
1

PARALLEL BISECTION ALGORITHMS FOR SOLVING
THE SYMMETRIC TRIDIAGONAL EIGENPROBLEM *

J. M. BADíA† AND A. M. VIDAL‡

Abstract. In this paper we study the different approaches used so far to apply the bisection method for

solving the symmetric tridiagonal eigenproblem. We review the sequential methods used to perform the final

extraction of the eigenvalues and compare two new techniques that offer very good results. The sequential version

of the bisection method we have implemented even surpasses the results of the QR iteration in some cases. We

also perform an exhaustive survey of the approaches that can be used to parallelize the bisection method and we

compare two parallel algorithms that apply different schemes for distributing the computation among the

processors. The experimental analysis developed shows that the bisection method, besides its flexibility in the

partial computation of the spectrum, is a method that offers very good results when it is adequately parallelized.

We also show that the behaviour of the algorithms is clearly matrix-dependent.

Key words. symmetric tridiagonal eigenproblem, bisection method, Laguerre iteration, parallel algorithms

AMS subject classifications. 15A18, 68-04

1. Introduction. It is well known that one of the most important problems in
numerical computing is the computation of eigenvalues and eigenvectors of matrices. There
are many areas where this problem arises, such as structural dynamics, quantum chemistry,
oceanography, economics theory or control process.

Often the matrices that appear when solving these problems have some special
structure. Certainly, the symmetric tridiagonal matrices have received more attention, not
only due to their intrinsic importance, but because they appear during the solution of the
eigenproblem of general symmetric matrices.

There are many methods to compute eigenvalues and eigenvectors. Probably the most
commonly used, due to its excellent performance in the sequential case, is the QR iteration.
Recently, however, with the rise of parallel architectures some other methods have received
attention. We can point out, for example, the Jacobi method, the divide and conquer
approaches and the bisection and multisection methods. Each of them has its advantages
and disadvantages regarding their execution time, the accuracy of the results they offer, the
possibility of partially computing the spectrum of matrices, etc.

On the other hand, the increase in the use of parallel architectures is enormously
affecting the solution of problems involving a large amount of computation, and is defining
the kind of methods used to solve these problems. It is very important to make an effort to
design and implement good algorithms that exploit the enormous potential of parallel
architectures. Algorithms that solve the eigenproblem of different kinds of matrices should
be included in the new mathematical libraries for parallel machines.

We have taken into account two important tendencies that are been followed to design
and use parallel architectures. First, different machines like the Cray T3D are a good
example of massively parallel computers, and can be included in the architectures with their

* This paper was partially supported by the projects: ESPRIT No. 9072-GEPPCOM: "Foundations of General
Purpose Parallel Computing", and CICYT TIC96-1062-C03: "Parallel Algorithms for the computation of the
eigenvalues of sparse and structured matrices".

† Computer Science Dpt. Univ Jaume I. Castellón. 12071. Spain. (badia@inf.uji.es).
‡ Computer Science Dpt. Univ. Politécnica de Valencia. Spain

2 J. M. BADÍA AND A. M. VIDAL

memory physically distributed but logically shared. Another important tendency is the
design of portable algorithms using message-passing libraries like the PVM.

In this paper we will focus on the eigenproblem of symmetric tridiagonal matrices. A
lot of work has been done to solve this problem, and so this paper will first make an
exhaustive review of the previous efforts developed by other authors, both in the parallel
and sequential cases.

For various reasons, we will concentrate specifically on the bisection method. It
provides excellent results in the sequential case, close to these of the best method (the QR
iteration), it is flexible enough to compute any part of the spectrum, and it offers enormous
potential for parallelism using different approaches.

During the experimental analysis we will pay special attention to the behaviour of the
algorithms with different classes of tridiagonal matrices, because they are clearly problem-
dependent.

The article is organized as follows. In section 2 we make a thorough review of the
previous work to reflect the state of the art. In section 3 we briefly describe the sequential
algorithm we have parallelized. Section 4 is devoted to the parallel algorithms we have
implemented. In section 5 we describe the architecture of the Cray T3D, the test matrices
used and the experimental results obtained. Finally, in section 6 we give some conclusions.

2. State of the art. In recent years different authors have developed many algorithms
to compute the eigenvalues, and sometimes the eigenvectors, of symmetric tridiagonal
matrices. However, all these algorithms can perfectly be classified into four basic methods:
the QR iteration, the bisection and multisection method (BM), the divide and conquer
method (DV) and the homotopy method. In this section we will review the origin and the
main contributions for each one of these methods. We will specially focus on the BM
method because the two parallel algorithms that we analyze in this paper use it.

Several papers that compare some of the previous methods have been presented. First,
in the sequential case we should cite the paper [19], where the authors present some general
ideas to design good symmetric eigenroutines to be included in LAPACK [1]. The practical
comparative study developed in [37] is also very interesting. Some comparative analyses
have also been performed in the parallel case and on different architectures. We can, for
example, point out the classical papers [39] on shared memory machines, and [29] on
distributed memory machines, and more recently the studies by [42] and [3].

QR iteration [26] has been considered the most efficient method to compute all
eigenvalues in the sequential case. A parallel algorithm for multicomputers that uses this
method can be found in [27]. In the symmetric tridiagonal case the cost of the QR
factorization is of O(n). However, there are not efficient scalable parallel implementations
of this method, so other approaches are being considered for parallel architectures.
Moreover, other methods, such as DV and BM methods offer competitive results even in
the sequential case.

A method that is presently being studied is the homotopy method, also called the
continuation or embedding method. It is well known and has been used in the past for
finding the zeros of nonlinear functions. Its theoretical foundation is the topology. The
basic idea is to construct a homotopy from a trivial function to the one of interest. Under
certain conditions, smooth curves starting from the trivial solutions will lead to the desired
solutions.

The homotopy method has only recently begun to be used for the computation of
matrix eigenvalues and eigenvectors. This method has received attention for this

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 3

application due to its natural parallelism. Therefore, algorithms based on this method are
excellent candidates for multiprocessor computers.

The method was originally proposed in [15] for the computation of the eigenproblems
of symmetric matrices, and it was practically applied in [36]. Afterwards this method was
applied to the symmetric tridiagonal case in [35]. There are also parallel versions of the
method in this case [38] and in the general symmetric case [42].

The application of the divide and conquer algorithms to the computation of the
eigenvalues of symmetric tridiagonal matrices is based on the possibility of dividing the
original matrix into two tridiagonal submatrices by using some kind of modification. Once
we have computed the eigenvalues of the submatrices, it can be proved that the intervals
they define allow us to delimit the position of the eigenvalues of the original matrix. The
real power of the method is based on the possibility of applying the divide and conquer
scheme at different levels.

The method originally developed by Cuppen [17] is based on the application of rank
one modifications [14]. More recently some efficient algorithms that use rank two
modifications have been implemented [37].

The development of the method is independent of the class of modifications applied.
During the division stage, the original matrix is divided into many tridiagonal submatrices.
If we continue this process until we have obtained matrices of size 1x1 or 2x2, their
eigenvalues can be computed trivially. On the other hand, if we stop the division stage with
bigger submatrices, their eigenvalues can be computed using, for example, the QR iteration.
The development of the updating stage is based on the application of some algorithm to
approximate the eigenvalues of the divided matrices using the eigenvalues of the
submatrices as delimiters. In [17] the author uses a rational interpolation algorithm to
approximate the zeros of the secular equation. In [13] and [44] the authors apply different
combinations of the bisection and the Newton method to approximate the zeros of the
characteristic polynomial. Finally, in [37] the authors use the Laguerre method to complete
this task.

The divide and conquer method has been the object of some efficient parallelizations.
Among them we can point out the first parallel version of the method developed in [20] or
different parallel algorithms designed in [18] based on some variant of the same method.
More recently, in [48] we can find an efficient parallelization of the method that uses rank
two modifications in the updating stage.

On the other hand, the bisection and multisection method has produced the largest
number of different approaches, both in the sequential and parallel case. The bisection and
multisection method in the tridiagonal case has its foundation in the possibility of dividing
the spectrum of the matrix. Specifically, it is possible to define a function called neg cn ()
that, computed in any point of the real line, gives us the number of eigenvalues on each side
of the point. This idea was originally exploited by Wallace Givens in [24] and [25]. That
author used the Sturm sequence property [26] as a method to divide the spectrum.

If we define the symmetric tridiagonal matrix T as

(1)

T

a b

b a b

b a

b

b a
n

n n

=

−

−

1 1

1 2 2

2 3

1

1

0

0

O

O O

,

4 J. M. BADÍA AND A. M. VIDAL

and define the Sturm sequence of the matrix in the point c as

(2) p c p c p cn0 1() () (){ }, , ...,

with

p c

p c T cI i ni i

0 1

1 2

() =
() = −()

 det : , , ...,

then the number of sign changes of this sequence equals the number of eigenvalues of T
smaller than c.

The computation of this sequence can be done using the following widely known
recurrence:

(3)
p c p c a c

p c a c p c b p c i ni i i i i

0 1 1

1 1
2

2

1

2 3

() = () = −
() = −() () − ()

 − − −

,

 : , , ...,

The original sequential method by Givens was implemented and improved using
several acceleration techniques in later papers [53], [30] and [31].

In [53] and [52] the author establishes that the bisection method is very good to isolate
the eigenvalues, but that it can be notably accelerated if combined with some root finding
method that converges faster than the plain bisection. The author cites as examples the
Newton method (quadratic) and the Laguerre method (cubic).

Some improved versions of the bisection method were later presented. Specially
important is [9], where the authors used for the first time a modified version of the Sturm
sequence that avoids the overflow problems of the original sequence.

Specifically if we define

(4) q c
p c

p c
i ni

i

i
() = ()

()−1
1 2 : , , ..., ,

it can be shown very easily that the number of negative elements of this sequence equals
the number of eigenvalues of T smaller than c. From this point on, we will call this value
neg cn () .

Sequence (4) can be computed by using the following recurrence:

(5)

q c q c a c

q c a c
b

q c
i ni i

i

i

0 1 1

1
2

1

1

2 3

() = () = −

() = −() −
()

−

−

,

 : , , ...,

The routine implemented in [9] has served as base and reference of almost all the later
algorithms using the bisection method. Indeed, one version of that routine was included in
the EISPACK library [2] with the name bisect.

The use of the modified Sturm sequence (4) is not problem-free. Supposse λ is an
eigenvalue of T and is very close to an eigenvalues of its leading submatrix of size n-1, then
a good number of root-finders can have a lot of problems to find a zero of q cn () in λ. In
this case we say that λ is a hidden eigenvalue, [43]. Another widely studied problem with
(5) is that the recurrence can fail if any of its elements is zero.

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 5

Several authors [10] or [18] have solved this problem using different approaches.
However, the basic idea is to replace the zero element with a very reduced value eps, that
we can choose as the machine precision. Due to the special properties of the symmetric
eigenproblem, this modification does not substantially affect the accuracy of the results
obtained.

In [11] the BM method is divided into two phases. During the isolation phase we
delimit the position of the eigenvalues into intervals that only contain one of them by
applying a plain bisection algorithm. Later, during the extraction phase we can use faster
root-finding algorithms to compute the eigenvalues. From these ideas, several authors have
used different techniques during the extraction phase. For example, in [6] the author uses
cubic polynomial interpolation as well as first and second order Newton iteration, and in
[10] the authors use the pegasus method [21].

Some authors divide the extraction phase in two sub-phases. For example, in [10] the
authors start the extraction process by applying several bisection steps until they obtain an
interval where the characteristic polynomial is monotone. Then they can assure that the
Pegasus method converges very fast. In [50] the author also uses the Pegasus method, but to
compute the eigenvalues of hermitian Toeplitz matrices. In that paper the author uses the
Pegasus method to find the zeros of the function q x() defined as the last element of the
recurrence (5). As it is defined in (4), this function is discontinuous in the zeros of p xn− ()1 .
Once isolated each eigenvalue, the author applies several bisection steps until he obtains an
interval where q x() is continuous, then he applies the Pegasus method to extract the
eigenvalue.

In this paper we implement two techniques of extraction and we compare them with
others widely used so far. First we implement the Laguerre iteration to compute the zeros of
the characteristic polynomial in each isolated interval, second we implement a method that
starts the extraction phase by applying several steps of the Laguerre iteration in order to
obtain an interval where the function q x() is continuous, then we apply the Pegasus
method to approximate the eigenvalues as the zeros of this function. As it can be seen in
[3], this last technique clearly gives better results than the one used in [50] and so we will
use it in the experimental analysis shown in section 5.

Finally, we must point out that the application of the acceleration methods described
above does not always produce faster convergence to the eigenvalues. Often the
eigenvalues of some tridiagonal matrices tend to group in numerically indistinguishable
clusters. In these cases the application of acceleration techniques can be less efficient than
the use of the plain bisection approach.

Due to its special characteristics, the bisection method has been the object of multiple
and very different parallelizations. In a later section of this paper we perform a survey of
the fundamental approaches and analyze two parallel algorithms that we have implemented.

Moreover, we must point out the fact that the bisection method can be applied to the
general symmetric case, though with very high costs. However, there are some kinds of
structured matrices, called efficiently structured in [49], in which the cost of the method can
be notably reduced. Very recently some sequential implementations of the method have
been carried out in the case of Toeplitz matrices [50]. Besides, there are several parallel
implementations of the bisection method in the case of banded Toeplitz matrices [4] and
also in the Toeplitz-plus-Hankel case [5].

3. Sequential bisection algorithm. One of the fundamental features of the bisection
method is its flexibility. While other methods like the QR iteration or the Cuppen's method

6 J. M. BADÍA AND A. M. VIDAL

force us to compute all the eigenvalues, the BM methods allow us to compute any single
eigenvalue, or any group of consecutive eigenvalues.

The foundation of the sequential algorithm is the adequate use of the function neg cn ()
and the modified Sturm sequence (5). To implement this algorithm we begin with an initial
interval (a,b) containing all the eigenvalues we want to compute. This interval can be
obtained, for example, by means of the Gershgorin circles [26].

When we bisect the initial interval we define two subintervals (a,c) and (c,b), and from
the computation of n neg cc n= () we can know the eigenvalues contained in each one. If we
repeat this process we can finally obtain an interval (a,b) that isolates one eigenvalue, or
that contains a cluster of eigenvalues with a separation less than a given value.

Once we have isolated the eigenvalue, we can use the function q cn () defined by the
last element of the modified Sturm sequence. We can then apply a root finding method
faster than the plain bisection to extract the isolated eigenvalue as the only root of that
function in the isolated interval.

program compute-group (p,q,tol,λ(p:q))
/* Given two integers p and q such that 1≤p<q≤n, this program
computes all the eigenvalues of T between λp and λq*/

Compute the initial interval (ar,as) using Gershgorin circles

Store the initial interval in the queue

while queue non-empty

if (interval (ar,as) is included in (ap-1, aq)

and (s=r+1)) then /∗ contains only one eigenvalue of T */
extract(ar,as,tol,λs)
if queue non-empty then

get a new interval (ar,as) from the queue

endif

else

if |ar - as| < tol then /* cluster of eigenvalues*/

λi=(ar+as)/2, i=r+1, ..., s

else

c=(ar+as)/2; k=negn(c)

if (k=r) or (k ≤ p-1) then
r=k; ar=c

else if (k=s) or (k ≥ q) then
s=k; as=c

else

store the interval (c, as) in the queue

s=k; as=c

endif

endif

endif

endwhile

After defining the way to approximate each individual eigenvalue, we can describe
how to exploit these ideas to extract any group of consecutive eigenvalues. To face this task
we will use a queue of intervals containing eigenvalues. During the process of isolating of
each eigenvalue, the non-empty intervals produced that contain any of the eigenvalues to be
computed are stored in a queue. Specifically the queue contains the limits of the intervals
(a,b) and the value of the function neg cn () in these points (na, nb). Each time we extract

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 7

one eigenvalue or a cluster, we start the process again with a new interval taken from the
queue in order to approximate the next one. The algorithm compute-group summarizes the
process of computing any group of eigenvalues. In this algorithm an interval of the form
(ar, as) contains all the eigenvalues between λr+1 and λs, and tol is a value that can be
defined like in the stopping criterion (9).

The algorithm used to implement the function extract(ar,as,tol,λs) defines the
speed of the method, except when we have many clusters of eigenvalues. In [3] we prove
that, of all the algorithms used so far, the Laguerre iteration is the one that offers the best
results (see Figure 1). In the following section we describe how to use this iteration to
approximate the eigenvalues.

3.1. The Laguerre iteration. The application of the Laguerre iteration as a method
for accelerating the extraction of the eigenvalues was already suggested in [52], and that
technique has been used in [37] as a basic step in a divide-and-conquer method. The
Laguerre method has been proved to have cubic convergence in the neighbourhood of a
single eigenvalue.

Each iteration of the Laguerre method is based on the following expression:

(6) L x x
n

p x

p x
n n

p x

p x
n

p x

p x

± () = +

− ′()
()

± −() −() − ′()
()

− ′′()
()

1 1
2

where the characteristic polynomial p x T xI() = −()det can be evaluated as the nth term of
the recurrence (3). As we can see in (6), to evaluate one iteration of Laguerre we need not
only p x() , but its first and second derivatives ′()p x and ′′()p x . For the same reasons that
we computed the modified Sturm sequence instead of the original one, we use the following
scaled recurrences related with each derivative:

r
p

pi
i

i
= ′

 and s
p

p
i ni

i

i
= ′′ = , , ...,0 1

These recurrences can be obtained by differentiating (3), scaling each term and taking
(4) into account

(7)

r r
q

r
q

a x r
b

q
r i ni

i
i i

i

i
i

0 1
1

1
1

2

1
2

0
1

1
1 2 3

= = −

= −() − −

=

 −

−

−
−

,

 , , ...,

(8)

s s

s
q

a x s r
b

q
s i ni

i
i i i

i

i
i

0 1

1 1
1

2

1
2

0 0

1
2 2 3

= =

= −() − −

=

 − −

−

−
−

,

 , , ...,

and, in (6) we denote

8 J. M. BADÍA AND A. M. VIDAL

′()
()

=p x

p x
rn and

′′()
()

=p x

p x
sn

An algorithm to evaluate the previous recurrences and to apply the Laguerre iteration
can be found in [37] and in [3].

Another important aspect of the iterative method is the criterion to stop it. From an
analysis of the accuracy of the Laguerre iteration that can be found in [37] we have chosen
the following condition:

(9) ˜ ˜ max , ˜ ,() () ()λ λ δ λ εi
k

i
k

i
k− ≤ { }−1

where ˜()λi
k is the kth approximate to the exact eigenvalue λi , ε is the machine precision

and δ is an absolute error bound given by:

δ ε= +{ }
≤ ≤ −

+2 5
1 1

1. max .
j n

j jb b

4. Parallel algorithms

4.1. Antecedents of the parallel bisection method. The parallelization of the BM
method admits different approaches and can be accomplished efficiently on different kinds
of architectures. The idea of performing a parallel implementation of the bisection method
to compute the eigenvalues appears very early in [33], or in [7], where the authors propose
a technique of parallelization of the method on a MIMD architecture based on the use of a
queue of intervals.

The idea of replacing the plain bisection by a multisection technique was also applied
very early in order to obtain a large number of intervals to work in parallel with. Regarding
this, we can point out the approaches by [28] on a SIMD architecture, or by [51], where the
author performs an initial multisection to define groups of intervals containing the same
number of eigenvalues and then distributes these groups to the processors. After this initial
phase, each processor uses a bisection technique to compute the eigenvalues of its intervals.
The application of a parallel multisection technique can also be found in [8].

In [12] a parallel algorithm that uses a "dynamic spawning" technique as an alternative
to the use of a queue is studied. The algorithm is implemented on a MIMD simulator that
includes a distributed and a shared memory. In that paper the three classes of parallelism
that we can exploit in the bisection method appear for the first time.

1. We can parallelize the computation of the modified Sturm sequence that allows
us to obtain the functions neg cn () and q cn ().

2. We can parallelize the computation of each eigenvalue, so that all processors
cooperate in its calculation.

3. We can parallelize the computation of groups of eigenvalues, so that different
processors, in parallel, compute different groups of eigenvalues.

One of the best known parallel versions of the bisection method is the one proposed in
[39] on a shared memory machine. The algorithm, applying the ideas of [28] and [33], uses
a multisection technique during the isolation phase, while during the extraction phase a
plain bisection method or the Zeroin method (based on the combination of the secant
method and the bisection) is applied. Besides, in [39] the authors prove that bisection is

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 9

better than multisection in order to compute a single eigenvalue. However, during the
isolation phase they prefer to apply the multisection technique.

Another classical reference about the parallel bisection method is the paper by [29],
where the authors compare three different approaches to compute the eigenpairs of
symmetric tridiagonal matrices: the Cuppen's method, the bisection method and a method
that combines multisection during the isolation phase and bisection during the extraction
phase. The algorithms are implemented and studied on a distributed memory machine with
hypercube topology.

Another version of the parallel bisection method is presented in [32]. In that paper the
algorithm is implemented on a network of transputers using a bidirectional ring topology.
The author describes one algorithm for the computation of a single eigenvalue and another
to compute the whole spectrum. In the first case he applies a parallel multisection method,
while in the second case the author uses a method that separates the isolation and extraction
phases.

The load unbalance problem that can arise in the previous method can be solved with
the approach presented in [46], where the author also uses an array of transputers. In this
paper three different algorithms that apply pipeline and farming technique in order to
balance the load are described.

In [10] the authors apply a bisection method during the isolation phase and then use the
Pegasus method to extract the isolated eigenvalues once they have obtained good starting
points.

Regarding the first class of parallelism cited above, the author of [22] uses a “recursive
doubling” strategy to compute the Sturm sequences in parallel. In [40] the authors apply a
parallel technique that combines the advantages of segmentation and the cyclic reduction
method for solving general linear first order recurrence problems.

Other algorithms that use vector and SIMD architectures have been proposed. We can
mention, for example, the method proposed in [47] where the author performs a
comparative study of the bisection and multisection methods on different vector computers.
Another algorithm that use this class of architecture can be found in [16].

4.2. Parallel algorithms implemented. Continuing with the evolution of the parallel
bisection method, in [3] we performed an experimental comparison of the basic approaches
used to parallelize the method, and we compared the results with parallel implementations
of the divide and conquer method. The complete analysis is developed on different classes
of parallel architectures and using different programming environments. In this paper we
extract and analyze two of the parallel algorithms that obtain the best experimental results
by applying the bisection method.

Both algorithms exploit the third kind of parallelism described in the previous section.
The basic difference between the algorithms is the technique used to distribute the intervals
to the processors.

The first of the parallel algorithms implemented, that we will call pstsep, uses a static
distribution scheme. The initial interval (a,b) containing all the eigenvalues to be computed
is distributed to all the processors. Each processor is in charge of approximating a group
with the same number of consecutive eigenvalues. To accomplish this task each processor
uses the algorithm compute-group described in section 3. During the isolation phase, each
processor only stores the intervals containing the eigenvalues that it is in charge of
computing.

The algorithm presents the advantage of using an SPMD (single program multiple data)
scheme. Besides, every processor works fully independent of the others without having to

10 J. M. BADÍA AND A. M. VIDAL

perform any communication or synchronisation. As far as every processor computes the
same number of eigenvalues, the load could be perfectly balanced. However it is well
known that the eigenvalues of different classes of tridiagonal matrices can have very
different distributions along the spectrum. Even in a limit case like the one that occurs with
the Wilkinson matrices [52], where the majority of the eigenvalues can form clusters in
pairs. In these circumstances, the load balance in the pstsep algorithm can be quite poor,
producing bad parallel results. This justifies the implementation of an algorithm that applies
a dynamic load distribution technique.

The second parallel algorithm implemented and analyzed, that we will call pstfar, uses
a dynamic technique for distributing the intervals to the processors. The idea we have
applied is a generalization of the one used in [46] on an array of transputers. Instead of
using a farming method, we apply a more general master/slave strategy where all
communications among the master and the slaves can be performed directly.

The master processor is in charge of managing a queue of intervals, and sending them
each time one of the slaves is ready to compute a new eigenvalue. The master starts by
sending the initial interval (a,b) to one of the slaves. This processor computes the first
eigenvalue contained in the interval. The non-empty intervals produced during the isolation
phase are sent to the master as soon as they are produced. The master sends the intervals
back to the slaves or stores them in the queue.

Process master

received=0 -- number of eigenvalues received

ready=p-1 -- number of slaves ready to receive an interval

Send the initial interval to one slave

while received < number of eigenvalues to compute

Receive data from the slaves

case

• an interval is received

Store it in the queue

if ready >0 then

Send the interval to a ready slave

ready = ready - 1

endif

• an eigenvalue or cluster is received

received = received + eigenvalues received

ready = ready + 1

if queue non-empty then

Send an interval to a ready slave

ready = ready - 1

endif

endcase

endwhile

Broadcast the signal to finish.

On the other hand, the slave processors wait to receive an interval and are in charge of
approximating the first eigenvalue contained in it by means of the algorithm described in
section 3. Each time the slave extracts an eigenvalue or a cluster of eigenvalues it sends the
result to the master. The master collects the eigenvalues and is able to know that the slave is
ready to receive a new interval.

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 11

Process slave

while the signal to finish is not received

Receive an interval

if interval contains more than one eigenvalue then

Bisect until the first eigenvalue or cluster is isolated

Send the non-empty intervals to the master

endif

Extract and send the eigenvalue or cluster to the master

endif

5. Experimental analysis.

5.1. Computational Environment. All the practice experiments have been
performed on a CRAY T3D. This machine is a highly scalable multiprocessor that consists
of from 32 up to 2048 very powerful super scalar processors. Thus, it can be included in the
class of massively parallel computers. Our target machine is located in the Ecole
Politechnique Fédérale of Lausanne (Switzerland) and consists of 256 processors.

The CRAY T3D is a shared distributed memory multiprocessor. That is, each processor
has its own local memory but the memory of every node can be globally addressed. In this
way, each processor can access the contents of the memory of any other processor. This
operation is performed by hardware, by using special circuits incorporated to the different
process elements. As a consequence, the access and management of data located in every
processor is transparent for the user, who may not worry about the location of the data to be
accessed in the memory by its programs.

The basic node of this parallel computer consists of two process elements (PEs) and a
routing switch. Each PE includes an Alpha microprocessor by DEC, a local memory and an
adequate support hardware, which in combination with the routing switch, allows the
processor to globally address all the local memories.

The different nodes of the CRAY T3D are interconnected through a 3D bi-directional
torus network. This network permits a bandwidth up to 300 Mbytes per second over each
one of the three possible dimensions.

To implement the parallel algorithms on this machine we have used the standard PVM
message-passing environment [23]. This allows us to obtain a highly portable code and to
make comparisons of the experimental results on different types of parallel machines [3].

5.2. Experimental results. As we said before, the performance of the sequential and
parallel algorithms strongly depends on the problem, i.e., on the kind of the tridiagonal
matrix on which they are applied. Both the BM and the DV methods depend on the
distribution of the eigenvalues along the spectrum. Moreover, the results of the BM method
are greatly influenced by the number of clusters and hidden eigenvalues. On the other hand,
the performance of the DV algorithms depends on the number of deflations produced
during its execution.

Several authors have started from the previous arguments to analyse the computing
algorithms for several types of matrices, giving rise to a wide set of test matrices which
represents the most diverse conditions. In the analysis of our algorithms we are going to
utilise a group of matrices similar to that used in [37] and [42]. This group consists of 12
types of matrices whose behaviour can differ from the different algorithms studied. For the
specific case of the pstsep and pstfar algorithms we can group the above matrices into four
basic classes, which we shall use as target matrices to analyze the cited algorithms. A
thorough study of the characteristics of the twelve types of matrices and the corresponding

12 J. M. BADÍA AND A. M. VIDAL

analysis of the behaviour of bisection/multisection and divide-and-conquer algorithms on
them can be found in [3].

The first class of matrices is represented by tridiagonal Toeplitz matrices, in which the
eigenvalues are symmetrically distributed with regard to the centre of the spectrum, and
tend to group near the extremes but without forming a cluster. Class 2 is given by
tridiagonal matrices whose eigenvalues are uniformly distributed along the spectrum. Class
3 is constituted by the Wilkinson matrices [52]. Most of their eigenvalues are grouped in
clusters of two eigenvalues. The matrices of the last class have their eigenvalues grouped in
a single cluster, with the exception of one, which is far from the rest and whose value is
one.

Let us now summarise some of the experimental results obtained by comparing
different sequential and parallel algorithms for computing the eigenvalues of symmetric
tridiagonal matrices. A wider study can be found in [3].

The results for the sequential case have been obtained by using Fortran language on an
Alpha processor of the CRAY T3D.

First of all, it is worth noting that the bisection method, applied in two phases, has been
the basis for all the algorithms presented in this work. The efficiency of the sequential
algorithm is based mainly on the speed of the approximation method utilised during the
extraction phase. In Figure 1, the execution time of four very representative approximation
algorithms is compared. These algorithms are based on the pure bisection (bis), the Newton
method (nwt), the Laguerre method (lag) and the Laguerre-plus-Pegasus method (lpe).

Root-finding algorithms

Class of matrix

T
im

e
(s

ec
.)

0

5

10

15

20

25

30

1 2 3 4

bis

nwt

lag

lpe

Algorithms

FIG. 1. Comparison of extraction methods. n=1024.

Figure 1 helps us to clearly verify that the experimental results depend on the type of
matrix whose eigenvalues must be computed. As can be observed, the computing time for
the matrices of type 4 is much smaller than the rest and cannot be represented in the same
scale. It can also be noticed that for type 3 matrices (Wilkinson matrices) the final
extraction method has little influence, as practically all the eigenvalues are located in
clusters by pairs. Thus, the algorithm has difficulties to isolate most of the eigenvalues and
the majority of the execution time is devoted to this phase, where just pure bisection is
utilized.

In the other two types of matrices, it can be seen how pure bisection method (bis) is
clearly slower than the others, and the Laguerre method (lag) is the most efficient one, even
surpassing the Newton method (nwt) which has been considered by some authors, [6], [46],
[45], as the most efficient one for the extraction phase of the method.

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 13

As the Laguerre method has proved to be the most efficient one, we have utilised it to
implement the extraction phase of the two-phases bisection algorithm (dstrid). In Figure 2
we compare it with other methods for computing eigenvalues of symmetric tridiagonal
matrices.

The dspmg algorithm is the implementation performed in [37], based on a method of
DV type which combines rank-two modifications during the division phase with the use of
the Laguerre method during the updating phase.

The dsterf algorithm is the routine of LAPACK which applies the QR iteration to
compute all the eigenvalues of symmetric tridiagonal matrices.

Finally, the dstebz algorithm is the routine of LAPACK which applies pure bisection to
solve the same problem.

Sequential Algorithms

Class of matrix

T
im

e
(s

ec
.)

0
5

10
15
20
25
30
35
40
45

1 2 3 4

dstrid

dspmg

dsterf

dstebz

Algorithms

FIG. 2. Comparison of sequential algorithms. n=1024.

In Figure 2 we can check that, except for the dsterf algorithm, the remaining ones
clearly depend on the problem. The dstrid algorithm surpasses the routines of LAPACK
and the DV algorithm, except for the type 3 matrices (Wilkinson matrices). We can also see
that the pure bisection method (dstebz) achieves worse performance than the obtained by
combining it with the Laguerre method during the extraction phase (dstrid).

Tables 1 and 2 enable us to compare the different speed-ups of the two parallel
algorithms described in section 4, with regard to the best sequential algorithm (dstrid). The
results in this case depend on the type of parallelization and on the influence of the features
of different types of matrices. The tables allow us to study the influence of modifying either
the number of processors utilised or the size of the matrices whose eigenvalues are
computed. The results in the case of type 4 matrices with sizes larger than 1024 are not
shown because the memory needed to generate them surpasses that available.

It is worth pointing out the excellent performance of the pstsep algorithm. It achieves
almost optimum speedup with practically any matrix size and any number of processors.
Moreover, it scales very well in the sense that it presents no degradation of the performance
when the number of processors increases, even if the size of the matrix is kept constant.

Although the use of a dynamic distribution strategy in the pstfar algorithm is intended
to solve the problem of a possible load imbalance in the pstsep algorithm, it introduces a
new factor which can severely penalize the performance in a message-passing environment:
the communications overhead. While the pstsep algorithm can evolve with no
communications, the pstfar algorithm requires the sending of a large number of short
messages. This fact strongly determines the relative performance of both algorithms. Thus,

14 J. M. BADÍA AND A. M. VIDAL

pstfar can only reach the performance of the pstsep when a large enough arithmetic cost
compensates the cost of the communications introduced. This can happen in the case of the
Wilkinson matrices, where the cost of extracting each eigenvalue is high, or for very large
scale matrices.

On the other hand, the application of both parallel schemes to the matrices of class 4 is
completely useless. The fact that all the eigenvalues are located in a single cluster and the
short execution time of the algorithm in this case make it impossible to obtain the
advantages of a parallel scheme based on the third class of parallelism cited in 4.1.

TABLE 1

Speedup modifying the number of processors. n=1024.

Number of processors

Class Algorithm 2 4 8 16 32

1 pstsep 2,00 3,97 7,70 14,51 27,47

pstfar 1,50 2,98 5,73 7,81 7,85

2 pstsep 2,00 3,91 7,67 15,09 29,23

pstfar 1,44 2,82 5,39 6,04 5,80

3 pstsep 1,98 3,95 7,69 15,01 29,27

pstfar 1,69 3,36 6,65 12,97 23,92

4 pstsep 1,00 1,04 1,03 1,04 1,03

pstfar 0,96 0,97 0,96 0,95 0,94

TABLE 2

Speedup modifying the size of the matrices. p=32.

Matrix size

Class Algorithm 128 256 512 1024 2048 4096

1 pstsep 20,03 23,11 26,63 27,47 30,01 30,07

pstfar 1,39 2,38 4,26 7,85 19,78 23,87

2 pstsep 22,07 25,69 28,20 29,23 28,87 26,59

pstfar 1,04 1,76 3,19 5,80 14,24 22,33

3 pstsep 25,49 27,58 29,15 29,27 29,57 29,76

pstfar 5,38 9,58 16,35 23,92 23,82 23,92

4 pstsep 1,06 1,06 1,21 1,03

pstfar 0,66 0,82 0,95 0,94

Figure 3 allows us to analyze the scalability of the two parallel algorithms [34].
Specifically we use a isospeed scalability metric as it is defined in [41]. In this sense, we
consider that a parallel algorithm is scalable if we could maintain the execution time by
simultaneously increasing the number of processors and the size of the problem. In the case
of the two parallel algorithms that we are analyzing the problem size is of O(n2) to compute
all the eigenvalues of the matrix. In order to maintain the size of the sub-problem solved in
each processor, each time we double the size of the matrix we have to multiply by four the
number of processors. Figure 3 shows the almost perfect scalability of the pstsep algorithm,
even when we use 256 processors. Therefore, we can consider the pstsep algorithm very
adequate for solving this problem on massively parallel architectures. On the other side the
overhead cost introduced by the communications in the case of the pstfar algorithm
produces a clear increment of the execution time, even if scaling the problem size.

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 15

Scaled execution time

matrix size:number of processors

T
im

e
(s

ec
.)

0

0,1

0,2

0,3

0,4

0,5

256:1 512:4 1024:16 2048:64 4096:256

pstsep

pstfar

Algorithm

FIG. 3. Scaled execution time of the parallel algorithms (matrices of type 1).

6. Conclusions. From the work presented in [3], of which one part has been compiled
in this paper, we can conclude that the best method to solve the symmetric tridiagonal
eigenvalue problem is the bisection method. This method is specially efficient when it is
implemented in two phases and an adequate choice of the method used in the isolation
phase and in the extraction phase is made. The experimental results obtained confirm that
the parallel bisection method, adequately implemented, surpasses the best divide-and-
conquer algorithms developed up till now.

To get a good implementation of the bisection method, we have compared different
root-finding algorithms. For the first time, we have combined the bisection method in the
isolation phase with the Laguerre iteration in the extraction phase. The two-phases bisection
algorithm thus implemented surpasses the performance of what has generally been
considered the best sequential algorithm, the QR iteration.

The parallelization of the bisection method can be carried out in several ways. As far as
we know, the best performance with this algorithm is achieved by equally dividing the
computation of the different eigenvalues among the processors. This scheme can be
implemented by means of two approaches for distributing the load among the nodes of the
multiprocessor: a static approach and a dynamic approach. Although the dynamic
distribution allows a better load balance, the introduction of a large number of
communications has turned out to be decisive in decreasing the performance of the
algorithm, specially with small and medium size matrices. Moreover, the static version
shows a very good scalability and so it is very adequate for massively parallel architectures.

It is also worth noticing that both the bisection and the divide and conquer methods are
dependent on the problem. This has been clearly stated by observing the behaviour of the
different algorithms when the type of the matrix varies, and more specifically, when the
distribution of the eigenvalues in the spectrum, the number of clusters, the deflations or the
number of hidden eigenvalues varies.

Acknowledgements. We want to express our gratitude to Cray Research Inc. for
providing the supercomputing facilities, specifically the Cray T3D. We also want to express
our gratitude to professor Zhonggang Zeng for all the information that he sent us about his
algorithm dspmg.

16 J. M. BADÍA AND A. M. VIDAL

REFERENCES

[1] E. ANDERSON, Z. BAY, et al., LAPACK User’s Guide, SIAM, Eds. 1992.
[2] L. ARGONNE NAT, EISPACK. Eigensystem package, Illinois, (1972).
[3] J. M. BADíA, Algoritmos Paralelos para el Cálculo de los Valores Propios de Matrices Estructuradas, Ph.

D. Thesis, Univ. Politécnica de Valencia, 1996.
[4] J. M. BADíA AND A. M. VIDAL, Efficient solution of the eigenproblem of banded symmetric Toeplitz

matrices on multicomputers, in 3rd. Euromicro Workshop on Parallel and Distributed Processing.
(IEEE Computer Society Press, San Remo, Italy, 1995), pp. 416-423.

[5] J. M. BADíA AND A. M. VIDAL, Parallel Computation of the Eigenstructure of Toeplitz-plus-Hankel
matrices on Multicomputers, in Parallel Scientific Computing, (Lecture Notes in Computer Science,
879), J. Dongarra and J. Wasniewski, Eds. Springer-Verlang. (1994), p. 33-40.

[6] G. BAKER, Accelerated Bisection Techniques for Tri- and Quintadiagonal Matrices, Int. J. for Num. Meth.
in Eng., (1992), pp. 203-218.

[7] R. H. BARLOW AND D. J. EVANS, A parallel organization of the bisection algorithm, Comput. J., 22
(1977), pp. 267-269.

[8] R. H. BARLOW, D. J. EVANS AND J. SHANEHCHI, Parallel multisection applied to the eigenvalue problem ,
Comput. J., 26 (1983), pp. 6-9.

[9] W. BARTH, R. S. MARTIN AND J. H. WILKINSON, Calculation of the eigenvalues of a symmetric
tridiagonal matrix by the bisection method, Numer. Math., 9 (1967), pp. 386-393.

[10] A. BASERMAN AND P. WEIDNER, A Parallel Algorithm for Determining all Eigenvalues of Large Real
Symmetric Tridiagonal Matrices, Parallel Computing, 18 (1992), pp. 1129-1141.

[11] H. J. BERNSTEIN, An Accelerated Bisection Method for the Calculation of Eigenvalues of A Symmetric
Tridiagonal Matrix, Numer. Math., 43 (1984), pp. 153-160.

[12] H. J. BERNSTEIN AND M. GOLDSTEIN, Parallel Implementation of Bisection for the Calculation of
Eigenvalues of Tridiagonal Symmetric Matrices, Computing, 37 (1986), pp. 85-91.

[13] D. BINI AND V. PAN, Practical Improvement of the Divide-and-Conquer Eigenvalue Algorithms,
Computing, 48 (1992), pp. 109-123.

[14] J. R. BU N C H, C. P. NIELSEN AND D. C. SORENSEN, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

[15] M. T. CHU, A simple application of the homotopy method to symmetric eigenvalue problems, Lin. Alg.
Appl., 105 (1984), pp. 225-236.

[16] J. M. CONROY AND L. J. PODRAZIK, A parallel inertia method for finding eigenvalues on vector and
SIMD architectures, SIAM J. Sci. Stat. Comp., 2 (1995), pp. 500-505.

[17] J. J. M. CUPPEN, A divide and conquer method for the symmetric tridiagonal eigenproblem, SIAM J. Sci.
Stat. Comp., 2 (1981), pp. 139-154.

[18] U. DE ROS, Soluzione parallela su una rete di transputer del problema degli autovalori per una matrice
tridiagonale simmetrica, Ph. D. Thesis, Politecnico di Milano, Facoltà di Ingegneria, Dipartimento di
Matematica, 1993.

[19] J. DEMMEL, J. DU CROZ, et al., Guidelines for the Design of Symmetric Eigenroutines, SVD and Iterative
Refinement for Linear Systems, MCS-TM-111, (Lapack Working Note #4), Argonne National
Laboratory, (1988).

[20] J. J. DONGARRA AND D. C. SORENSEN, A Fully Parallel Algorithm for the Symmetric Eigenvalue
Problem, SIAM J. Sci. Stat. Comp., 2 (1987), pp. s139-s154.

[21] M. DOWELL AND P. JARATT, The Pegasus method for computing the root of an equation, BIT, 12 (1972),
pp. 503-508.

[22] D. J. EV A N S , Design of numerical algorithms for Supercomputers, in Scientific Computing on
Supercomputers, J. T. Devreese, Ed. (1989), p. 101-151.

[23] A. GEIST, A. BEGUELIN, et al., PVM3 User’s Guide and Reference Manual, Oak Ridge National
Laboratory, 1994.

[24] J. W. Givens, A method of computing eigenvalues and eigenvectors suggested by classical results on
symmetric matrices, U.S. Nat. Bur. Standards Applied Mathematics Series, (1953), pp. 117-122.

[25] J. W. GIVENS, Numerical computations of the characteristic values of a real symmetric matrix, ORNI-
1574, Oak Ridge National Laboratory, (1954).

[26] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins University Press, 1989.
[27] G. HENRY AND R. VAN DE GEIJN, Parallelizing the QR algorithm for the unsymmetric algebraic

eigenvalue problem: myths and reality, SIAM J. Sci. Comp., 4 (1996), pp. 870-883.
[28] H. M. HUANG, A parallel algorithm for symmetric tridiagonal eigenvalue problems, CAC Document No.

109, Center for Advanced Computation, University of Illinois at Urbana-Champaign, (1974).

PARALLEL BISECTION ALGORITHMS FOR SOLVING ... 17

[29] I. C. F. IPSEN AND E. R. JESSUP, Solving the Symmetric Tridiagonal Eigenvalue Problem on the
Hypercube, SIAM J. Sci. Stat. Comp., 2 (1990), pp. 203-229.

[30] W. KAHAN, Accurate eigenvalues of a symmetric tridiagonal matrix, CS41, Computer Science Dpt.,
Stanford University, (1966).

[31] W. KAHAN AND J. VARAH, Two working algorithms for the eigenvalues of a symmetric tridiagonal matrix,
CS43, Stanford University, (1966).

[32] T. Z. KALAMBOUKIS, The Symmetric Tridiagonal Eigenvalue Problem on a Transputer Network, Parallel
Computing, 15 (1990), pp. 101-106.

[33] D. J. KUCK AND A. H. SAMEH, Parallel Computation of Eigenvalues of Real Matrices, in IFIP Congress.
N. Holland, Eds. (1971), pp. 1266-1272.

[34] V. KUMAR, A. GRAMA, et al., Introduction to Parallel Computing. Design and Analysis of Algorithms,
The Benjamin/Cummings Publishing Company, Reedwood City, California, 1994.

[35] K. LI AND T. Y. LI, An algorithm for symmetric tridiagonal eigenproblems - divide and conquer whith
homotopy continuation, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 735-751.

[36] T. Y. LI AND N. H. RHEE, Homotopy algorithm for symmetric eigenvalue problems, Numer. Math., 55
(1989), pp. 265-280.

[37] T. Y. LI AND Z. ZENG, The Laguerre iteration in solving the symmetric tridiagonal eigenproblem,
revisited, SIAM J. Sci. Stat. Comp., 5 (1993), pp. 1145-1173.

[38] T. Y. LI, H. ZHANG AND X. H. SUN, Parallel homotopy algorithm for symmetric tridiagonal eigenvalue
problems, SIAM J. Sci. Stat. Comp., 12 (1991), pp. 464-485.

[39] S. S. LO, B. PHILIPPE AND A. SAMEH, A Multiprocessor Algorithm for the Symmetric Tridiagonal
Eigenvalue Problem, SIAM J. Sci. Stat. Comp., 2 (1987), pp. s155-s165.

[40] M. LU AND X. QIAO, Applying parallel computer systems to solve symmetric tridiagonal eigenvalue
problems, Parallel Computing, 18 (1992), pp. 1301-1315.

[41] I. MARTíN, F. TIRADO AND L. VáZQUEZ, Some Aspects about the Scalability of Scientific Applications on
Parallel Architectures, Parallel Computing, 9 (1996), pp. 1169-1196.

[42] M. OETTLI, The Homotopy Method Applied to the Symmetric Eigenproblem, Ph. D. Thesis, Swiss Federal
Institute of Technology Zurich, 1995.

[43] B. N. PARLETT, The symmetric Eigenvalue Problem, Prentice-hall, Inc., 1980.
[44] R. PAVANI AND U. DE ROS, A parallel algorithm for the symmetric eigenvalue problem, in International

Congress on Industrial and Applied Mathematics. (Hamburg, 1995).
[45] V. PEREYRA AND G. SCHERER, Eigenvalues of Symmetric Tridiagonal Matrices: A Fast, Accurate and

Reliable Algorithm, J. Inst. Math. Appl., 12 (1973), pp. 209-222.
[46] R. M. S. RALHA, Parallel Solution of the Symmetric Tridiagonal Eigenvalue Problem on a Transputer

Network, in SEMNI 93. (La Coruña, España, 1993), pp. 1026-1033.
[47] H. D. SIMON, Bisection is not optimal on vector processors, SIAM J. Sci. Stat. Comp., 1 (1989), pp. 205-

209.
[48] C. TREFFTZ, C. C. HUANG, et al., A scalable eigenvalue solver for symmetric tridiagonal matrices,

Michigan State University, (1994).
[49] W. F. TRENCH, Numerical Solution of the Eigenvalue Problem for Efficiently Structured Hermitian

Matrices, Lin. Alg. Appl., 154-156 (1991), pp. 415-432.
[50] W. F. TRENCH, Numerical Solution of the Eigenvalue Problem for Hermitian Toeplitz Matrices, SIAM J.

Matrix Anal. Appl., 2 (1989), pp. 135-146.
[51] Y. WALLACH, Alternating Sequential Parallel Processing, (Lecture Notes in Computer Science, 127),

Springer-Verlag, Berlin-Heidelberg-New York. (1982).
[52] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.
[53] J. H. WILKINSON, Calculation of the Eigenvalues of a Symmetric Tridiagonal Matrix by the Method of

Bisection, Numer. Math., 4 (1962), pp. 362-367.

