallel algorithms implemented in
this paper.

7. References

[1] Badia, J. M. & Vidal, A. M., "Divide and Conquer Algorithms to solve the
Eigenproblem of Symmetric Toeplitz Matrices on Multicomputers", DSIC-II/2/94
,Dpt. Sistemas Informdticos y Computacién. U.P.V. (1994).

[2] Bernstein, H. J. & Goldstein, M., "Parallel Implementation of Bisection for the
Calculation of Eigenvalues of Tridiagonal Symmetric Matrices.", Computing, no. 37.
pp- 85-91 (1986).

[3] Golub, G. H. & Van Loan, C. F., "Matrix Computations.", Johns Hopkins University
Press, Eds., (1989).

[4] Heinig, G.; Jankowski, P. & Rost, K., "Fast Inversion Algorithms of Toeplitz-plus-
Hankel Matrices.", Numer. Math., no. 52. pp. 665-682 (1988).

[5] INMOS, "Occam 2. Reference Manual.", Prentice Hall International Eds., Series in
Computer Science 1989.

[6]
[7]
[8]
i)
[11]
[12]

[13]

[14]

Kalamboukis, T. Z., "The Symmetric Tridiagonal Eigenvalue Problem on a Transputer
Network.", Paralle] Computing, no. 15. pp. 101-106 (1990).

Ljung, S., "Fast algorithms for integral equations and least square identification
problem", Diss. 93 ,Linkdp Stud. Sc. Tech. (1983).

Merchant, G. A. & Parks, T. W., "Efficient solution of a Toeplitz-plus-Hankel
coefficient matrix system of equation.", IEEE Trans. on Acoust. Speech Sign. Process,
vol. 30. no. 1. pp. 40-44 (1982).

PARSYS, "Hardware Reference for the Parsys SN1000 series 1989.

Pereyra, V. & Scherer, G., "Eigenvalues of Symmetric Tridiagonal Matrices: A Fast,
Accurate and Reliable Algorithm.", J. Inst. Math. Applics, no. 12. pp. 209-222 (1973).
Ralha, R. M. S., "Parallel Solution of the Symmetric Tridiagonal Eigenvalue Problem
on a Transputer Network", SEMNI 93, La Corufia, Spain, 1993, vol. 2, pp. 1026-1033.
Trench, W. F., "Numerical Solution of the Eigenvalue Problem for Hermitian Toeplitz
Matrices.", SIAM J. Matrix Anal. Appl., vol. 10. no. 2. pp. 135-146 (1989).

Trench, W. F., "Numerical Solution of the Eigenvalue Problem for Efficiently
Structured Hermitian Matrices.", Linear Algebra and its Applications, no. 154-156. pp.
415-432 (1991).

Trench, W. F., "A Note on Computing Eigenvalues of Banded Hermitian Toeplitz
Matrices.", SIAM J. Sci. Stat. Comput, vol. 14. no. 2. pp. (1993).

