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Abstract. This paper describes the parallelization of the low-rank ADI
iteration for the solution of large-scale, sparse Lyapunov equations. The
only relevant operations involved in the method are matrix-vector prod-
ucts and the solution of linear systems. Experimental results on a cluster,
using the SuperLU library, show the performance of this approach.
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1 Introduction

The Lyapunov equation

AX +XAT +BBT = 0, (1)

where A, X ∈ IRn×n, B ∈ IRn×m, and X is the sought-after solution, plays a
fundamental role in control theory; see, e.g., [1]. In this paper, we assume that
the spectrum of A lies in the open left half plane. Under this assumption, there
exists a unique solution, X = XT ≥ 0 [8], which can be factorized as X = SST ;
here, S is known as the “Cholesky” factor of the solution. Usually m � n and
often, S is of low (column) rank [9].
Numerical methods for the solution of small-scale, dense Lyapunov equations

are introduced in [2,5]. These methods require the application of the QR algo-
rithm, resulting in a parallelism poorly attractive [6]. The use of the matrix sign
function [11] allows the solution of moderate-scale dense Lyapunov equations
(n up to a few thousands) on parallel computers [3]. However, none of these
algorithms are appropriate for large-scale sparse Lyapunov equations.
In this paper, we follow an approach based on the LR-ADI iteration [10],

which provides a low-rank approximation of the Cholesky factor of the solu-
tion. Many large-scale applications, e.g. in model reduction and optimal control,
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employ this approximation rather than the solution. The LR-ADI solver only
requires matrix operations such as the matrix-vector product and the solution
of linear systems. The parallelization of these matrix operations on distributed-
memory computers has been largely studied in the literature and several libraries
are currently available like, e.g., SuperLU and MUMPS.
The rest of the paper is structured as follows. In Section 2 we briefly review

the LR-ADI solver for large sparse Lyapunov equations. Details on the imple-
mentation and the parallelization are given in Section 3. Finally, experimental
results and concluding remarks follow, respectively, in Sections 4 and 5.

2 LR-ADI Solver for Large Sparse Lyapunov Equations

The cyclic low-rank alternating direction implicit (LR-ADI) Lyapunov solver [10]
benefits from the usual low-rank property of matrix B to provide low-rank ap-
proximations to the Cholesky factor of X. This iterative algorithm also includes
a heuristic to determine a set of “shift” parameters to accelerate the convergence.
Specifically, given an “l–cyclic” set of complex shift parameters {p1, p2, . . .},

pk = ak + bki, pk = pk+l, the LR-ADI iteration can be formulated as follows:

V0 = (A+ p1In)−1B, S0 =
√−2 a1 V0,

Vk+1 = Vk − δk(A+ pk+1In)−1Vk, δk = pk+1 + pk,

Sk+1 = [Sk , γkVk+1] , γk =
√

ak+1/ak,
(2)

where In denotes the identity matrix of order n. On convergence, after k̃ itera-
tions, a low-rank matrix S̃ of order n × k̃m is computed such that S̃S̃T approx-
imates X. Matrix S̃ can be employed in many situations where the Cholesky
factor S is required. Further details on the LR-ADI iteration are given in [10].
The only matrix operation required in the LR-ADI iteration is the solution

of linear systems with a sparse coefficient matrix shifted by a certain (complex)
scalar.
The performance of the iteration strongly depends on the selection of the

shift parameters; see [10]. A heuristic procedure is proposed in [10] which employs
approximations of certain eigenvalues of A. The procedure is based on an Arnoldi
iteration with A and A−1, and therefore only requires matrix-vector products
and the solution of linear systems, respectively.

3 Implementation and Parallelization

The LR-ADI iteration (2) involves the same coefficient matrix in iterations k and
k+ l. Thus, when more than l iterations are required and sufficient storage space
is available, a large computational cost is saved by computing factorizations of
(A+piIn), i = 1, 2, . . . , l, in advance and using these factors in the solution of the
subsequent linear systems. This approach benefits from the use of direct solvers;
besides, as all matrices have the same sparsity structure, the preliminary analysis
phase, common in direct sparse solvers, needs to be performed only once.
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In practice, the LR-ADI iteration produces a sequence of matrices Vk of
decreasing norm [9]. A practical criterion for detecting the convergence of the
iteration is therefore to stop when ‖Vk‖ is small.
Although A is real, the iteration may require complex arithmetic in case any

of the shift parameters is complex. For symmetric matrices all the shifts should
be chosen to be real, using a Lanczos-based procedure, and the iteration only
employs real arithmetic.
The parallelization of the solver requires parallel routines for the computa-

tion of the matrix-vector product, the solution of linear systems involving sparse
(complex) matrices, and some other minor operations. Here we employ the Su-
perLU library [4] for the solution of linear systems. In the current version of
SuperLU both the coefficient and the right-hand side matrices have to be com-
pletely stored in all processes (processors). We take advantage of this replication
to easily implement an efficient parallel matrix-vector product. Future exten-
sions of our parallel solvers will benefit from employing parallel kernels from
other libraries like MUMPS, MCSPARSE, ScaLAPACK, etc.

4 Numerical Experiments

All the experiments presented in this section were performed on a cluster of
Intel Pentium-II processors (300MHz, 128 MBytes of RAM), connected with a
Fast Ethernet switch, using ieee double-precision floating-point arithmetic. The
BLAS routine DGEMV for the matrix-vector product achieved around 46 Mflops
(millions of flops/sec.) on this architecture.
We report experimental results for the solution of large-scale Lyapunov equa-

tions (1) where A is tridiagonal stable matrix with random entries and B is a
random vector (m = 1).
Figure 1 reports the execution time of the first LR-ADI iteration (2) using

np processors. This iteration requires the solution of a complex linear system
of order n with a single right-hand side, and several other minor computations
(e.g., convergence criterion). A profile of the parallel algorithm showed that,
when 4 processors were used on a problem of order n=150,000, the iteration spent
roughly 75% in the LU factorization (including negligible times for equilibration,
row and column permutations and symbolic factorization; almost half of this time
was employed to distribute the matrices). The solution of the linear system from
the LU factors used 24% of the time (including one iterative refinement step);
the remaining time was spent in minor computations.
The figure also shows the convergence rate, measured as ‖Vk‖1, when l dif-

ferent shifts are used in the LR-ADI iteration and n=150,000. Actually, kp+km

shifts are computed: kp = 2l are obtained using the Arnoldi iteration on A and
km = 2l with the Arnoldi iteration on A−1. A selection procedure determines
then the “best” l shifts to use in the iteration.
Solving a Lyapunov equation of order n=150,000 on 4 processors, with kp =

km = 2l = 12, required about 35 minutes; 39% of this time was spent in the
computation of the shifts and the remaining 61% in the LR-ADI iteration.
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Fig. 1. Execution time of a single LR-ADI iteration (left) and convergence rate (right).

5 Concluding Remarks

We have described the parallelization of a numerical solver, based on the LR-ADI
iteration, for large-scale, sparse Lyapunov equations on a cluster. The algorithm
benefits from the availability and efficiency of parallel kernels for the matrix-
vector product and the solution of sparse linear systems using direct methods.
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