
Parallelizing Dense Linear Algebra Operations
with Task Queues in llc ?

Antonio J. Dorta1, José M. Bad́ıa2, Enrique S. Quintana-Ort́ı2, and
Francisco de Sande1

1 Depto. de Estad́ıstica, Investigación Operativa y Computación
Universidad de La Laguna, 38271–La Laguna, Spain

{ajdorta,fsande}@ull.es
2 Depto. de Ingenieŕıa y Ciencia de Computadores

Universidad Jaume I, 12.071–Castellón, Spain
{badia,quintana}@icc.uji.es

Abstract. llc is a language based on C where parallelism is expressed
using compiler directives. The llc compiler produces MPI code which
can be ported to both shared and distributed memory systems.
In this work we focus our attention in the llc implementation of the
Workqueuing Model. This model is an extension of the OpenMP stan-
dard that allows an elegant implementation of irregular parallelism. We
evaluate our approach by comparing the OpenMP and llc paralleliza-
tions of the symmetric rank-k update operation on shared and distributed
memory parallel platforms.

Keywords

MPI, OpenMP, Workqueuing, cluster computing, distributed memory.

1 Introduction

The advances in high performance computing (HPC) hardware have not been
followed by the software. The tools used to express parallel computations are
nowadays one of the major obstacles for the massive use of HPC technology.
Two of these tools are MPI [1] and OpenMP [2]. Key advantages of MPI are
its portability and efficiency, with the latter strongly influenced by the control
given to the programmer of the parallel application. However, a deep knowledge
of low-level aspects of parallelism (communications, synchronizations, etc.) is
needed in order to develop an efficient MPI parallel application.

On the other hand, OpenMP allows a much easier implementation. One can
start from a sequential code and parallelize it incrementally by adding compiler
directives to specific regions of the code. An additional advantage is that it

? This work has been partially supported by the EC (FEDER) and the Spanish MEC
(Plan Nacional de I+D+I, TIN2005-09037-C02).

follows the sequential semantic of the program. The main drawback of OpenMP
is that it only targets shared memory architectures.

As an alternative to MPI and OpenMP, we have designed llc [3] to exploit
the best features of both approaches. llc shares the simplicity of OpenMP: we
can start from a sequential code and parallelize it incrementally using OpenMP
and/or llc directives and clauses. The code annotated with parallel directives is
compiled by llCoMP, the llc compiler-translator, which produces an efficient and
portable MPI parallel source code, valid for both shared and distributed memory
architectures. An additional advantage of llc is that all the OpenMP directives
and clauses are recognized by llCoMP. Therefore, we have three versions in the
same code: sequential, OpenMP and llc/MPI, and we only need to choose the
proper compiler to obtain the appropriate binary.

Different directives have been designed in llc to support common parallel
constructs in the past as forall, sections, and pipelines [4,5]. In previous studies [4]
we have investigated the implementation of Task Queues in llc. In this paper
we focus our attention in the last feature added to llc: the support for the
Workqueuing Model using Task Queues [6]. In order to do so, we explore the
possibilities of parallelizing (dense) linear algebra operations, as developed in the
frame of the FLAME (Formal Linear Algebra Method Environment) project [7].

The rest of the paper is organized as follows. In Section 2 we present the
symmetric rank-k update (SYRK) operation as well as a FLAME code for its
computation. Section 3 reviews the parallelization of this code using OpenMP
and llc. Experimental results for both OpenMP and llc codes are reported
and discussed in Section 4. Finally, Section 5 offers some concluding remarks
and hints on future research.

2 The SYRK operation

The SYRK operation is one of the Basic Linear Algebra Subprograms (BLAS)
[8] most often used. It plays an important role, e.g., in the formation of the
normal equations in linear least-squares problems and the solution of symmetric
positive definite linear systems via the Cholesky factorization [9]. The operation
computes the lower (or upper) triangular part of the result of the matrix product
C := βC +αAAT , where C is an m×m symmetric matrix, A is an m×k matrix,
and α, β are scalars.

Listing 1 presents the FLAME code for the SYRK operation [10]. The par-
titioning routines (FLA Part x, FLA Repart x to y and FLA Cont with x to y)
are indexing operations that identify regions (blocks) into the matrices but do
not modify their contents. Thus, e.g., the invocation to FLA Part 2x1 in lines 7–
8 “divides” matrix (object) A into two submatrices (blocks/objects), AT and AB,
with the first one having 0 rows. Then, at each iteration of the loop, certain oper-
ations are performed with the elements in these submatrices (routines FLA Gemm
and FLA Syrk). More details can be consulted in [7].

1 int FLA_Syrk_ln_blk_var1_seq (FLA_Obj alpha , FLA_Obj A ,
2 FLA_Obj beta , FLA_Obj C , int nb_alg) {
3 FLA_Obj AT , AB , CTL , CBL , CTR , CBR ,
4 A0 , A1 , A2 , C00 , C01 , C02 , C10 , C11 , C12 , C20 , C21 , C22 ;
5 int b ;

7 FLA_Part_2x1 (A , &AT ,
8 &AB , 0 , FLA_TOP) ;
9 FLA_Part_2x2 (C , &CTL , &CTR ,

10 &CBL , &CBR , 0 , 0 , FLA_TL) ;

12 while (FLA_Obj_length (AT) < FLA_Obj_length (A)){
13 b = min (FLA_Obj_length (AB) , nb_alg) ;
14 FLA_Repart_2x1_to_3x1 (AT , &A0 ,
15 &A1 ,
16 AB , &A2 , b , FLA_BOTTOM) ;
17 FLA_Repart_2x2_to_3x3 (CTL , CTR , &C00 , &C01 , &C02 ,
18 &C10 , &C11 , &C12 ,
19 CBL , CBR , &C20 , &C21 , &C22 , b , b , FLA_BR) ;
20 /∗−−−∗/
21 /∗ C10 := C10 + A1 ∗ A0 ’ ∗/
22 FLA_Gemm (FLA_NO_TRANSPOSE , FLA_TRANSPOSE , alpha , A1 , A0 ,
23 beta , C10 , nb_alg) ;
24 /∗ C11 := C11 + A1 ∗ A1 ’ ∗/
25 FLA_Syrk (FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE , alpha , A1 ,
26 beta , C11 , nb_alg) ;
27 /∗−−−∗/
28 FLA_Cont_with_3x1_to_2x1 (&AT , A0 ,
29 A1 ,
30 &AB , A2 , FLA_TOP) ;
31 FLA_Cont_with_3x3_to_2x2 (&CTL , &CTR , C00 , C01 , C02 ,
32 C10 , C11 , C12 ,
33 &CBL , &CBR , C20 , C21 , C22 , FLA_TL) ;
34 }
35 return FLA_SUCCESS ;
36 }

Listing 1. FLAME code for the SYRK operation

3 Parallelization of the SYRK operation

A remarkable feature of FLAME is its capability for hiding intricate indexing in
linear algebra computations. However, this feature is a drawback for the tradi-
tional OpenMP method to obtain parallelism from a sequential code, based on
exploiting the parallelism of for loops. Thus, the OpenMP approach requires
loop indexes for expressing parallelism which are not available in FLAME codes.

Task Queues [6] have been proposed for adoption in OpenMP 3.0 and are
currently supported by the Intel OpenMP compilers. Their use allows an elegant
implementation of loops when the space iteration is not known in advance or,
as in the case of FLAME code, when explicit indexing is to be avoided.

3.1 OpenMP parallelization

The parallelization of the SYRK operation using the Intel implementation of Task
Queues is described in [10]. The Intel extension provides two directives to spec-
ify tasks queues. The omp parallel taskq directive specifies a parallel region

where tasks can appear. Each task found in this region will be queued for later
computation. The omp task identifies the tasks. For the SYRK operation, the first
clause is used to mark the while loop (line 12 in Listing 1), while the second
one identifies the invocations to FLA Gemm and FLA Syrk as tasks (lines 21–26 in
Listing 1). Listing 2 shows the parallelization using taskq of the loop in the

1 # pragma i n t e l omp paral le l taskq{
2 while (FLA_Obj_length (AT) < FLA_Obj_length (A)){
3 . . .
4 #pragma intel omp task captureprivate (A0 , A1 , C10 , C11){
5 /∗ C10 := C10 + A1 ∗ A0 ’ ∗/
6 FLA_Gemm (FLA_NO_TRANSPOSE , FLA_TRANSPOSE , alpha , A1 , A0 ,
7 beta , C10 , nb_alg) ;
8 /∗ C11 := C11 + A1 ∗ A1 ’ ∗/
9 FLA_Syrk (FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE , alpha , A1 ,

10 beta , C11 , nb_alg) ;
11 }
12 . . .
13 }
14 }

Listing 2. FLAME code for the SYRK operation parallelized using OpenMP

FLAME code for the SYRK operation. The directive omp task that appears in
line 4 is used to identify the tasks. Function calls to FLA Gemm and FLA Syrk
are in the scope of the taskq directive in line 1 and, therefore, a new task that
computes both functions is created at each iteration of the loop. The first of
these functions computes C10 := C10 + A1A

T
0 , while the second one computes

C11 := C11 + A1A
T
1 . All the variables involved in these computations have to

be private to each thread (A0, A1, C10, and C11), ant thus they must be copied
to each thread during execution time. The captureprivate clause that comple-
ments the omp parallel task directive serves this purpose.

3.2 llc parallelization

In this section we illustrate the use of llc to parallelize the SYRK code. Further
information about the effective translation of the directives in the code to MPI
can be found in [4]. The parallelization using llc resembles that carried out
using OpenMP, with a few differences that are illustrated in the following. After
identifying the task code, we annotate the regions using llc and/or OpenMP di-
rectives. All the OpenMP directives and clauses are accepted by llCoMP, though
not all of them have meaning and/or effect in llc [4].

We will start from the OpenMP parallel code shown in Listing 2 and we will
add the necessary llc directives in order to complete the llc parallelization. The
OpenMP captureprivate clause has no sense in llc, because llCoMP produces a
MPI code where each processor has its private memory. (llc follows the OTOSP
model [3], where all the processors on the same group have the same data in
their private memories.) Unlike OpenMP, in llc all the variables are private by

1 # pragma i n t e l omp task
2 # pragma l l c ta sk maste r data (&A0 .m, 1 , &A1 . offm , 1 , &A1 .m, 1)
3 # pragma l l c ta sk maste r data (&C11 . offm ,1 ,&C11 . o f fn ,1 ,&C11 .m,1 ,&C11 . n , 1)
4 # pragma l l c ta sk maste r data (&C10 . offm ,1 ,&C10 . o f fn ,1 ,&C10 .m,1 ,&C10 . n , 1)
5 # pragma l l c t a s k s l a v e s e t d a t a (&A1 . base , 1 ,A. base ,&A0 . base , 1 ,A. base)
6 # pragma l l c t a s k s l a v e s e t d a t a (&C11 . base , 1 ,C. base ,&C10 . base , 1 ,C. base)
7 # pragma l l c t a s k s l a v e s e t d a t a (&A0 . offm , 1 ,A. offm ,&A0 . o f fn , 1 ,A. o f fn ,&A0 .

n , 1 ,A. n)
8 # pragma l l c t a s k s l a v e s e t d a t a (&A1 . o f fn , 1 ,A. o f fn ,&A1 . n , 1 ,A. n)
9 # pragma l l c t a s k s l a v e r n c da t a ((C10 . base−>bu f f e r +((C10 . o f f n ∗C10 . base−>

ldim+C10 . offm)∗ s izeof (double))) , (C10 .m ∗ s izeof (double)) , ((C10 .
base−>ldim − C10 .m) ∗ s izeof (double)) , C10 . n)

10 # pragma l l c t a s k s l a v e r n c da t a ((C11 . base−>bu f f e r +((C11 . o f f n ∗C11 . base−>
ldim+C11 . offm)∗ s izeof (double))) , (C11 .m ∗ s izeof (double)) , ((C11 .
base−>ldim − C11 .m) ∗ s izeof (double)) , C11 . n)

11 {
12 /∗ C10 := C10 + A1 ∗ A0 ’ ∗/
13 FLA_Gemm (FLA_NO_TRANSPOSE , FLA_TRANSPOSE , alpha , A1 , A0 ,
14 beta , C10 , nb_alg) ;
15 /∗ C11 := C11 + A1 ∗ A1 ’ ∗/
16 FLA_Syrk (FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE , alpha , A1 ,
17 beta , C11 , nb_alg) ;
18 }

Listing 3. FLAME code for the SYRK operation parallelized using llc

default, and we have to use llc directives to specify shared data. Listing 3 shows
the parallelization of the FLAME code for the SYRK operation using llc.

A first comparison of Listings 2 and 3 shows an apparent increase in the
number of directives when llc is used. However, note that only three directives
are actually needed, but we split those in order to improve the readability. Al-
though llc code can be sometimes as simple as OpenMP code (see, e.g., [4]),
here we preferred to use an elaborated algorithm to illustrate how llc overcomes
difficulties that usually appear when targeting parallel distributed memory ar-
chitectures: references to specific data inside a larger data structure (submatrices
instead of the whole matrix), access to non-contiguous memory locations, etc.

In the llc implementation of Task Queues, a master processor handles the
task queue, sends subproblems to the slaves, and gathers the partial results
to construct the solution. Before the execution of each task, the master pro-
cessor needs to communicate some initial data to the slaves, using the llc
task master data directive. As the master and slaves processors are on the
same group, they have the same values in each private memory region. Exploit-
ing this, the master processor only sends those data that have been modified.
With this approach the number of directives to be used is larger than in the
OpenMP case, but the amount of communications is considerably reduced.

The master needs to communicate to each slave the offset and number of
elements of the objects A0, A1, C10, and C11 (lines 2–4). After each execution, the
slave processors “remember” the last data used. To avoid this, we employ the llc
task slave set data directives in lines 5–8 that initialize the variables before
each task execution to certain fixed values (with no communications involved).

The code inside the parallel task computes C10 := C10 + A1A
T
0 and C11 :=

C11+A1A
T
1 . The slaves communicate to the master the results obtained (C10 and

C11). These data are not stored in contiguous memory positions and therefore
can not be communicated as a single block. However, the data follow a regular
pattern and can be communicated using the llc task slave rnc data directive
(lines 9–10). This directive specifies regular non-contiguous memory locations.

4 Experimental Results

All the experiments reported in this section for the SYRK operation (C := C +
AAT , with an m×m matrix C and an m× k matrix A) were performed using
double-precision floating point arithmetic. The results correspond to the codes
that have been illustrated previously in this paper (FLAME Variant 1 of the SYRK
operation, Var1) as well as a second variant (Var2) for the same operation [10].

Three different platforms were employed in the evaluation, with the common
building block in all these being an Intel Itanium2 1.5GHz processor. The first
platform is a shared-memory (SM) Bull NovaScale 6320 with 32 processors. The
second platform is a SM SGI Altix 250 with 16 processors. The third system
is a hybrid cluster composed of 9 nodes connected via a 10 Gbit/s InfiniBand
switch; each node is a SM architecture with 4 processors, yielding a total of
36 processors in the system. An extensive experimentation was performed to
determine the best block size (parameter nb alg in the algorithms) for each
variant and architecture. Only those results corresponding to the optimal block
size (usually, around 96) are reported next.

The OpenMP implementations were compiled with the Intel C compiler,
while the llc binaries were produced with llCoMP combined with the mpich
implementation of MPI on the SGI Altix and hybrid cluster, and MPIBull-
Quadrics 1.5 on the NovaScale server.

The goal of the experiments on SM platforms is to compare the performance
of the SYRK implementation in OpenMP and llc. The results on the hybrid
system are presented to demonstrate that high performance can be also achieved
when the portability of llc is exploited.

Table 1 reports the results for the SYRK codes. In particular, the second row
of the table shows the execution time of the sequential code, while the remaining
rows illustrate the speed-up of the OpenMP and llc parallelizations on the SGI
Altix and the Bull NovaScale.

The results show a similar performance for OpenMP and our approach on
both architectures. OpenMP obtains a higher performance than llc when the
number of processors is small. The reason for this behavior is that in the llc
implementation one of the processors acts as the master. As the number of pro-
cessors grows, the speed-up of llc increases faster than that of OpenMP. When
the number of processors is large, llc yields better performance than OpenMP
because it is less affected by memory bandwidth problems. The second variant
of the algorithm exhibits a better performance than the first one, because it gen-
erates a larger number of tasks with finer granularity during the computations
following a bidimensional partitioning of the work; see [10].

#Proc. Var1 SGI Var1 Bull Var2 SGI Var2 Bull

seq. 19.0 sec. 176.5 sec. 19.0 sec. 176.5 sec.

– omp llc omp llc omp llc omp llc

3 2.13 1.58 2.75 1.85 2.83 1.89 2.94 1.98

4 2.85 2.22 3.48 2.65 3.72 2.82 3.84 2.96

6 3.97 3.49 4.25 4.16 5.51 4.72 5.34 4.91

8 4.60 4.68 5.16 5.59 7.16 6.52 6.74 7.21

10 5.78 5.70 6.83 6.98 8.82 8.33 8.16 8.62

12 6.76 7.41 7.34 7.81 10.24 10.09 9.53 10.65

14 6.69 7.81 7.93 8.90 11.67 11.79 9.37 13.20

16 7.41 9.02 8.61 9.35 12.71 13.62 9.56 13.76

Table 1. Sequential time and speed-up obtained on the SM platforms for Vari-
ants 1 and 2 of the SYRK operation for both OpenMP and llc. For the Bull
NovaScale 6320 (Bull), m=10000 and k=7000. For the SGI Altix 250 (SGI),
m=6000 and k=3000.

Figure 1 shows the speed-up obtained on the hybrid system. Again the second
variant exhibits a better performance, and a maximum speed-up slightly above
25 is attained using 36 processors.

5 Conclusions and Future Work

llc is an language based on C that, given a sequential code annotated with
directives and using the llCoMP translator-compiler, produces MPI parallel code.
llc combines the high productivity in code development of OpenMP with the
high performance and the portability of MPI.

In this paper we have evaluated the performance of the Task Queues imple-
mentation in llc using FLAME codes for the SYRK operation. We have shown
that the llc directives facilitate optimization and tuning. The additional com-
plexity introduced in the llc version with respect to the OpenMP version is
clearly paid off by the portability of the code. The performance achieved with
our approach is comparable to that obtained using OpenMP. Taking into ac-
count the smaller effort to develop codes using llc compared with a direct MPI
implementation, we conclude that llc is appropriate to implement some classes
of parallel applications.

Work in progress concerning this topic includes the following:

– To study other variants and parallelization options for the SYRK operation,
such as using two tasks per iteration or splitting the while loop.

– To study other FLAME operations. We are currently working on the matrix-
vector product.

– To apply our approach to other scientific and engineering applications.
– To extend the computational results to other machines and architectures.

Fig. 1. Speed-up on the hybrid system for Variants 1 and 2 of the SYRK operation
parallelized using llc. On this system, m=5000 and k=3000.

References

1. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
University of Tennessee, Knoxville, TN, 1995, http://www.mpi-forum.org/.

2. OpenMP Architecture Review Board, OpenMP Application Program Interface v.
2.5 (May 2005).

3. A. J. Dorta, J. A. González, C. Rodŕıguez, F. de Sande, llc: A parallel skeletal
language, Parallel Processing Letters 13 (3) (2003) 437–448.

4. A. J. Dorta, P. Lopez, F. de Sande, Basic skeletons in llc, Parallel Computing
32 (7–8) (2006) 491–506.

5. A. J. Dorta, J. M. Bad́ıa, E. S. Quintana, F. de Sande, Implementing OpenMP for
clusters on top of MPI, in: Proc. of the 12th European PVM/MPI Users’ Group
Meeting, Vol. 3666 of LNCS, Springer-Verlag, Sorrento, Italy, 2005, pp. 148–155.

6. S. Shah, G. Haab, P. Petersen, J. Throop, Flexible control structures for parallelism
in OpenMP, Concurrency: Practice and Experience 12 (12) (2000) 1219–1239.

7. P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ort́ı, R. A. van de
Geijn, The science of deriving dense linear algebra algorithms, ACM Trans. on
Mathematical Software 31 (1) (2005) 1–26.

8. C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Basic linear algebra
subprograms for fortran usage., ACM Trans. Math. Softw. 5 (3) (1979) 308–323.

9. G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd Edition, Johns Hopkins
University Press, Baltimore, MD, 1996.

10. F. Van Zee, P. Bientinesi, T. M. Low, R. A. van de Geijn, Scalable parallelization of
FLAME code via the workqueuing model, ACM Trans. on Mathematical Software
To appear. Electronically available at
http://www.cs.utexas.edu/users/flame/pubs.html.

http://www.cs.utexas.edu/users/flame/pubs.html

	Parallelizing Dense Linear Algebra Operations with Task Queues in llc
	Antonio J. Dorta, José M. Badía, Enrique S. Quintana-Ortí, and Francisco de Sande

