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Abstract. In this paper we describe the parallelization of two nearest neighbour 
classification algorithms. Nearest neighbour methods are well-known machine 
learning techniques. They have been successfully applied to Text 
Categorization task. Based on standard parallel techniques we propose two 
versions of each algorithm on message passing architectures. We also include 
experimental results on a cluster of personal computers using a large text 
collection. Our algorithms attempt to balance the load among the processors, 
they are portable, and obtain very good speedups and scalability.  

1 Introduction 

Text Categorization (also known as text classification) is the task of assigning 
documents to one or more predefined categories. This task, which falls at the 
crossroads of Information Retrieval and Machine Learning, has witnessed a booming 
interest in the last years from researchers and developers alike. Text Categorization is 
an important component in many information management tasks such as spam 
detection [1], real time sorting of email or files into folders, document filtering [2], 
document dissemination, document routing [3], topic identification, classification of 
Web pages and automatic building of Yahoo!-style catalogs. Different learners have 
been applied in the Text Categorization literature, including probabilistic methods, 
decision tree and decision rule learners, example-based methods, support vector 
machines and classifier committees.  

Most sequential text categorization algorithms have large running times. On the 
other hand, the volume of data available for analysis is growing rapidly. The huge 
size of text collections and their high dimension make classification a highly 
computationally-demanding application, to the point that parallel computing is an 
essential tool for its solution. Parallelism offers a natural and promising approach to 
cope with the problem of efficient categorization in large text collections. 

Nearest neighbour (NN) classifiers are well-known methods for text categorization 
problems. This approach classifies an unknown sample into the categories of its 
nearest neighbours, according to some similarity measure. A particular case of NN 
classifiers is the k-nearest neighbour rule (k-NN), which assigns each unknown 
sample to the category most frequently represented among the k nearest training 
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samples. The NN classifiers include the following features: 1) conceptual simplicity, 
2) easy implementation, 3) they can be designed even if there are few training 
samples, 4) known error rate bounds, 5) they can be implemented when categories are 
overlapped with each other, 6) good accuracy, 7) they have no design phase and 
simply store the training set, and 8) they can be performed in linear time with respect 
to the cardinality of the training set. The last feature can be a serious problem in very 
large text collections, because the computation of similarities is very time-consuming. 

Several parallel versions of the NN learning method can already be found in the 
literature. Li [4] proposed several parallel nearest neighbour classification algorithms 
on two different types of SIMD computers. In [5] a parallel nearest neighbour 
classifier which uses attribute weights in the computation of distance is presented. 
This algorithm was implemented on the Connection Machine CM-2. It partitions the 
training set into p mutually exclusive data subsets that are distributed across the p 
processors. Then, each processor computes the similarity between the training 
samples in its local data subset and the new sample to be classified. Jin et al. [6] apply 
the same data distribution on a cluster parallel computer. Each node processes its 
training samples to calculate locally the k-nearest neighbours to the new sample and 
then, a global reduction is carried out to compute the overall k-nearest neighbours. 
The experimental results showed good speedup up to 8 nodes. 

Finally, Jin et al. [7] also proposed a parallel version of k-NN algorithm on a 
shared memory computer. Each training sample is processed by one processor. After 
processing the sample, each processor updates the list of k current nearest neighbours. 
They used a full-replication scheme to avoid the race conditions. The obtained 
speedup was moderate up to four processors.  

In this paper, we introduce scalable and efficient parallel versions of two nearest 
neighbour classification methods for distributed memory computers. Our versions use 
the standard parallel techniques: master-slave and pipelining. The algorithms were 
implemented using the MPI library on a cluster parallel computer. The performance 
of the proposed algorithms is evaluated on the Reuters Corpus Volume I [8], which is 
the new standard benchmark for text categorization tasks.  

The remainder of this paper is organized as follows. In Section 2 we briefly review 
the nearest neighbour classification methods addressed in this paper. Section 3 
describes our parallel algorithms. In Section 4 we show the experimental results and 
compare the proposed parallel versions. Finally, Section 5 contains a summary of the 
work. 

2 Sequential algorithms 

As mentioned above, the nearest neighbour methods classify an unknown document d 
into the categories of its nearest neighbours in the training set. The training set is a 
collection of m documents labelled with their categories.  

The nearest neighbour classifiers usually involve three phases: (i) the nearest 
neighbour finding from the training documents, (ii) a voting phase, in which each 
category assigns a vote to d, and (iii) a decision rule, in which a decision is made from 
these votes to classify the new document. During the last years, a large number of NN 



algorithms have aroused from various scientific communities. Many of them focus on 
increasing classification rates, either changing the method to find the nearest 
neighbours or varying the voting scheme. 

In this paper we focus on two NN methods, which assume different neighbourhood 
definitions. The first one, the traditional k-NN, starts at d and grows a spherical region 
until it encloses k training documents, where k is a user defined parameter.  

The second method [9], considers a kind of neighbourhood which inspects a 
sufficiently small and near area to d. In this method, the number of neighbours is not 
fixed, but rather the neighbourhood radius is automatically adjusted from the nearest 
neighbour of d. This neighbourhood takes into account instead all neighbours 
enclosed within a spherical region defined from the nearest neighbour. The method 
uses two parameters α and β, which provide a convenient way of obtaining such a 
neighbourhood. From now on, we will refer to this method as braNN. In Figure 1 both 
neighbourhoods are graphically depicted. The shady regions represent the 
neighbourhoods in both methods. 
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Fig. 1. Neighbourhoods of k-NN and braNN methods. 
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Different methods have been used to calculate the votes of each category (second 

phase). One of these methods considers the similarity of the nearest neighbours and 
their category association to calculate the votes [10], i.e.,  
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where N is the set of all nearest neighbours of the document d, N(ci) is the set of the 
nearest neighbours labelled with the category ci, and cos(d,dj) is the cosine between 
the two document vectors, which is the similarity measure commonly used in text 
categorization tasks.  

From these category votes, several rules can be applied for deciding whether d 
should be classified under ci (third phase). In this paper, we used the thresholding 
decision rule. According with this rule, the document is assigned to categories with 
the score greater than a certain threshold value γ. Notice that this decision rule allows 
a multi-label categorization.  

Both nearest neighbour methods, k-NN and braNN, employ the same voting 
scheme and decision rule. To sum up, the steps of NN classifiers we use are shown in 



Algorithm 1. The step 3 depends on the neighbourhood definition. Algorithms 2 and 3 
show the construction of the neighbourhood in k-NN and braNN methods, 
respectively. 

 
Algorithm 1 NN classifiers.  
1. Let Tr be the training set. 
2. Let d be the document to classify. 
3. Build the set N of neighbours of d according with a certain neighbourhood definition.   
4. Compute the votes V(ci,d) for each category ci using formula (1). 
5. For each category ci: 
      (a) If  V(ci,d) ≥ γ: 
       i. Assign d to ci. 

 

Algorithm 2 Construction of the k-NN neighbourhood.  
1. Let N be the list of neighbours of d, decreasingly ordered by its similarity with d.   
2. N = ∅. 
3. For each training document dj ∈ Tr: 
 (a) Insert dj in N. 
 (b) If |N| > k: 
           i. Remove the last element of N. 

 

Algorithm 3 Construction of the braNN neighbourhood.  
1. Build the set Nβ ={dj ∈Tr / cos(d,dj) ≥ β} 
2. Let max be the similarity between d and its nearest neighbour in Nβ.   
3. Let N be the list of neighbours of d, N = ∅. 
4. For each training document dj ∈ Nβ: 
 (a) If  cos(d,dj) ≥ max - α: 
  i. Add dj to N. 
 

The space complexity of both algorithms is O(m), because the whole training set is 
stored. On the other hand, its time complexity is O(nm), where n is the number of 
documents to classify, because for each unknown sample the similarity with each 
training document is calculated.  

3 Parallel algorithms 

Our parallel algorithms assume that we have p processors each with a local memory. 
These processors are connected using a communication network. We do not assume a 
specific interconnection topology for the communication network, but the access time 
to the local memory of each processor must be cheaper than time to communicate the 
same data with other processor. 

We present two parallel versions of the algorithms k-NN and braNN. The first 
parallel algorithm uses a master-slave scheme whereas the second one uses the 
pipeline technique. 



3.1. Master-slave algorithms 

In the distributed memory setting, the nearest neighbour classifiers can be parallelized 
by dividing the data to be classified among the processors and replicating the training 
set. Thus, each processor can classify the data items it owns. A uniform data 
distribution can produce a load imbalance, since the computation of similarities of the 
sample to the training documents is the most time-consuming task, and the documents 
can have different sizes. An easy way to achieve load balancing is to use a master-
slave scheme. 

Our parallel algorithm can be described as follows. First, the master process 
broadcasts the training set. Then, the master sends a sample to each slave process. The 
slaves determine independently the nearest neighbours of their samples and classify 
them. Each time a slave finishes its work with a sample it asks for a new one to the 
master. 

It is important to notice that no significant differences between k-NN and braNN 
exist in this parallel version. In the first case, each processor determines the k nearest 
neighbours (see Algorithm 2), whereas in the second one the processors determine the 
neighbourhood defined by α and β parameters (see Algorithm 3). 

The time complexity of this scheme is O(nm/(p-1)), because the n unknown 
documents are classified independently by the p-1 slave processors and the 
communications and waiting time can be overlapped with the computations. The 
space complexity of this parallel algorithm is O(m), because each processor stores the 
whole training set. Thus, this version does not have space scalability.  

3.2. Pipeline algorithms 

Instead of dividing the data to be classified, in this parallel version, the training set is 
partitioned into p mutually exclusive data subsets that are distributed among the p 
processors. Once this data is distributed, the problem of finding the nearest 
neighbours of each document to classify can be broken up into several stages.  
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Fig. 2. Pipeline scheme. 
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One pipeline solution could have a separate stage in each processor for updating 

the neighbourhood of each unknown sample, as shown in Figure 2. Each stage of the 
pipeline computes the similarities between the training documents in its local data 
subset and the document to be classified, and updates the list of nearest neighbours 
provided by the previous stage. Each unknown document and its partial 



neighbourhood are sent from one processor to the next. Thus, the last processor 
obtains the global neighbourhood and it also classifies the sample. 

The steps of this parallel algorithm are shown in Algorithm 4. 
 

Algorithm 4 Pipelining.  
1. Scatter the training documents among the processors. 
2. While True:   

(a) If processor 0: 
      i. Load the unknown document d. 
      ii. Build the local neighbourhood of d. 
      iii. Send d and its neighbours to processor 1. 
(b) Else: 
      i. Receive d and its neighbours from the previous processor. 
      ii. Update the local neighbourhood of d. 
      iii. If it is the last processor: 
          A. Classify the document d. 
      iv. Else: 
        A. Send d and its neighbours to the next processor. 

 
The neighbourhood updating (step 2(b)ii) depends on the nearest neighbour 

classifier. In parallel k-NN algorithm, each processor updates the neighbour list 
associated to each unknown sample it receives. This list is ordered by similarity to the 
sample and must only contain k documents. When a processor receives the sample 
and the local list of neighbours from the previous one, it inserts its training documents 
in the list according with its similarity to the sample. 

On the other hand, in parallel braNN algorithm, each processor updates the nearest 
neighbour to the unknown sample and the list of those training documents whose 
similarity is greater than both β and max-α (max is the similarity between the nearest 
neighbour and the new sample). 

The time complexity is O(nm/p), because each processor computes the similarities 
between each sample and its m/p training documents. In this parallel algorithm the 
communications can be overlapped with the computations. The space complexity of 
this parallel version in both algorithms is O(m/p), because the training set is scattered 
among the p processors. Thus, this parallel algorithm has space scalability.  

Notice that both, this parallel version and the algorithm proposed by Jin [6], 
distribute the training set among the processors and that local neighbourhoods are 
calculated in each processor. However, both algorithms differ on the procedure to 
compute the global neighbourhood. In Jin’s algorithm a global reduction is carried out 
whereas we use a pipeline. 

4 Performance evaluation 

The target platform for our experimental analysis is a cluster of SMP processors 
connected through an Infinitband network. The cluster consists of 8 nodes, each 
containing 4 Intel Itanium-2 processors and 4 Gbyte of RAM. The proposed parallel 
algorithms have been implemented on a Linux operating system, and we have used a 
specific implementation of the MPI message-passing library that offers small 



latencies and high bandwidths on the Infinitband network. This library also optimizes 
the communications between processors on the same node by exploiting the shared 
memory as communication mechanism. We have executed the parallel algorithms 
varying the number of processors from 4 to 32. 

We used the Reuters Corpus Volume I (RCV1-v2) [8] as our testing medium. 
RCV1-v2 collection consists of over 800000 newswire stories that have been 
manually classified in 103 categories. This collection is partitioned (according to the 
LYRL2004 split we have adopted) into a training set of 23149 documents and a test 
set of 781265 documents. The documents are represented using the traditional vector-
space model. Terms are statistically weighted using Cornell ltc term weighting [11].  

Due to the fact that we focus on a parallelization scheme, no accuracy results for 
the data are given in this paper. We neither tune the parameters of the algorithms, but 
we fix the values that report good results in the literature.  

In this paper, we compare our two parallel versions of k-NN and braNN 
algorithms. We also implemented the parallel version proposed by Jin [6] and 
compare it with them. The performance comparison using different number of 
processors for k-NN and braNN algorithms is shown in Figures 3 and 4, respectively. 
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Fig. 3. Running times of parallel k-NN versions. 
 
Several observations can be made by analyzing the results in these figures. First, 

both sequential algorithms spent a lot of time classifying the documents. Second, all 
parallel versions clearly reduce the sequential time. Notice that the sequential k-NN 
algorithm takes about 6 days to classify this collection, while the pipeline parallel 
version reduces this time to 4.08 hours on 32 processors. In case of braNN algorithm, 
the time decreases from 5.26 days down to 3.58 hours.  

A third observation that also emerges clearly from the figures is that all parallel 
versions of braNN algorithm are less time-consuming than the corresponding parallel 
versions of k-NN algorithm independently of the number of processors used. This fact 
is in agreement with the results presented earlier in [9]. This can be explained because 
braNN algorithm does not need to create a sorted list of k nearest neighbours. 
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Fig. 4. Running times of parallel braNN versions. 

Figure 5 shows the speedups obtained by the parallel k-NN algorithms. As we can 
see, Jin’s algorithm slightly outperforms our parallel version that uses the master-
slave model for a small number of processors. However, our algorithm obtains larger 
speedups while increasing the number of processors. This can be explained because 
our algorithm uses only p-1 processors to classify the documents and, therefore, its 
speedup is always near p-1. On the contrary, as Jin’s algorithm uses a global 
reduction operation, its efficiency goes down as the number of processors increases. 
Thus, we can conclude that our parallel version is more scalable than Jin’s algorithm. 
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Fig. 5. Speedup of parallel k-NN versions. 

On the other hand, Figure 5 shows clearly that pipeline parallel version achieves 
superlinear speedup.  We think that it is due to the data distribution used. The higher 



the number of processors, the lower the problem size per processor is, and therefore, 
the cache hit ratio is increased. The overlapping between the communications and the 
computations also contributes positively to this result.  

Finally, the speedups obtained by the parallel versions of braNN algorithm are 
shown in Figure 6. As it can be noticed, the results are very similar to those obtained 
by k-NN parallel algorithms. The parallel version that uses a pipeline model also 
achieves the best speedups in this case. 
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Fig. 6. Speedup of parallel braNN versions. 

5 Conclusions 

In this paper, we have focused on distributed memory parallelization of nearest 
neighbour classifiers. Two new parallel versions of these classifiers based on standard 
techniques: master-slave model and pipeline scheme are proposed. The resulting 
algorithms are portable, because they are based on standard tools, including the MPI 
message-passing library. 

We have reported experimental results on RCV1-v2 corpus, which is the new 
standard benchmark for text categorization tasks. These experiments establish the 
following: 

1. Sequential nearest neighbour classification requires intensive computation on 
very large text collections. 

2. Very good speedup is achieved for each of the proposed parallel algorithms. 
3. In the comparison between our parallel approach that uses a master-slave 

model and Jin’s algorithm, we conclude that despite its poor space scalability, 
our algorithm obtains better time scalability. 

4. The parallel algorithm that uses a pipeline model offers clear advantages over 
the parallel versions we experimented with in that it is both spatially and 
temporally scalable. This method achieves the same space scalability as Jin’s 



algorithm and the best time scalability.  The pipeline version also obtains 
superlinear speedup. 

The proposed parallel algorithms can be used in many highly computationally 
demanding-applications such as information organization, filtering, routing, topic 
tracking and text categorization tasks, allowing to process huge text collections.  
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