
Parallel Nearest Neighbour algorithms for Text
Categorization

Reynaldo Gil-García1, José Manuel Badía-Contelles2, Aurora Pons-Porrata1

1Center of Pattern Recognition and Data Mining, Universidad de Oriente (Cuba)
{gil,aurora}@csd.uo.edu.cu

2Dpt. Computer Science and Engineering, Universitat Jaume I, Castellón (Spain)
badia@icc.uji.es

Abstract. In this paper we describe the parallelization of two nearest neighbour
classification algorithms. Nearest neighbour methods are well-known machine
learning techniques. They have been successfully applied to Text
Categorization task. Based on standard parallel techniques we propose two
versions of each algorithm on message passing architectures. We also include
experimental results on a cluster of personal computers using a large text
collection. Our algorithms attempt to balance the load among the processors,
they are portable, and obtain very good speedups and scalability.

1 Introduction

Text Categorization (also known as text classification) is the task of assigning
documents to one or more predefined categories. This task, which falls at the
crossroads of Information Retrieval and Machine Learning, has witnessed a booming
interest in the last years from researchers and developers alike. Text Categorization is
an important component in many information management tasks such as spam
detection [1], real time sorting of email or files into folders, document filtering [2],
document dissemination, document routing [3], topic identification, classification of
Web pages and automatic building of Yahoo!-style catalogs. Different learners have
been applied in the Text Categorization literature, including probabilistic methods,
decision tree and decision rule learners, example-based methods, support vector
machines and classifier committees.

Most sequential text categorization algorithms have large running times. On the
other hand, the volume of data available for analysis is growing rapidly. The huge
size of text collections and their high dimension make classification a highly
computationally-demanding application, to the point that parallel computing is an
essential tool for its solution. Parallelism offers a natural and promising approach to
cope with the problem of efficient categorization in large text collections.

Nearest neighbour (NN) classifiers are well-known methods for text categorization
problems. This approach classifies an unknown sample into the categories of its
nearest neighbours, according to some similarity measure. A particular case of NN
classifiers is the k-nearest neighbour rule (k-NN), which assigns each unknown
sample to the category most frequently represented among the k nearest training

mailto:aurora@app.uo.edu.cu
mailto:badia@icc.uji.es

samples. The NN classifiers include the following features: 1) conceptual simplicity,
2) easy implementation, 3) they can be designed even if there are few training
samples, 4) known error rate bounds, 5) they can be implemented when categories are
overlapped with each other, 6) good accuracy, 7) they have no design phase and
simply store the training set, and 8) they can be performed in linear time with respect
to the cardinality of the training set. The last feature can be a serious problem in very
large text collections, because the computation of similarities is very time-consuming.

Several parallel versions of the NN learning method can already be found in the
literature. Li [4] proposed several parallel nearest neighbour classification algorithms
on two different types of SIMD computers. In [5] a parallel nearest neighbour
classifier which uses attribute weights in the computation of distance is presented.
This algorithm was implemented on the Connection Machine CM-2. It partitions the
training set into p mutually exclusive data subsets that are distributed across the p
processors. Then, each processor computes the similarity between the training
samples in its local data subset and the new sample to be classified. Jin et al. [6] apply
the same data distribution on a cluster parallel computer. Each node processes its
training samples to calculate locally the k-nearest neighbours to the new sample and
then, a global reduction is carried out to compute the overall k-nearest neighbours.
The experimental results showed good speedup up to 8 nodes.

Finally, Jin et al. [7] also proposed a parallel version of k-NN algorithm on a
shared memory computer. Each training sample is processed by one processor. After
processing the sample, each processor updates the list of k current nearest neighbours.
They used a full-replication scheme to avoid the race conditions. The obtained
speedup was moderate up to four processors.

In this paper, we introduce scalable and efficient parallel versions of two nearest
neighbour classification methods for distributed memory computers. Our versions use
the standard parallel techniques: master-slave and pipelining. The algorithms were
implemented using the MPI library on a cluster parallel computer. The performance
of the proposed algorithms is evaluated on the Reuters Corpus Volume I [8], which is
the new standard benchmark for text categorization tasks.

The remainder of this paper is organized as follows. In Section 2 we briefly review
the nearest neighbour classification methods addressed in this paper. Section 3
describes our parallel algorithms. In Section 4 we show the experimental results and
compare the proposed parallel versions. Finally, Section 5 contains a summary of the
work.

2 Sequential algorithms

As mentioned above, the nearest neighbour methods classify an unknown document d
into the categories of its nearest neighbours in the training set. The training set is a
collection of m documents labelled with their categories.

The nearest neighbour classifiers usually involve three phases: (i) the nearest
neighbour finding from the training documents, (ii) a voting phase, in which each
category assigns a vote to d, and (iii) a decision rule, in which a decision is made from
these votes to classify the new document. During the last years, a large number of NN

algorithms have aroused from various scientific communities. Many of them focus on
increasing classification rates, either changing the method to find the nearest
neighbours or varying the voting scheme.

In this paper we focus on two NN methods, which assume different neighbourhood
definitions. The first one, the traditional k-NN, starts at d and grows a spherical region
until it encloses k training documents, where k is a user defined parameter.

The second method [9], considers a kind of neighbourhood which inspects a
sufficiently small and near area to d. In this method, the number of neighbours is not
fixed, but rather the neighbourhood radius is automatically adjusted from the nearest
neighbour of d. This neighbourhood takes into account instead all neighbours
enclosed within a spherical region defined from the nearest neighbour. The method
uses two parameters α and β, which provide a convenient way of obtaining such a
neighbourhood. From now on, we will refer to this method as braNN. In Figure 1 both
neighbourhoods are graphically depicted. The shady regions represent the
neighbourhoods in both methods.

Nearest
neighbour

β

α
d

Fig. 1. Neighbourhoods of k-NN and braNN methods.

braNN

d

k-NN (k=4)

Different methods have been used to calculate the votes of each category (second

phase). One of these methods considers the similarity of the nearest neighbours and
their category association to calculate the votes [10], i.e.,

∑

∑

∈

∈
=

Nd
j

cNd
j

i

j

ij

dd

dd

dcV
),cos(

),cos(

),(
)(

, (1)

where N is the set of all nearest neighbours of the document d, N(ci) is the set of the
nearest neighbours labelled with the category ci, and cos(d,dj) is the cosine between
the two document vectors, which is the similarity measure commonly used in text
categorization tasks.

From these category votes, several rules can be applied for deciding whether d
should be classified under ci (third phase). In this paper, we used the thresholding
decision rule. According with this rule, the document is assigned to categories with
the score greater than a certain threshold value γ. Notice that this decision rule allows
a multi-label categorization.

Both nearest neighbour methods, k-NN and braNN, employ the same voting
scheme and decision rule. To sum up, the steps of NN classifiers we use are shown in

Algorithm 1. The step 3 depends on the neighbourhood definition. Algorithms 2 and 3
show the construction of the neighbourhood in k-NN and braNN methods,
respectively.

Algorithm 1 NN classifiers.
1. Let Tr be the training set.
2. Let d be the document to classify.
3. Build the set N of neighbours of d according with a certain neighbourhood definition.
4. Compute the votes V(ci,d) for each category ci using formula (1).
5. For each category ci:
 (a) If V(ci,d) ≥ γ:
 i. Assign d to ci.

Algorithm 2 Construction of the k-NN neighbourhood.
1. Let N be the list of neighbours of d, decreasingly ordered by its similarity with d.
2. N = ∅.
3. For each training document dj ∈ Tr:
 (a) Insert dj in N.
 (b) If |N| > k:
 i. Remove the last element of N.

Algorithm 3 Construction of the braNN neighbourhood.
1. Build the set Nβ ={dj ∈Tr / cos(d,dj) ≥ β}
2. Let max be the similarity between d and its nearest neighbour in Nβ.
3. Let N be the list of neighbours of d, N = ∅.
4. For each training document dj ∈ Nβ:
 (a) If cos(d,dj) ≥ max - α:
 i. Add dj to N.

The space complexity of both algorithms is O(m), because the whole training set is
stored. On the other hand, its time complexity is O(nm), where n is the number of
documents to classify, because for each unknown sample the similarity with each
training document is calculated.

3 Parallel algorithms

Our parallel algorithms assume that we have p processors each with a local memory.
These processors are connected using a communication network. We do not assume a
specific interconnection topology for the communication network, but the access time
to the local memory of each processor must be cheaper than time to communicate the
same data with other processor.

We present two parallel versions of the algorithms k-NN and braNN. The first
parallel algorithm uses a master-slave scheme whereas the second one uses the
pipeline technique.

3.1. Master-slave algorithms

In the distributed memory setting, the nearest neighbour classifiers can be parallelized
by dividing the data to be classified among the processors and replicating the training
set. Thus, each processor can classify the data items it owns. A uniform data
distribution can produce a load imbalance, since the computation of similarities of the
sample to the training documents is the most time-consuming task, and the documents
can have different sizes. An easy way to achieve load balancing is to use a master-
slave scheme.

Our parallel algorithm can be described as follows. First, the master process
broadcasts the training set. Then, the master sends a sample to each slave process. The
slaves determine independently the nearest neighbours of their samples and classify
them. Each time a slave finishes its work with a sample it asks for a new one to the
master.

It is important to notice that no significant differences between k-NN and braNN
exist in this parallel version. In the first case, each processor determines the k nearest
neighbours (see Algorithm 2), whereas in the second one the processors determine the
neighbourhood defined by α and β parameters (see Algorithm 3).

The time complexity of this scheme is O(nm/(p-1)), because the n unknown
documents are classified independently by the p-1 slave processors and the
communications and waiting time can be overlapped with the computations. The
space complexity of this parallel algorithm is O(m), because each processor stores the
whole training set. Thus, this version does not have space scalability.

3.2. Pipeline algorithms

Instead of dividing the data to be classified, in this parallel version, the training set is
partitioned into p mutually exclusive data subsets that are distributed among the p
processors. Once this data is distributed, the problem of finding the nearest
neighbours of each document to classify can be broken up into several stages.

 Tr2

Fig. 2. Pipeline scheme.

d7, d6, d5

 Tr3 Tr4

d4

N4

d3

N3

d2

N2

d1

N1

 Tr1

Documents to
be classified

Training subsets
in each processor

Ni: Local neighbourhood of di

One pipeline solution could have a separate stage in each processor for updating

the neighbourhood of each unknown sample, as shown in Figure 2. Each stage of the
pipeline computes the similarities between the training documents in its local data
subset and the document to be classified, and updates the list of nearest neighbours
provided by the previous stage. Each unknown document and its partial

neighbourhood are sent from one processor to the next. Thus, the last processor
obtains the global neighbourhood and it also classifies the sample.

The steps of this parallel algorithm are shown in Algorithm 4.

Algorithm 4 Pipelining.
1. Scatter the training documents among the processors.
2. While True:

(a) If processor 0:
 i. Load the unknown document d.
 ii. Build the local neighbourhood of d.
 iii. Send d and its neighbours to processor 1.
(b) Else:
 i. Receive d and its neighbours from the previous processor.
 ii. Update the local neighbourhood of d.
 iii. If it is the last processor:
 A. Classify the document d.
 iv. Else:
 A. Send d and its neighbours to the next processor.

The neighbourhood updating (step 2(b)ii) depends on the nearest neighbour

classifier. In parallel k-NN algorithm, each processor updates the neighbour list
associated to each unknown sample it receives. This list is ordered by similarity to the
sample and must only contain k documents. When a processor receives the sample
and the local list of neighbours from the previous one, it inserts its training documents
in the list according with its similarity to the sample.

On the other hand, in parallel braNN algorithm, each processor updates the nearest
neighbour to the unknown sample and the list of those training documents whose
similarity is greater than both β and max-α (max is the similarity between the nearest
neighbour and the new sample).

The time complexity is O(nm/p), because each processor computes the similarities
between each sample and its m/p training documents. In this parallel algorithm the
communications can be overlapped with the computations. The space complexity of
this parallel version in both algorithms is O(m/p), because the training set is scattered
among the p processors. Thus, this parallel algorithm has space scalability.

Notice that both, this parallel version and the algorithm proposed by Jin [6],
distribute the training set among the processors and that local neighbourhoods are
calculated in each processor. However, both algorithms differ on the procedure to
compute the global neighbourhood. In Jin’s algorithm a global reduction is carried out
whereas we use a pipeline.

4 Performance evaluation

The target platform for our experimental analysis is a cluster of SMP processors
connected through an Infinitband network. The cluster consists of 8 nodes, each
containing 4 Intel Itanium-2 processors and 4 Gbyte of RAM. The proposed parallel
algorithms have been implemented on a Linux operating system, and we have used a
specific implementation of the MPI message-passing library that offers small

latencies and high bandwidths on the Infinitband network. This library also optimizes
the communications between processors on the same node by exploiting the shared
memory as communication mechanism. We have executed the parallel algorithms
varying the number of processors from 4 to 32.

We used the Reuters Corpus Volume I (RCV1-v2) [8] as our testing medium.
RCV1-v2 collection consists of over 800000 newswire stories that have been
manually classified in 103 categories. This collection is partitioned (according to the
LYRL2004 split we have adopted) into a training set of 23149 documents and a test
set of 781265 documents. The documents are represented using the traditional vector-
space model. Terms are statistically weighted using Cornell ltc term weighting [11].

Due to the fact that we focus on a parallelization scheme, no accuracy results for
the data are given in this paper. We neither tune the parameters of the algorithms, but
we fix the values that report good results in the literature.

In this paper, we compare our two parallel versions of k-NN and braNN
algorithms. We also implemented the parallel version proposed by Jin [6] and
compare it with them. The performance comparison using different number of
processors for k-NN and braNN algorithms is shown in Figures 3 and 4, respectively.

0

100000

200000

300000

400000

500000

Ti
m

e
(s

ec
.)

Number of processors

Jin 519252 132055 66796 44926 34241 26948 22350 19789 18710

Master-Slave 519252 170989 73980 47294 40026 27178 22655 19168 16698

Pipelining 519252 131976 67108 43206 32258 24567 20133 17161 14712

1 4 8 12 16 20 24 28 32

Fig. 3. Running times of parallel k-NN versions.

Several observations can be made by analyzing the results in these figures. First,

both sequential algorithms spent a lot of time classifying the documents. Second, all
parallel versions clearly reduce the sequential time. Notice that the sequential k-NN
algorithm takes about 6 days to classify this collection, while the pipeline parallel
version reduces this time to 4.08 hours on 32 processors. In case of braNN algorithm,
the time decreases from 5.26 days down to 3.58 hours.

A third observation that also emerges clearly from the figures is that all parallel
versions of braNN algorithm are less time-consuming than the corresponding parallel
versions of k-NN algorithm independently of the number of processors used. This fact
is in agreement with the results presented earlier in [9]. This can be explained because
braNN algorithm does not need to create a sorted list of k nearest neighbours.

0

100000

200000

300000

400000

Ti
m

e
(s

ec
.)

Number of processors

Jin 455196 118348 59217 40178 30912 24250 20386 17762 15946

Master-Slave 455196 170905 64282 41389 30039 23760 19897 16704 14540

Pipelining 455196 115005 58175 37943 27862 21635 17638 14719 12887

1 4 8 12 16 20 24 28 32

Fig. 4. Running times of parallel braNN versions.

Figure 5 shows the speedups obtained by the parallel k-NN algorithms. As we can
see, Jin’s algorithm slightly outperforms our parallel version that uses the master-
slave model for a small number of processors. However, our algorithm obtains larger
speedups while increasing the number of processors. This can be explained because
our algorithm uses only p-1 processors to classify the documents and, therefore, its
speedup is always near p-1. On the contrary, as Jin’s algorithm uses a global
reduction operation, its efficiency goes down as the number of processors increases.
Thus, we can conclude that our parallel version is more scalable than Jin’s algorithm.

0
4
8

12
16
20
24
28
32
36

0 4 8 12 16 20 24 28 32

Number of processors

Sp
ee

du
p

Jin Master-Slave Pipelining

Fig. 5. Speedup of parallel k-NN versions.

On the other hand, Figure 5 shows clearly that pipeline parallel version achieves
superlinear speedup. We think that it is due to the data distribution used. The higher

the number of processors, the lower the problem size per processor is, and therefore,
the cache hit ratio is increased. The overlapping between the communications and the
computations also contributes positively to this result.

Finally, the speedups obtained by the parallel versions of braNN algorithm are
shown in Figure 6. As it can be noticed, the results are very similar to those obtained
by k-NN parallel algorithms. The parallel version that uses a pipeline model also
achieves the best speedups in this case.

0
4
8

12
16
20
24
28
32
36

0 4 8 12 16 20 24 28 32

Number of processors

Sp
ee

du
p

Jin Master-Slave Pipelining

Fig. 6. Speedup of parallel braNN versions.

5 Conclusions

In this paper, we have focused on distributed memory parallelization of nearest
neighbour classifiers. Two new parallel versions of these classifiers based on standard
techniques: master-slave model and pipeline scheme are proposed. The resulting
algorithms are portable, because they are based on standard tools, including the MPI
message-passing library.

We have reported experimental results on RCV1-v2 corpus, which is the new
standard benchmark for text categorization tasks. These experiments establish the
following:

1. Sequential nearest neighbour classification requires intensive computation on
very large text collections.

2. Very good speedup is achieved for each of the proposed parallel algorithms.
3. In the comparison between our parallel approach that uses a master-slave

model and Jin’s algorithm, we conclude that despite its poor space scalability,
our algorithm obtains better time scalability.

4. The parallel algorithm that uses a pipeline model offers clear advantages over
the parallel versions we experimented with in that it is both spatially and
temporally scalable. This method achieves the same space scalability as Jin’s

algorithm and the best time scalability. The pipeline version also obtains
superlinear speedup.

The proposed parallel algorithms can be used in many highly computationally
demanding-applications such as information organization, filtering, routing, topic
tracking and text categorization tasks, allowing to process huge text collections.

Acknowledgments. This work was partially supported by the Research Promotion
Program 2006 of Universitat Jaume I, Spain and by the CICYT project TIN2005-
09037-C02-02 and FEDER.

References

[1] Drucker, H., Wu, D. and Vapnik, V.N.: Support Vector Machines for Spam Categorization.
IEEE Transactions on Neural Networks 10(5) (1999) 1048-1054.

[2] Eichmann, D. and Srinivasan, P.: Adaptive Filtering of Newswire Stories using Two-Level
Clustering. Information Retrieval 5 (2002) 209-237.

[3] Iyer, R. D., Lewis, D. D., Schapire, R. E., Singer, Y. and Singhal, A.: Boosting for
Document Routing. In: Proceedings of the Ninth International Conference on Information
and Knowledge Management (2000).

[4] Li, X.: Nearest neighbor classification on two types of SIMD machines. Parallel Computing
17 (1991) 381-407.

[5] Creecy, R.H., Masand, B.M., Smith, S.J. and Waltz, D.L. Trading MIPS and memory for
knowledge engineering. Comm. of the ACM 35(8) (1992) 48-63.

[6] Jin, R. and Agrawal, G.: A Middleware for Developing Parallel Data Mining
Implementations. In: Proceedings of the First SIAM Conference on Data Mining (2001).

[7] Jin, R., Yang, G. and Agrawal, G.: Shared memory parallelization of data mining
algorithms: Techniques, programming interface and performance. IEEE Transactions on
Knowledge and Data Engineering 17 (2005) 71-89.

[8] Lewis, D., Yang, Y., Rose, T., Li, F.: Rcv1: A new benchmark collection for text
categorization research. Machine Learning Reseach 5 (2004) 361–397.

[9] Gil-García, R., Pons-Porrata, A.: A new nearest neighbor rule for text categorization.
Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes on
Computer Science 4225 (2006) 814-823.

[10] Yang, Y.: Expert network: Effective and efficient learning from human decisions in text
categorization and retrieval. In: SIGIR’94, 17th ACM International Conference on
Research and Development in Information Retrieval, Ireland (1994) 13–22.

[11] Buckley, C., Salton, G. and Allan, J.: The effect of adding relevance information in a
relevance feedback environment. In: Proceedings of the Seventeenth Annual International
ACM-SIGIR Conference on Research and Development in Information Retrieval (1994)
292-300.

