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1 Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I
12.071–Castellón, Spain

{badia,mayo,quintana,gquintan}@icc.uji.es
2 Fakultät für Mathematik, Technische Universität Chemnitz

D-09107 Chemnitz, Germany
{benner,jens.saak}@mathematik.tu-chemnitz.de

Abstract. We employ two efficient parallel approaches to reduce a
model arising from a semi-discretization of a controlled heat transfer
process for optimal cooling of a steel profile. Both algorithms are based
on balanced truncation but differ in the numerical method that is used
to solve two dual generalized Lyapunov equations, which is the major
computational task. Experimental results on a cluster of Intel Xeon pro-
cessors compare the efficacy of the parallel model reduction algorithms.
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1 Introduction

We consider the problem of optimal cooling of steel profiles. This problem arises
in a rolling mill where different phases in the production process require differ-
ent temperatures of the raw material. To achieve a high production rate, the
temperature has to be reduced rapidly to the level required by the next phase.
The cooling process, accelerated by spraying cooling fluids on the surface of the
profile, has to be controlled since large gradients in the temperature lead to
unwanted deformations, brittleness, loss of rigidity, and other undesirable prop-
erties.

The heat distribution in the profile is modeled by an instationary linear
heat equation. The standard Galerkin approach for discretizing the heat transfer
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model in space, as described in Section 1.1, results in a first-order ordinary
differential equation of the form:

Eẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) + Du(t), t ≥ 0.

(1)

Here, x0 ∈ R
n contains the initial temperature distribution in the profile, u(t)

and y(t) are vectors for the inputs (i.e., temperatures of the cooling fluid) and
outputs (i.e., approximate temperature gradients) of the system, respectively,
and E, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m. The system in (1) can also

be modeled by the transfer function matrix (TFM) G(s) = C(sE −A)−1B + D.
The number of states, n, is known as the state-space dimension (or the order)
of the system.

The goal of model reduction is to find a reduced-order LTI system,

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r � n, and associated TFM Ĝ(s) = Ĉ(sE − Â)−1B̂ + D̂ which
approximates G(s). The reduced-order realization can then replace the original
high-order system in the design of the optimal controller, thus simplifying by
much this phase of the problem.

It is the goal of this paper to demonstrate that model reduction algorithms
based on balanced truncation (BT) can effectively be applied to problems of size
up to n = 100, 000 (and even higher) when appropriate numerical algorithms
are used.

Traditional algorithms for BT model reduction are available, e.g., in libraries
such as SLICOT1 or the Matlab control-related toolboxes, and can be employed
to reduce models with a few hundreds of state-space variables on current desktop
computers. Here we employ two different parallel BT algorithms that allow the
reduction of much larger systems, as those arising in the optimal cooling problem.
These algorithms are integrated into the parallel libraries for model reduction
of large-scale dense and sparse linear systems, PLiCMR [3] and SpaRed [1],
respectively.

The paper is structured as follows. We conclude this section by describing
with some detail the discretization procedure of the heat transfer model for the
steel profile. In Section 2 we review our algorithms for BT model reduction of
linear systems. In Section 3 we briefly describe the multilayered architecture of
libraries employed by our model reduction algorithms. Finally, the efficacy of
the algorithms is reported in Section 4, and some concluding remarks follow in
Section 5.

1.1 Discretization of the Optimal Cooling Problem

The optimal cooling problem was discretized using the ALBERTA-1.2 fem-toolbox
[11]. We applied linear Lagrange elements and used a projection method for the
1 Available from http://www.win.tue.nl/niconet/NIC2/slicot.html.
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curved boundaries. An initial mesh (see Fig. 1) was produced using Matlab
pdetool function, which implements a Delaunay triangulation algorithm. Finer
discretizations were then obtained by global mesh refinement using a bisection
refinement model. As a result, we obtained four different mesh resolutions and
associated systems of order n = 1,357, 5,177, 20,209, and 79,841, corresponding
to maximum mesh widths (or edge sizes) h= 5.5280 × 10−2, 2.7640 × 10−2,
1.3820× 10−2, and 6.9100× 10−3, respectively. The number of nonzero elements
in matrices A and E range from about 4% for the smallest model to 0.009% for
the largest one. A more detailed description of the model is given in [5].

Fig. 1. Finite element discretization of the profile (left) and sparsity pattern (right)
for the model of order n=1,357.

In our case, the best approximation error of the finite element discretization
that one can expect is of order O(hs) for an s ∈ [1, 2). Here s is very close
to 2, for the boundary is almost of class C∞, i.e., if the two rightmost edges
were smoothly topped off we would have sufficient regularity to obtain s = 2 at
best. Thus, reducing the model with an error bound smaller than h2 should not
contribute any significant additional error. The reduced-order models presented
in Section 4 meet this requirement.

2 Model Reduction of Large Linear Systems

2.1 The Square-Root BT Method

BT model reduction [7, 10, 12, 13] belongs to the family of absolute error meth-
ods, which aim at minimizing ‖∆a‖∞ = ‖G−Ĝ‖∞. Here ‖G‖∞ denotes the L∞-
or H∞-norm of a stable, rational matrix function defined as

‖G‖∞ = sup
ω∈R

σmax(G(ω)), (3)

where  :=
√−1 and σmax(M) stands for the largest singular value of M .
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BT methods are strongly related to the controllability Gramian Wc and the
observability Gramian Wo of the system (1), given by the solutions of the two
dual generalized Lyapunov matrix equations

AWcE
T + EWcA

T + BBT = 0, (4)
AT W̃oE + ET W̃oA + CT C = 0. (5)

In the optimal cooling problem, the matrix pair (A, E) is stable (all its gener-
alized eigenvalues are in the open left complex plane), so that Wc and Wo =
ET W̃oE are positive semidefinite, and therefore can be factored as Wc = ST S
and Wo = RT R. Here, S and R are usually refered to as the Cholesky factors of
Wc and Wo.

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [ U1 U2 ]
[
Σ1

Σ2

]
[ V1 V2 ]T , (6)

where U and V are orthogonal matrices, and Σ = diag (σ1, σ2, . . . , σn) is a
diagonal matrix containing the singular values of SRT ; those are also known as
the Hankel singular values (HSV) of the system.

Given a partitioning of Σ into Σ1 ∈ R
r×r and Σ2 ∈ R

(n−r)×(n−r), and a
conformal partitioning of U and V in (6), the square-root (SR) version of BT
determines a reduced-order model of order r as

Ê = TlETr, Â = TlATr, B̂ = TlB, Ĉ = CTr, D̂ = D, (7)

with the projection matrices Tl and Tr given by

Tl = Σ
−1/2
1 V T

1 RE−1 and Tr = ST U1Σ
−1/2
1 . (8)

The state-space dimension r of the reduced-order model can be chosen adaptively
as this method provides a realization Ĝ satisfying

‖∆a‖∞ = ‖G− Ĝ‖∞ ≤ 2
n∑

j=r+1

σj . (9)

In the following subsections we revisit two generalized Lyapunov solvers in-
troduced in [2, 6, 8] which provide low-rank approximations to a Cholesky or
full-rank factor of the solution matrix. These approximations can reliably sub-
stitute S and R in the computation of (6) and (8). For simplicity, we only
describe those solvers that obtain approximations of the Cholesky factor of Wc

in (4). Analogous iterations provide approximations for the Cholesky factor of
Wo in (5).

2.2 Solution of Generalized Lyapunov Equations
via the Matrix Sign Function

Since its introduction in [9], the sign function has proved useful in a variety
of numerical linear algebra problems. In particular, the following variant of the
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Newton iteration for the matrix sign function can be used for the solution of the
generalized Lyapunov equation (4):

A0 ← A

S̃0 ← B
k ← 0
repeat

Ak+1 ← 1√
2

(
Ak + EA−1

k E
)

Compute the rank-revealing QR (RRQR) decomposition
1√
2

[
S̃k EA−1

k S̃k

]T

= Qs

[
Rs

0

]
Πs

S̃k+1 ← RsΠs

k← k + 1
until ‖Ak − E‖1 < τ‖Ak‖1

Here τ is a tolerance threshold for the iteration that is usually set as a
function of the problem dimension and the machine precision. Convergence can
be improved by using several acceleration techniques. In our case, we employ
an approximation of the norm scaling [4]. The RRQR decomposition can be
obtained by means of the traditional QR factorization with column pivoting.

Sign function iterations usually present a fast convergence rate, which is
ultimately quadratic. However, the inverse of a sparse matrix is in general dense
and therefore the previous iterative scheme cannot exploit the sparsity of the
matrix A. Note that, on the other hand, we can easily take advantage of the
sparsity of E as this matrix is involved in matrix products and it is not modified
during the iteration.

On convergence, after j iterations, S̃ = 1√
2
S̃jE

−T , of dimension l̃ × n, is a

full (row-)rank approximation of ST so that Wc = ST S ≈ S̃S̃T .

2.3 Low Rank Solution of Generalized Lyapunov Equations

The cyclic low-rank alternating direction implicit (LR-ADI) iteration proposed
in [8] can be reformulated for the generalized Lyapunov equation (4) as follows:

V0 ← (A + p1E)−1B

Ŝ0 ←
√−2 α1 V0

k ← 0
repeat

Vk+1 ← Vk − δk(A + pk+1E)−1EVk

Ŝk+1 ←
[
Ŝk , γkVk+1

]
k ← k + 1

until ‖γkVk‖1 < τ‖Ŝk‖1
In the iteration, {p1, p2, . . .}, pk = αk + βk , is a cyclic set of (complex)

shift parameters (that is, pk = pk+t for a given period t), γk =
√

αk+1/αk, and
δk = pk+1+pk, pk being the conjugate of pk. This iteration may suffer from a slow
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convergence rate, which is super-linear at best. Nevertheless, the iteration only
requires the solution of linear systems with sparse coefficient matrices and matrix
products. The use of sparse direct solvers is recommended here as iterations k
and k + t share the same coefficient matrices for the linear systems.

The performance of the LR-ADI iteration strongly depends on the selection
of the shift parameters. For further details, see [6, 8, 15].

On convergence, after j iterations, a low-rank matrix Ŝ = Ŝj of order n× l̂ =
n× (jm), is computed such that ŜŜT approximates Wc = ST S.

It should be emphasized that the iterative methods described in the previous
two subsections for solving (4)–(5) significantly differ from standard methods
used in the Matlab toolboxes or SLICOT [14]. As the iterative solvers produce
low-rank approximations to the full-rank or Cholesky factors, the computation
of the SVD in (6) is usually much more efficient: instead of a computational cost
of O(n3) flops (floating-point arithmetic operations) when using the Cholesky
factors, this approach leads to an O(m · p · n) cost where, in model reduction,
often m, p� n; see [3].

3 Parallel Implementation

The matrix sign function-based iteration basically requires dense linear algebra
operations such as matrix products and the solution of linear systems (via matrix
factorizations). On the other hand, the LR-ADI iteration is composed of sparse
linear algebra operations as matrix-vector products and the solution of sparse
linear systems (via direct methods). Once the generalized Lyapunov equations
are solved, the final stages of the SR BT method require the computation of an
SVD and a few matrix products.

Our approach for dealing with these matrix operations is based on the use of
existing parallel linear algebra and communication libraries. (For an extensive
list, see http://www.netlib.org/utk/people/JackDongarra/la-sw.html.) In
Fig. 2 we display the multilayered architecture of libraries employed by our par-
allel model reduction codes for large-scale dense and sparse systems in PLiCMR
and SpaRed, respectively. All model reduction codes employ the parallel dense
linear algebra libraries ScaLAPACK and PBLAS. Depending on the structure
of the state-space matrix pair (A, E) the kernels in SpaRed also use the banded
linear system solvers in ScaLAPACK or the sparse linear system solvers in the
packages MUMPS or SuperLU. PARPACK is our key to compute eigenvalue
information of large sparse matrix pairs.

4 Experimental Results

All the experiments presented in this section were performed on a cluster of np =
16 nodes using ieee double-precision floating-point arithmetic (ε ≈ 2.2204 ×
10−16). Each node consists of an Intel Xeon processor@2.4 GHz with 1 GByte
of RAM. We employ a BLAS library specially tuned for this processor that
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ScaLAPACK
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MPI LAPACK
BLAS

Parallel model reduction
libraries

linear algebra libraries
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Communication and dense/banded

PARPACKMUMPS
libraries
Sparse linear algebra

Fig. 2. Multilayered architecture of libraries for model reduction.

achieves around 3800 Mflops (millions of flops per second) for the matrix prod-
uct (routine DGEMM from http://www.cs.utexas.edu/users/kgoto).The nodes
are connected via a Myrinet multistage network and the MPI communication
library is specially developed and tuned for this network. The performance of the
interconnection network was measured by a simple loop-back message transfer
resulting in a latency of 18 µsec. and a bandwidth of 1.4 Gbit/sec.

In this section, we compare the BT parallel routines in libraries PLiCMR and
SpaRed (hereafter, PLiCMR-BT and SpaRed-BT). Given the amount of compu-
tational resources available and the memory requirements of the sign function-
based iteration, we could only apply the PLiCMR-BT routine to the two smaller
cases, n = 1, 357 and 5, 177.

In order to reduce the models, we first compute the HSVs of the system and,
from there, we select the order r of the reduced realization. Obviously, a larger
order provides a more accurate model, but also increases the cost of those stages
involving the reduced system. Table 1 reports the order r of the reduced realiza-
tion, a bound for the absolute error of the reduced-order realization (computed
as in (9)), and the first and (r + 1)-th HSV of the system. All these data were
obtained by applying the SpaRed-BT routine to the system. No difference was
found when the PLiCMR-BT routine was applied to compute these parameters
for the two smaller problems. Our results hereafter refer to the reduced realiza-
tions of order r = 45, 45, 70, and 80 for the n = 1, 357, 5,177, 20,209, and 79,841
cases, respectively.

In order to measure the numerical accuracy of the reduced realizations, in
our next experiment we compare the frequency response of the original system,
G, with that of the reduced-order realization computed with the PLiCMR-BT
and SpaRed-BT routines, Ĝ. Figure 3 reports the absolute error ‖G − Ĝ‖∞,
where the norm is defined as in (3). All four figures show that the absolute error
is well below the theoretical bound. For the two smallest problems, there is no
notable difference between the PLiCMR-BT and Spared-BT routines.

We next report in Tables 2 and 3 the specific results for each one of the model
reduction methods. In particular, we report the number of iterations required
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Table 1. Order and absolute error of the reduced realizations.

n r ∆a σ1 σr+1

1,357 45 6.5e-7 3.5e-4 5.2e-7

5,177 45 1.3e-6 3.5e-4 9.0e-8

20,209 45 1.4e-4 2.5e-2 7.0e-6

20,209 60 2.7e-5 2.5e-2 1.6e-6

20,209 70 8.6e-6 2.5e-2 4.7e-7

79,841 45 2.2e-4 2.6e-2 1.1e-5

79,841 60 4.6e-5 2.6e-2 2.4e-6

79,841 80 5.4e-6 2.6e-2 3.1e-7

Table 2. Results for the PLiCMR-BT routine.

n #iter. l k RWc (S̄) RWo (R̄) np Time (sec.)

1,357 8 310 181 1.04e-22 7.20e-14 4 21.1

5,177 8 351 209 1.48e-21 9.95e-14 16 142.6

for convergence (#iter.), the dimensions of the low-rank approximations of S
and R (labeled as l and k, respectively), and the absolute residuals of these
approximations, computed as

RWc(S) := ‖A(ST S)ET + E(ST S)AT + BBT ‖F , and

RWo(R) := ‖AT (E−T RT RE−1)E + ET (E−T RT RE−1)A + CT C‖F .

Finally, we also provide the number of nodes involved in the reduction (np), and
the execution time required by the corresponding algorithm. A comparison of
the results in both tables show a much slower convergence rate for the SpaRed-
BT algorithm which then provides approximations to the Cholesky factors of
much larger order than the PLiCMR-BT algorithm. On the other hand, the use
of an approximation of larger order also explains, in part, the slightly better
absolute residuals for the SpaRed-BT algorithm. However, the most important
difference between the two methods lies in the execution times. For the two
smallest problems, using a smaller number of computational resources (proces-
sors), the SpaRed-BT algorithm provides the reduced realization faster than the
PLiCMR-BT algorithm. Furthermore, only the kernel from the SpaRed library
can reduce the largest two cases, while doing so with the PLiCMR kernel would
require a number of resources much larger than available in our cluster.

5 Concluding Remarks

We have compared two parallel BT model reduction algorithms using a problem
arising from a semi-discretization of a controlled heat transfer process for opti-
mal cooling of a steel profile. The algorithms are included in the parallel libraries
for model reduction PLiCMR and SpaRed and basically differ in the general-
ized Lyapunov equation solver that is employed in each case: the PLiCMR-BT
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Fig. 3. Absolute error in the frequency response for the reduced-order realizations.

Table 3. Results for the SpaRed-BT routine.

n #iter. l k RWc (Ŝ) RWo (R̂) np Time (sec.)

1,357 82 574 492 4.9e-24 1.0e-14 1 14.2

5,177 98 686 588 8.5e-23 1.5e-14 1 35.4

20,209 76 532 456 1.5e-14 2.0e-13 4 151.4

79,841 78 546 468 3.9e-13 9.6e-14 16 484.7

method is based on the sign function iteration while the SpaRed BT method
employs a generalization of the LR-ADI iteration.

The experimental results show that, for the optimal cooling of steel profiles
problem, the SpaRed-BT algorithm is clearly the best option. By exploiting the
sparsity of the problem this algorithm requires less computational resources,
provides the answer faster, and allows the reduction of problems which could
not be dealt with using the PLiCMR-BT algorithm. On the other hand, for the
small-dimension problems, the models computed by the PLiCMR-BT algorithm
are presumably more accurate and can serve as a reference for those computed
with SpaRed.
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866 José M. Bad́ıa et al.

2. P. Benner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Parallel model reduction
of large-scale descriptor linear systems via balanced truncation. In Proceedings of
the 6th International Meeting on High Performance Computing for Computational
Science. VECPAR’04, number 3402 in Lecture Notes in Computer Science, pages
340–353. Springer-Verlag, Berlin, Heidelberg, New York, 2005.

3. P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. State-space truncation
methods for parallel model reduction of large-scale systems. Parallel Comput.,
29:1701–1722, 2003.

4. P. Benner, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving linear matrix equa-
tions via rational iterative schemes. Journal of Scientific Computing, to appear.

5. P. Benner and J. Saak. A semi-discretized heat transfer model for optimal cooling
of steel profiles. In P. Benner, V. Mehrmann, and D. Sorensen, editors, Dimension
Reduction of Large-Scale Systems, volume 45 of Lecture Notes in Computational
Science and Engineering, pages 353–356. Springer-Verlag, Berlin/Heidelberg, Ger-
many, 2005.

6. J.-R. Li and J. White. Low rank solution of Lyapunov equations. SIAM J. Matrix
Anal. Appl., 24(1):260–280, 2002.

7. B.C. Moore. Principal component analysis in linear systems: Controllability, ob-
servability, and model reduction. IEEE Trans. Automat. Control, AC-26:17–32,
1981.

8. T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov equations.
SIAM J. Sci. Comput., 21(4):1401–1418, 2000.

9. J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function. Internat. J. Control, 32:677–687, 1980.

10. M.G. Safonov and R.Y. Chiang. A Schur method for balanced-truncation model
reduction. IEEE Trans. Automat. Control, AC–34:729–733, 1989.

11. A. Schmidt and K. Siebert. Design of Adaptive Finite Element Software; The Finite
Element Toolbox ALBERTA, volume 42 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag, Berlin/Heidelberg, 2005.

12. M.S. Tombs and I. Postlethwaite. Truncated balanced realization of a stable non-
minimal state-space system. Internat. J. Control, 46(4):1319–1330, 1987.

13. A. Varga. Efficient minimal realization procedure based on balancing. In Prepr. of
the IMACS Symp. on Modelling and Control of Technological Systems, volume 2,
pages 42–47, 1991.

14. A. Varga. Model reduction software in the SLICOT library. In B.N. Datta, edi-
tor, Applied and Computational Control, Signals, and Circuits, volume 629 of The
Kluwer International Series in Engineering and Computer Science, pages 239–282.
Kluwer Academic Publishers, Boston, MA, 2001.

15. E.L. Wachspress. The ADI model problem, 1995. Available from the author.


	Parallel Order Reduction via Balanced Truncation for Optimal Cooling of Steel Profiles
	1 Introduction
	1.1 Discretization of the Optimal Cooling Problem

	2 Model Reduction of Large Linear Systems
	2.1 The Square-Root BT Method
	2.2 Solution of Generalized Lyapunov Equations via the Matrix Sign Function
	2.3 Low Rank Solution of Generalized Lyapunov Equations

	3 Parallel Implementation 
	4 Experimental Results 
	5 Concluding Remarks 
	References


