
1

Parallelization of the GNU Scientific Library
on Heterogeneous Systems

J. Aliaga
�
, F. Almeida

�
, J.M. Badı́a

�
, S. Barrachina

�
, V. Blanco

�
, M. Castillo

�
, U. Dorta

�
, R. Mayo

�
,

E.S. Quintana
�
, G. Quintana

�
, C. Rodrı́guez

�
, F. de Sande

�
�
Depto. de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain;�

aliaga,badia,barrachi,castillo,mayo,quintana,gquintan � @icc.uji.es.�
Depto. de Estadı́stica, Investigación Operativa y Computación, Universidad de La Laguna, 38.271–La Laguna,

Spain;
�
falmeida,vblanco,casiano,fsande � @ull.es.

Abstract— In this paper we present our joint efforts towards
the development of a parallel version of the GNU Scientific
Library for heterogeneous systems. Two well-known operations
arising in discrete mathematics and sparse linear algebra allow
us to describe the design and the implementation of the library,
and to report experimental results on heterogeneous clusters of
personal computers.

Index Terms— GNU Scientific Library, scientific computing,
parallel algorithms and architectures, heterogeneous parallel
systems.

I. INTRODUCTION

The GNU Scientific Library (GSL) [1] is a collection of
hundreds of routines for numerical scientific computations
developed from scratch. Although coded in ANSI C, these
routines present a modern application programming interface
for C programmers, and the library employs an object ori-
ented methodology allowing wrappers to be written for high-
level programming languages. The library includes numerical
routines for complex arithmetic, matrices and vectors, linear
algebra, integration, statistics, and optimization, among others.

There is currently no parallel version of GSL, probably
due to the lack of a globally accepted standard for develop-
ing parallel applications when the project started. However,
we believe that with the introduction of MPI the situation
has changed substantially. MPI is nowadays accepted as the
standard interface for developing parallel applications using
the distributed-memory (or message-passing) programming
model.

As a natural challenge and evolution of our research in
the area of parallel and distributed computing, we intend
to develop a parallel integrated version of GSL that can
be used as a problem solving environment for numerical
scientific computations. In particular, we plan our library to
be portable to several parallel architectures, including shared
and distributed-memory multiprocessors, hybrid systems (con-
sisting of a combination of both types of architectures), and
clusters of heterogeneous processors. We believe our approach
to be different to some other existing parallel scientific libraries
(see, e.g., http://www.netlib.org) in that our library targets mul-
tiple classes of architectures and, in particular, heterogeneous
systems.

In this paper we describe the design and implementation
of the part of our parallel integrated library which deals

with distributed-memory heterogeneous systems. For simplic-
ity, in the current version of the library we only consider
heterogeneity in the processor computational performance,
ignoring usual differences in the memory access speed or the
interconnection network bandwidth. An additional, and even
more important simplification, is that we ignore the different
nature of the architectures in the system that might produce
erroneous results or provoke deadlocks. While most modern
computer architectures agree in general aspects regarding the
representation of data (like, e.g., the use of IEEE 754 for
real values), there are still a few of these details that can
result in potential hazards, specially in iterative algorithms
involving numerical computations [2]. We are aware this
simplification is by no means a trivial one; although there
exist reasonably straightforward solutions to some of these
problems, implementing them comes at the expense of an
important overhead in communication [2].

We employ two classical, simple operations arising in
discrete mathematics and sparse linear algebra to illustrate our
approach. Nevertheless, the results in this paper extend to a
wide range of the routines in GSL. Our current efforts are
focused on the definition of the architecture, the specification
of the interfaces, and the design and parallel implementation
of a certain part of GSL.

The rest of the paper is structured as follows. In Section II
we describe the software architecture of our parallel integrated
library for numerical scientific computing. In Section III we
present our view of the parallel system and the programming
model interface. Then, in Sections IV and V, we employ
two examples to illustrate the solutions we adopted in order
to accommodate data structures such as vectors and (sparse)
matrices for heterogeneous computing. Finally, experimental
results are given in VI, and some concluding remarks follow
in Section VII.

II. SOFTWARE ARCHITECTURE

Our library has been designed as a multilevel software
architecture; see Fig. 1. Following a common strategy in
computer networks, each layer offers certain services to the
higher layers and hides those layers from the details on how
these services are implemented.

The User Level (the top level) provides a sequential inter-
face that hides the intricacies of parallel programming to those

Administrator
Text Box
0-7695-2210-6/04 $20.00 © 2004

2

Fig. 1. Software architecture of the parallel integrated library for numerical
scientific computing.

users with no such experience by supplying services through
C/C++ functions according to the prototypes specified by the
sequential GSL interface.

The Programming Model Level provides instantiations of
the GSL library for several computational models, including
the distributed-memory model. This level implements the
services for the upper level using standard libraries and par-
allelizing tools like (the sequential) GSL, MPI, and OpenMP.

In the Physical Architecture Level the design includes
shared-memory platforms (e.g., the SGI Origin 3000),
distributed-memory architectures (like clusters of heteroge-
neous PCs), and hybrid systems (clusters of processors with
shared-memory). Clearly the performance of the parallel rou-
tines will depend on the adequacy between the programming
paradigm and the target architecture [3], [4].

III. DISTRIBUTED-MEMORY PROGRAMMING MODEL

A. View of the Parallel System

In the distributed-memory programming model we view
the parallel application as being executed by a set of � peer
processes, ��� , ��� ,. . . , ���	��� , with all processes executing the
same parallel code, possibly on different data (in general, this
is know as Single Program Multiple Data, or SPMD [5], [6]).
We prefer this organization over a master-slave organization
due to its simplicity in certain applications [7], [3], [4].

We map one process per processor of the target parallel
system where, in order to balance the computational load, a
process will carry out an amount of work that is proportional to
the performance of the corresponding processor. Performance
of the processors is assumed to be measured off-line by the
user, and provided in a configuration file with a specific format.
As an example, we show next a simplified example of a
configuration file for an heterogeneous system consisting of
three nodes, (ucmp0, ucmp12, sun, with one processor each,
and one node, linex), with 2 processors:

1: ucmp0: 1.0
2: ucmp12: 2.0
3: sun: 3.5
4: linex: 3.0

5: linex: 3.0

The performance figures in the example are normalized with
respect to the slowest processor, ucmp0, which is always
assigned a performance of 1.0. More elaborated versions of our
library will eventually include the possibility of automatically
generating the performance numbers by running a collection
of benchmarks [8], [9]. A third possibility is that of running
a sequential version of the parallel codes on a much smaller
data [7].

Our parallel codes are also appropriate for homogeneous
parallel systems, which are considered as a particular case
of heterogeneous systems. However, in that case the codes
incur in a small performance overhead due to the processing
of the special data structures necessary in order to handle the
heterogeneity.

B. Programming Model Interface

All programming models present a similar interface at this
level. As an example, Table I relates the names of several
sequential User Level routines with those corresponding to the
instantiation of the parallel library for the distributed-memory
model. The letters “dm” in the routine names after the GSL
prefix (“gsl ”) specify the distributed-memory model, and
the next two letters, “dd”, indicate that data are distributed.
Other instantiations of the library include routines for shared-
memory and hybrid systems.

User Level Programming Model Level

Sequential Distributed-memory
fscanf() gsl dmdd fscanf()

gsl sort vector() gsl dmdd sort vector()
gsl usmv() gsl dmdd usmv()

TABLE I

MAPPING OF USER LEVEL ROUTINES TO THE CORRESPONDING PARALLEL

ROUTINES.

A program that sorts a vector is used next to expose the
interface of the distributed-memory programming model:

1: #include <mpi.h>
2: #include <gsl_dmdd_sort_vector.h>
3: void main (int argc, char * argv []) {
4: int n = 100, status;
5: gsl_dmdd_vector * v;

...
6: MPI_Init (& argc, & argv);
7: gsl_dmdd_set_context (MPI_COMM_WORLD);
8: v = gsl_dmdd_vector_alloc (n, n); // Allocate
9: gsl_dmdd_vector_scanf (v, n); // Input
10: status = gsl_dmdd_sort_vector (v); // Sort
11: printf ("Test sorting: %d\n", status); // Output
12: gsl_dmdd_vector_free (v); // Deallocate
13: MPI_Finalize ();
14: exit(0);
15: }

Here the user is in charge of initializing and terminating the
parallel machine, with the respective invocations of routines
MPI Init() and MPI Finalize(). Besides, as the infor-
mation about the parallel context is needed by the GSL kernel,
the user must invoke routine gsl dmdd set context to
transfer this information from the MPI program to the kernel
and create the proper GSL context. Therefore, such routine

3

must be called before any other parallel GSL routine. It is
also inside this routine that a process becomes aware of
the performance of the corresponding processor. The MPI
program above assumes the vector to be distributed among all
processes so that, when routine gsl dmdd vector alloc
is invoked, the allocation of the elements follows a certain
block distribution policy. If necessary, the user can access
individual elements through the Setters and Getters methods
of the structure. The call to gsl_dmdd_sort_vector sorts
the distributed vector.

IV. A CASE STUDY FOR VECTORS: SORTING

Vectors (or one-dimensional arrays) are among the most
common data structures appearing in scientific codes. In order
to parallelize such codes, one of the first decisions to make
is how to distribute the computational work among the pro-
cesses in order to maximize the parallelism while minimizing
overheads due, e.g., to communication or idle times.

In this section we first illustrate how we accommodate vec-
tors in our parallel codes for heterogeneous systems and then
we present the parallelization of a common operation arising
in discrete-mathematics: sorting. The section is concluded with
a few remarks on the possibilities of generalizing these ideas
to deal with matrices.

A. Dealing with Vectors

Our approach consists in dividing the vector into � blocks
of variable size, with the block sizes depending on the
performance of the target processors for a given distribution
policy. This corresponds to a block-cyclic nonuniform data
distribution, with variable block sizes. Each process then
performs the necessary operations on the data chunk assigned
to it.

The following data structure is used to manage non-
uniformly distributed vectors:

1: typedef struct {
2: size_t global_size; // Global size
3: gsl_vector * local_vector; // Local data
4: size_t cycle_size; // Cycle size
5: size_t global_stride; // Global stride
6: size_t * local_sizes; // Elements per process
7: size_t * block_sizes; // Block sizes per process
8: size_t * offset; // Offsets per process
9: } gsl_dmdd_vector;

Here, local vector, of GSL type gsl vector, is used
to store the local data. Additional arrays replicate on each
process the information needed by the Setters and Getters
methods to transform global addresses to local addresses.

In order to create a distributed vector, routine
gsl dmdd vector alloc receives in a parameter the
cycle size which defines the distribution policy. As an
example, figure 2 depicts the contents of this structure when
used to store a vector of 16 elements that is distributed among
4 processes. Here, processes � � and � � are assumed to be
run on processors that are three times faster than those the
other two processes are mapped to. Also, the block sizes are
3 and 1 for the fast and slow processors, respectively.

Fig. 2. A block-cyclic data layout of a distributed vector with 16 elements
and 2 fast and 2 slow processors.

B. Sorting Vectors in Heterogeneous Systems

A sorting routine is used next to illustrate the parallelization
in the distributed-memory programming model. For generality,
we have chosen the well-known Parallel Sort by Regular
Sampling (PSRS) algorithm, introduced in [10]. This al-
gorithm was conceived for distributed-memory architectures
with homogeneous processors and has good load balancing
properties, modest communication requirements, and a rea-
sonable locality of reference in memory accesses. We have
adapted the algorithm for heterogenous environments using the
gsl dmdd vector structure and a pure block nonuniform
distribution policy (no cycles).

The proposed nonuniform PSRS algorithm is composed of
the following five stages:

1) Each process sorts its local data, chooses ����� (regularly
spaced) samples, and sends them to � � . The stride used
to select the samples is, in this heterogeneous context,
different in each process and is calculated in terms of
the size of the local array to sort.

2) Process ��� sorts the collected samples, finds ����� “piv-
ots”, and broadcasts them to the remaining processes.
The pivots are selected such that the merge process
in step 4 generates the appropriate sizes of local data
vectors according to the computational performance of
the processors.

3) Each process partitions its data and sends its � -th parti-
tion to process �	� .

4) Each process merges the incoming partitions.
5) All processes participate in redistributing the results

according to the data layout specified for the output
vector.

A redistribution of data is required even for a vector that is
distributed by blocks, since the resulting sizes of the chunks
after stage 4 in general do not fit into a proper block distribu-
tion. The time spent in this last redistribution is proportional
to the final global imbalance and depends on the problem data.

4

C. Matrices: Just a Generalization of Vectors?

Although matrices (or two-dimensional arrays) can be ini-
tially considered as a generalization of vectors, their use in
parallel codes is quite more complicated [11], [12], [13], [14],
[15], [16]. In particular, if the processes are organized fol-
lowing a two-dimensional topology (grid) in an heterogeneous
system, the problem of mapping the processes into the grid and
the subsequent distribution of the data over the process grid
has been demonstrated to be an NP-complete problem [11].
Notice also that, as elements of matrices and vectors are often
combined in certain operations like the matrix-vector product
or the solution of a linear system, the parallel performance of
these operations could largely benefit from using “compatible”
or “conformal” distributions for matrices and vectors.

Two-dimensional block-cyclic data distributions for (dense)
matrices have been proposed and utilized in libraries such
as ScaLAPACK [17] and PLAPACK [18] for homogeneous
parallel systems. More recently, ScaLAPACK data layout has
been extended to accommodate heterogeneous systems in [11].

At this point we have not yet decided on how to deal
with dense matrices in our parallel library for heterogeneous
systems. However, we do have incorporated a special case
of two-dimensional data structures, sparse matrices, to be
described next.

V. A SPECIAL PROBLEM: SPARSE MATRICES

Sparse matrices arise in a vast amount of areas, some as
different as structural analysis, pattern matching, control of
processes, tomography, or chemistry applications, to name a
few. Surprisingly enough, GSL does not include routines for
sparse linear algebra computations. This can only be explained
by the painful lack of standards in this area: Only very recently
the BLAS Technical Forum came with a standard [19] for
the interface design of the Basic Linear Algebra Subprograms
(BLAS) for unstructured sparse matrices.

Although several parallel packages for sparse linear algebra
have been developed during recent years (see the survey at
http://www.netlib.org/utk/people/JackDon-
garra/la-sw.html), these are all addressed for
homogeneous parallel systems. Therefore, we believe
our work to be unique in that it both follows the standard
specification for the sparse BLAS interface and targets
parallel heterogeneous systems.

A. Dealing with Sparse Matrices

The implementation, parallelization, and performance of
sparse computations strongly depend on the storage scheme
employed for the sparse matrix which, in many cases, is
dictated by the application the data arises in.

Two of the most widely-used storage schemes for sparse
matrices are the coordinate and the Harwell-Boeing (or com-
pressed sparse array) formats [20]. In the coordinate format,
two integer arrays of length ��� hold the row and column
indices of the nonzero elements of the matrix, while a third
array, of the same dimension, holds the values. In general,
these values are listed in the arrays by rows or by columns,
resulting in the rowwise or columnwise variants of this format.

0

2

0 1 2 3

1

1.0 2.0

4.0

3.0

1.0 2.0 3.0 4.0

0 1 1 3

0 1 2 3

0 0 2 1rows

cols.

values 1.0 2.0 4.0 3.0

0 2 3 4

1 13

Harwell−Boeing,Coordinate,

0 1 2 3
RowwiseColumnwise

0

Fig. 3. Storage schemes for a ����� sparse matrix with �
	��
� nonzero
elements.

The rowwise Harwell-Boeing scheme also employs a pair of
arrays of length ��� for the column indices and the values. A
third array, of length equal the number of rows of the matrix
plus 1, determines then the starting/ending indices for each
one of the rows. The roles of the row and column arrays are
swapped for the columnwise Harwell-Boeing variant. Figure 3
illustrates the use of these two storage schemes by means of
a simple example.

As there seems to be no definitive advantage of any of
the above-mentioned variants, in our codes we employ the
rowwise coordinate format.

Our approach to deal with parallel platforms consists in
dividing the matrix into � blocks of rows with, approximately,
the same size. (Notice here that the number of blocks equals
the number of processes; the reason for this will become clear
when we describe the parallelization of the sparse matrix-
vector product.) Each process operates then with the elements
of its corresponding block of rows.

The following (simplified) data structure is used to manage
non-uniformly distributed sparse matrices:

1: typedef struct {
4: size_t global_size1; // Global row size
5: size_t global_size2; // Global column size
6: size_t global_nz; // Global non-zeros
7: void * local_matrix; // Local data
5: size_t * owns; // Who owns a row?
6: size_t * permutation; // Permuted row indices
8: } internal_dmdd_sparse_matrix;

In this structure, local matrix stores the local data of
a process using the three vectors of the rowwise coordinate
format. Also, “array” permutation allows to define a
permutation of the matrix rows (for performance purposes).
Array owns specifies the starting/ending indices of the block
of rows that each process owns.

B. Parallelizing the Sparse Matrix-Vector Product

We describe next the parallel implementation of the sparse
matrix-vector product

������������������� (1)

where a (dense) vector � , of length � , is updated with the
product of an �� !� sparse matrix � times a (dense) vector
� , with � elements, scaled by a value � . Notice that this is
by far the most common operation arising in sparse linear
algebra [21] as it preserves sparsity of � while allowing to
employ codes that exploit the zeroes in the matrix to reduce the

5

computational cost of the operation. For simplicity, we ignore
hereafter the more general case, where � can be replaced in (1)
by its transpose or its conjugate transpose.

The (sparse) matrix-vector product is usually implemented
as a sequence of saxpy operations or dot products, with one of
them being preferred over the other depending on the target
architecture and, in sparse algebra, the specifics of the data
storage.

In our approach, taking into account the rowwise storage
of the data, we decided to implement the parallel sparse
matrix-vector product as a sequence of dot products. In order
to describe the code we assume that both vectors involved
in the product, � and � , are initially replicated by all pro-
cesses. We also consider a block partitioning of vector ���� � � � � � ��������� � �	� ��� , with approximately an equal number of
elements per block, and a partition of the sparse matrix � by
blocks of roughly �	� � rows as �
��� ��
� � ��
 � ��������� ��
�	� ���
 .
The proposed nonuniform parallel sparse-matrix vector algo-
rithm is composed of the following two stages:

1) Each process � � computes its corresponding part of the
product, � � � � � � � ; it then scales and accumulates the
result as � � � � � � � � � � .

2) Each process gathers the local results computed by the
remaining processes and forms a replicated copy of � .

Notice that, because of the replication of � , the first stage
does not require any communication. The second stage re-
quires a collective communication (of type MPI Allgather)
to replicate the results. This operation is (almost) perfectly
balanced as all processes have a close number of elements
of � .

Notice, however, that the computational load may not be
balanced at all, depending on the sparsity pattern of the data.
In the next subsection we describe our efforts to balance the
computational load while maintaining an equal amount of rows
per process that also balances the communications in Stage 2.

C. Balancing the Computational Load in the Sparse Matrix-
Vector Product

We propose to store the matrix with the rows permuted
so that the number of nonzero entries in all row blocks � � ,
� � ,. . . , � �	� � , is roughly proportional to the performance of the
processor the process which owns this block is mapped to. No-
tice that this row permutation is only computed once, when the
matrix is allocated, and can be used in all subsequent matrix-
vector products. Thus, the cost of computing the permutation
is amortized by using the same matrix in several computations.
Repeated matrix-vector products with the same sparse matrix
often occur, e.g., in the solution of linear systems by iterative
methods [21] or in an implementation of the product of a
sparse matrix times a dense matrix.

The problem of computing this permutation can be assimi-
lated to a classical scheduling problem from operating systems
(assign a fixed number of tasks to the processors of a system
in order to reduce the response time). We propose to obtain
an approximate solution by employing a heuristic procedure as
follows. The strategy proceeds by first assigning the row (not
assigned) with the largest number of nonzero elements to the

fastest process. Then, for each one of the remaining processes,
it searches for a row (not assigned) with a number of nonzero
elements that makes the total number of nonzero elements
assigned to this process proportional to its performance. The
procedure is repeated, starting with the fastest process, until
there are no rows left to assign.

The results of this heuristic can be easily refined by an
iterative procedure that proceeds by comparing the rows
assigned to a pair of processes and swapping them in case
this leads to a better load balance.

The theoretical cost of this heuristic algorithm can be
estimated as follows. A vector containing the number of
nonzero entries in each matrix row needs first to be sorted,
with a cost of � � ��������� � � . Then, the assignment procedure
is performed on this sorted vector, which results in � binary
searches for a cost of � � ��������� � � . Finally, each refinement
iteration requires two linear searches on vectors of size �	� � ,
for an average cost of �	� � .

VI. EXPERIMENTAL RESULTS

In this section we report experimental results for the sorting
and sparse matrix-vector product on two different heteroge-
neous clusters consisting of 11 and 9 nodes (see Table II),
connected in both cases via a Fast Ethernet (100 Mbit/sec.)
switch. Cluster 1 has been used for the sorting operation while
Cluster 2 is the testbed for the sparse matrix-vector product
operation. Parallel codes were compiled and generated with
the mpich version of the MPI compiler and optimizing flag
-O3. Processors are added in the experiments starting with
those classified as node type 0 (until there are no processors
left of this type), then processors of node type 1, and so on.
Our experiments are designed to compare the performances of
the nonuniform data distribution vs. the uniform one (that is,
one that does not take into account the different performances
of the processors). As a measure of the efficacy we use the
“speed-up” defined as �

� ��� � � � � �
where � � stands for the execution time of the serial algorithm
in a single processor of node type 0, and � � is the execution
time of the parallel algorithm using � processors. Notice that
node type 0 is chosen to be the fastest processor in the cluster
1, and the slowest one for cluster 2.

Name Node Architecture Processor #Nodes :
type Frequency #Processors/node

Intel
Cluster 1 0 Pentium Xeon 1.4 GHz 1 : 4

1 AMD (Duron) 800 MHz 4 : 1
2 AMD-K6 500 MHz 6 : 1

Intel
Cluster 2 0 Pentium II 333 MHz 1 : 1

Intel
1 Pentium II 400 MHz 1 : 1

Intel
2 Pentium III 550 MHz 1 : 1
3 AMD (Athlon) 900 MHz 5 : 1

Intel
4 Pentium Xeon 700 MHz 1 : 4

TABLE II

HETEROGENEOUS PLATFORMS UTILIZED IN THE EXPERIMENTAL

EVALUATION.

6

For the sorting operation we generate double data vectors
with entries randomly distributed. Problem sizes vary from
� ����� until ��� ����� . Figures 4 and 5 contain the speed-up
obtained with the nonuniform and uniform data distribution,
respectively. The running times do not measure the initial
data distribution. The uniform data layout produces the usual
decrease in performance and peaks in the speed-up as a
consequence of the introduction of slow processors. On the
other hand, the use of a nonuniform data distribution results in
a softer and improved speed-up curve (see Fig. 4). Comparison
between the execution times of these two data layouts is made
explicit in Fig. 6.

Fig. 4. Speed-up of the sorting operation with nonuniform data distribution
in cluster 1.

Fig. 5. Speed-up of the sorting operation with uniform data distribution in
cluster 1.

We next carry out similar experiments for the sparse
matrix-vector product. In the evaluation we utilize a moder-
ately large sparse matrix from the Matrix Market collection
(http://math.nist.gov/MatrixMarket), known as
PSIMGR1, and second sparse matrix with randomly generated
entries. The first matrix presents no regular structure, 543160
nonzero real entries, and 3140 rows/columns. Square unsym-

Fig. 6. Execution times of the sorting operation in cluster 1.

metric random matrices are generated of order � =3000 and
degrees of sparsity of 5% and 10%.

Speed-ups of the sparse matrix-vector product with data
distributed following nonuniform and uniform layouts are
reported in Figs. 7 and 8, respectively. The results show better
speed-ups for the nonuniform distribution and also a better
“scalability” when the number of processors is increased up
to 9. Execution times for both data distributions are reported
in Fig. 9. Here, we carry out 10 runs of the parallel codes
in order to smooth possible spurious results. The nonuniform
layout presents execution times that are more reduced than
those of the uniform one, with the gap between the two data
distributions being larger when there is more heterogeneity
among the processors included in the experiment.

Fig. 7. Speed-up of the sparse matrix-vector product with nonuniform data
distribution in cluster 2.

Table III reports the standard deviation of processor fin-
ishing times for computing the sparse matrix-vector product
with and without the load balancing heuristic (that is, uniform
and nonuniform distribution, respectively). Notice that, in the
parallel matrix-vector product routine all communication is
performed at the end of the computation, in a global reduce

7

Fig. 8. Speed-up of the sparse matrix-vector product with uniform data
distribution in cluster 2.

Fig. 9. Execution times of the sparse matrix-vector product in cluster 2.

operation. Therefore, this communication operation acts as a
synchronization barrier for the processors, balancing the global
execution times. Therefore, in order to evaluate the benefits
from the proposed balancing heuristic, the results in the table
only report the variance in the execution times required for
the arithmetic operations. The table shows that the heuristic
reduces the standard deviation of the finishing times roughly
by an order of magnitude.

We also measured the time required to balance the matrix
using our heuristic on a single processor resulting in 1.5e-
2 sec. for the PSIMGR1 matrix. In this same processor, the
sparse matrix-vector product required 4.4e-2 sec. Therefore,
the cost of the balancing heuristic is about 33% of that of
the matrix-vector product routine. As repeated matrix-vector
products involving the same sparse matrix are usual in iterative
procedures in sparse linear algebra, but matrix balancing only
needs to be performed once, we expect this cost to be largely
amortized over the computations.

Random-5% Random-10% PSIMGR1

#Proc. Uni NUni Uni NUni Uni NUni
2 4.0e-3 1.5e-4 8.1e-3 2.3e-4 4.5e-3 9.2e-5
3 2.6e-3 1.4e-4 5.2e-3 2.7e-4 3.1e-3 3.3e-3
4 1.8e-3 1.3e-4 3.6e-3 1.7e-4 1.9e-3 5.3e-5
5 1.3e-3 1.4e-4 2.6e-3 1.4e-4 1.4e-3 8.9e-5
6 1.0e-3 7.4e-5 2.0e-3 1.6e-4 1.1e-3 6.2e-5
7 8.3e-4 6.6e-5 1.7e-3 1.2e-4 9.4e-4 5.2e-5
8 6.8e-4 4.5e-5 1.4e-3 1.6e-4 7.2e-4 3.0e-4
9 5.7e-4 5.9e-5 1.2e-4 1.6e-4 6.0e-4 3.2e-4

TABLE III

STANDARD DEVIATION OF PROCESSOR FINISHING TIMES FOR THE SPARSE

MATRIX-VECTOR PRODUCT.

VII. CONCLUSIONS AND FUTURE WORK

We have described the design and development of a parallel
version of GNU Scientific Library for distributed-memory
parallel architectures consisting of heterogeneous processors.
Two simple operations coming from sparse linear algebra and
discrete mathematics have been used to expose the architecture
and interface of the system, and to report experimental results
on the performance of the parallel library. These examples also
serve to show that our approach can be extended to a wide
range of GSL routines.

Our current efforts are focused on the definition of the
architecture of the library, the specification of the interfaces,
and the design and parallel implementation on heterogeneous
systems of the complete parallel sparse BLAS operations, as
well as certain numerical operations of special interest, such
as FFTs, and discrete algorithms for optimization.

ACKNOWLEDGMENTS

This work has been partially supported by the EC (FEDER)
and the Spanish MCyT (Plan Nacional de I+D+I, TIC2002-
04498-C05-05 and TIC2002-04400-C03).

REFERENCES

[1] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and
F. Rossi, GNU scientific library reference manual, July 2002, ed. 1.2,
for GSL Version 1.2.

[2] L. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammar-
ling, A. Petitet, H. Ren, K. Stanley, and R. Whaley, “Practical experience
in the dangers of heterogeneous computing,” University of Tennessee,
LAPACK Working Note 112 CS-96-330, Apr. 1996.

[3] A. Grama, V. Kumar, A. Gupta, and G. Karypis, An Introduction
to Parallel Computing: Design and Analysis of Algorithms, 2nd ed.
Addison-Wesley, 2003.

[4] D. Skillicorn and D. Talia, “Models and languages for parallel compu-
tation,” ACM Computing Surveys, vol. 30, no. 2, pp. 123–169, 1998.

[5] R. Buyya, High Performance Cluster Computing. Upper Saddle River,
NJ: Prentice-Hall, 1999.

[6] B. Wilkinson and M. Allen, Parallel Programming. Techniques and
Applications using Networked Workstations and Parallel Computers.
Upper Saddle River, NJ: Prentice–Hall, 1995.

[7] A. Lastovetsky, Parallel Computing on Heterogeneous Networks. John
Wiley & Sons, 2003.

[8] P. Fortier and H. Michel, Computer systems performance evaluation and
prediction. Burlington, MA: Digital Press, 2003.

[9] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
New York, NY: Wiley-Interscience, 1991.

[10] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. Wong, and H. Shi, “On the
versatility of parallel sorting by regular sampling,” Parallel Computing,
vol. 19, no. 10, pp. 1079–1103, 1993.

8

[11] O. Beaumont, V. Boudet, and A. Petitet, “A proposal for a heterogeneous
cluster ScaLAPACK (dense linear solvers),” IEEE Trans. Computers,
vol. 50, no. 10, pp. 1052–1070, 2001.

[12] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Load balanc-
ing strategies for dense linear algebra kernels on heterogeneous two-
dimensional grids,” in 14th Int. Parallel and Distributed Processing
Symposium (IPDPS’2000), 2000, pp. 783–792.

[13] O. Beaumont, A. Legrand, F. Rastello, and Y. Robert, “Dense linear
algebra kernels on heterogeneous platforms: Redistribution issues,”
Parallel Computing, vol. 28, pp. 155–185, 2002.

[14] O. Beaumont, A. Legrand, and Y. Robert, “Static scheduling strategies
for dense linear algebra kernels on heterogeneous clusters,” in Parallel
Matrix Algorithms and Applications. Universit é de Neuchâtel, 2002.

[15] E. Dovolnov, A. Kalinov, and S. Klimov, “Natural block data decompo-
sition of heterogeneous computers,” in 17th Int. Parallel and Distributed
Processing Symposium (IPDPS’2003), 2003.

[16] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,” Journal of Parallel and Distributed Computing, vol. 61,
no. 4, pp. 520–535, 2001.

[17] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, PA,
1997.

[18] R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra Package.
The MIT Press, 1997.

[19] I. Duff, M. Heroux, and R. Pozo, “An overview of the sparse basic linear
algebra subprograms,” ACM Trans. Math. Software, vol. 28, no. 2, pp.
239–267, 2002.

[20] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices.
Oxford, UK: Clarendon Press, 1986.

[21] Y. Saad, “Iterative methods for sparse linear systems,” January
2000, 2nd edition with corrections; available at http://www-users-
cs.umn.edu/˜saad/books.html.

