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SUMMARY

In this paper we present two versions of a parallel algorithm to solve the block–Toeplitz least-squares
problem on distributed-memory architectures. We derive a parallel algorithm based on the seminormal
equations arising from the triangular decomposition of the product T TT . Our parallel algorithm exploits
the displacement structure of the Toeplitz-like matrices using the Generalized Schur Algorithm to obtain the
solution in O(mn) flops instead of O(mn2) flops of the algorithms for non-structured matrices. The strong
regularity of the previous product of matrices and an appropriate computation of the hyperbolic rotations
improve the stability of the algorithms. We have reduced the communication cost of previous versions,
and have also reduced the memory access cost by appropriately arranging the elements of the matrices.
Furthermore, the second version of the algorithm has a very low spatial cost, because it does not store the
triangular factor of the decomposition. The experimental results show a good scalability of the parallel
algorithm on two different clusters of personal computers. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The parallel algorithm presented in this paper solves the least-squares problem

min
x
‖Tx− b‖ (1)

where b ∈ R
m is the independent term, x ∈ R

n is the solution vector and T ∈ R
m×n is a

block–Toeplitz matrix defined as T = [Tij ] = [Ti−j ] for i = 0, . . . ,m/µ− 1 and j = 0, . . . , n/ν− 1,
with Tij ∈ R

µ×ν .
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Problem (1) arises in many applications such as the inverse filtering signal processing.
Sometimes we need to obtain a real-time solution of this problem, or the matrix T is very large.
In these cases it is interesting to have efficient parallel algorithms to solve the least-squares problem.

Our parallel algorithm starts with the normal equations T TTx = T Tb and obtains the seminormal
equations LLTx = T Tb, where L is a lower triangular matrix. From these equations, and solving
several triangular systems, we can obtain the solution x of (1).

The concept of displacement structure was first introduced in [1] for matrices with low displacement
rank. Matrices with this kind of structure include scalar Toeplitz matrices (Tij ∈ R), but also
block–Toeplitz matrices, or the product T TT . Henceforth, we call this kind of matrices structured
or Toeplitz-like.

There are algorithms that profit from this kind of structure to solve linear systems of equations
in O(n2) flops, instead of the O(n3) flops taken by the algorithms for general dense matrices [2].
These kinds of algorithms are called fast algorithms and can be divided in two main classes.
The Levinson algorithm [3] and its modifications [4–9] are based on an inverse triangular factorization
of T , while Schur-type algorithms [10] are based on a direct triangular factorization of T .
Several versions of the Schur Algorithm for scalar matrices can be found in [11,12], while block
versions can be found in [11,13–15]. The Schur Algorithm can also be used to solve the normal
equations, and hence the least-squares problem in (1).

Levinson-type algorithms have a linear spatial cost while Schur-type algorithms have a quadratic
spatial cost. The first class of algorithms are also 30% faster than the second class [16].
However, Schur-type algorithms better exploit the numerical properties of positive–definite
matrices [17] and they are more parallelizable [18].

The main part of parallel algorithms for Toeplitz-like matrices is devoted to the solution of linear
systems of equations. Some systolic algorithms for solving this problem can be found in [19,20], but
they can be applied only to positive–definite matrices. Another systolic algorithm [21], is based on the
Bareiss method [11]. This method has also been implemented on shared-memory computers [18,19]
using a bulk synchronous parallel (BSP) model. An algorithm for solving Toeplitz systems, also for
shared-memory computers, can be found in [22], while [23] is devoted to the block case. Finally, there
are also some parallel iterative algorithms [24], some of which can only be applied to symmetric [25],
tridiagonal or band matrices.

Literature related to the solution of the block–Toeplitz least-squares problem is scarce, especially
for distributed-memory multiprocessors, but many methods for scalar Toeplitz matrices can be
generalized to the block case. Fast algorithms [15,22–25] for solving problem (1) are usually poorly
parallelizable.

The method that we have used for solving the least-squares problem is based on the Cholesky
factorization M = LLT and is known as the Generalized Schur Algorithm. A block version of
this algorithm can be found in [30,31]. This version performs the factorization of a product of
block–Toeplitz matrices T TT using BLAS3 routines. However, it is very difficult to parallelize this
method on distributed-memory computers. The very small granularity of the parallelism and the
dependency among the operations produce a high communication cost.

Our parallel algorithm also performs the Cholesky factorization of T TT , but it avoids all the point-
to-point communications. Moreover, we have grouped the broadcast-type communications to reduce
the communication cost even further. We have implemented two parallel versions based on the same
algorithm. The second version avoids storing the Cholesky factor L, greatly reducing the spatial cost,
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but it theoretically doubles its computation cost. However, the second version is more efficient and so,
depending on the block sizes and on the characteristics of the parallel architecture, it can be even faster
than the first version.

The structure of this paper is as follows. The displacement structure is presented in Section 2.
Section 3 includes our parallel algorithms. Section 4 shows the experimental analysis, and finally some
conclusions are discussed in Section 5.

2. DISPLACEMENT STRUCTURE

Given a symmetric matrix M ∈ R
n×n, we define its displacement rank ∇F with respect to a lower

triangular matrix F ∈ R
n×n as

∇F = M − FMFT = GJGT (2)

where J ∈ R
r×r is the signature matrix and G ∈ R

n×r is the generator [32]. The signature matrix is
a diagonal matrix with as many entries 1 and −1 as the number of positive and negative eigenvalues
of ∇F , respectively.

We say that a matrix is structured or has displacement structure, if ∇F has low rank with respect to
M (r � n). This property can be extended to non-symmetric matrices.

2.1. Factorization of T TT by the Generalized Schur Algorithm

If we want to obtain the triangular factorization T TT we can apply the Generalized Schur Algorithm
to the generator G in (2), where

F = Zν
n =




0
Iν 0

. . .
. . .

Iν 0


 , Zn =




0
1 0

. . .
. . .

1 0


 (3)

and Iν is the identity matrix of order ν.
The generator G has dimension n× 2(µ+ ν) and can be obtained analytically [33] as follows

G =




S0 0 0 0

S1 T T−1 S1 T T
m/µ−1

S2 T T−2 S2 T T
m/µ−2

...
...

...
...

Sn/ν−1 T T
1−n/ν Sn/ν−1 T T

m/µ−(n/ν−1)




(4)

with

S = T TUR−1, U =




T0

T1

...

Tm/µ−1


 and R = qr(U) (5)

where qr(U) is the upper ν × ν submatrix of the triangular factor R of the QR decomposition of U .
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Given the following partition of the generator

G =




G1

G2

G3

...

Gn/ν




(6)

where Gk ∈ R
ν×2(µ+ν) for k = 1, . . . , n/ν, the Generalized Schur Algorithm operates on the generator

entries and can be stated as follows.

Algorithm 2.1 (Generalized Schur Algorithm). Given the generator G in (6) for the displacement of
T TT with respect to F , the following algorithm computes the lower triangular factor L such that
T TT = LLT.

Given L = [ ].
for k = 1, . . . , n/ν

1. Choose a J -unitary transformation � (�J�T = J ) such that Gk� = (Ḡk 0) where Ḡk is a
lower triangular factor of order ν.

2. Apply transformation � to the generator, G← G�.
3. Update triangular factor, L← [L G:,1:ν].
4. Update the generator, G← [FG:,1:ν G:,ν+1:2µ+ν].

end for

If we apply the previous algorithm, after the iteration k, row blocks Gi, i = 1, . . . , k, have been
zeroed. In addition, product FG:,1:ν of step 4 is the result of shifting down ν rows of G:,1:ν .

2.2. Stability of the method

Algorithm 2.1 is stable if the structured matrix is strongly regular; that is, if all its leading submatrices
are non-singular. The accuracy of the results depends on the condition number of these leading
submatrices. T TT is positive definite and so strongly regular. Therefore, the Generalized Schur
Algorithm is a stable method to perform the factorization T TT = LLT in this case.

The use of the normal equations is not recommended when solving the general least-squares
problem, minx ‖Ax − b‖, because the norm and the condition number of ATA can be very large
(κ(ATA) ≈ κ(A)2 [2, Section 5.3]). However, we can apply this method with Toeplitz-like matrices
because the product T TT is never explicitly built.

From [17,34,35] it is known that the computed triangular factor L̃ satisfies

‖L̃L̃T − T TT ‖ = O(ε‖T TT ‖)
that is, the error bound does not depend on κ(T TT ). The main result in [34] shows that

‖T x̃ − b‖
‖T ‖‖x‖ = O(εκ(T ))
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where x̃ is the computed solution after solving the two triangular systems included in the seminormal
equations L̃L̃Tx = T Tb.

The Generalized Schur Algorithm is weakly stable when applied to the normal equations. That is
‖x̃−x‖/‖x‖ is small when the system is well-conditioned [34,36]. This result is good enough in many
applications.

3. PARALLEL ALGORITHM

A direct parallelization of Algorithm 2.1 can be obtained by distributing each block Gk in (6),
k = 1, . . . , n/ν, to a different processor [30,31]. This method allows the computation and application
of each J -unitary transformation � (steps 1 and 2) with efficient BLAS3 routines instead of BLAS2
routines.

However, this method requires two kinds of communications on each iteration k:

• a broadcast of the parameters of the J -unitary transformation � to the rest of the processors
(steps 1 and 2); and
• a point-to-point communication among adjacent processors to perform the shifts in step 4.

Although this algorithm is efficient in one processor [37], the communication cost limits the
performance with more processors, mainly because of the point-to-point messages. We have
implemented two parallel versions of this algorithm using different block distributions [33].
The experimental results on distributed multicomputers show the negative effect of the communications
on the performance of the algorithms.

3.1. Avoiding point-to-point communications

In the parallel algorithm presented in this paper we have avoided the point-to-point communication
during the shift step. We transform the block–Toeplitz matrix T into a Toeplitz–block matrix T̂ ; that
is, a block matrix with scalar Toeplitz blocks. Matrices T and T̂ are related through two permutation
matrices Q ∈ R

m×m and P ∈ R
n×n, so that T̂ = QTPT. The structure of T̂ is given by T̂ = [Tij ], for

i = 1, . . . , µ and j = 1, . . . , ν, where Tij ∈ R
(m/µ)×(n/ν) are scalar Toeplitz matrices.

We can obtain the displacement of M = T̂ TT̂ from that of M = T TT (2) as follows:

T TT − FT TTFT = GJGT

P(T TT − FT TTFT)P T = P(GJGT)P T

PT TQTQTPT − PFPTPT TQTQTPTPF TP T = PGJGTP T

(QTPT)T(QTPT)− (PFPT)(QTPT)T(QTPT)(PFPT)T = (PG)J (PG)T

T̂ TT̂ − F̂ T̂ TT̂ F̂ T = ĜJ ĜT

(7)

given that QTQ = QQT = Im and P TP = PPT = In.
Equation (7) for the displacement of T̂ TT̂ shows that Ĝ = PG and F̂ = PFPT = Zn/ν⊕· · ·⊕Zn/ν ,

where Zn/ν is the shift matrix defined in (3), but of order n/ν.
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The main advantage of our approximation is that the displacement matrix F̂ is block diagonal.
Therefore,

F̂ Ĝ = F̂




Ĝ1

Ĝ2

...

Ĝν


 =




Zn/νĜ1

Zn/νĜ2

...

Zn/νĜν


 (8)

with Ĝk ∈ R
(n/ν)×2(µ+ν), k = 1, . . . , ν. That means that many of the operations of the algorithm

can be performed independently on each block of n/ν rows of Ĝ. Each product Zn/νĜk involves
shifting down one position the first column of each block Ĝk , but this can be performed locally on each
processor. Therefore, we avoid the point-to-point communication of the shifting in each iteration of the
algorithm.

3.2. Implementation of the J -unitary transformations

Our parallel algorithm applies the transformations in the generator row by row. Therefore, we cannot
exploit the efficient block routines included in BLAS3, as in [31]. However, we apply the hyperbolic
rotations in a more stable way. It is shown in [38] that if the rotations are applied in a direct form as
in [31], the Generalized Schur Algorithm can be unstable. However, if rotations are applied in a factored
form which is well known to provide numerical stability in the context of Cholesky downdating, then
the algorithm is stable.

Given a vector g ∈ R
2(µ+ν), the J -unitary rotation � ∈ R

2(µ+ν)×2(µ+ν) has the form

� =
(

�1 0
0 I

)(
I 0
0 �2

)
�3 (9)

where �1 ∈ R
(µ+ν)×(µ+ν) is a Householder reflection that zeroes the first (µ+ν) elements of g except

the first,
(g′1 0 . . . 0)← (g1 g2 . . . g(µ+ν))�1

�2 ∈ R
(µ+ν)×(µ+ν) is a Householder reflection that zeroes the last (µ + ν) element of g except the

first,
(g′(µ+ν+1) 0 . . . 0)← (g(µ+ν+1) g(µ+ν+2) . . . g2(µ+ν))�2

and �3 ∈ R
2(µ+ν)×2(µ+ν) is an elementary hyperbolic rotation that zeroes element g′(µ+ν+1) using

g′1 as a pivot. This hyperbolic rotation is computed and applied using the orthogonal-diagonal (OD)
method in [39]. It can be seen that �J�T = J for J defined as in (2).

3.3. Data distribution

In our parallel algorithm we have used the tools provided by the ScaLAPACK library [40] to perform
the data distribution. This library distributes the elements of the matrices in a logical two-dimensional
mesh using a block cyclic scheme.

However, we employ a one-dimensional topology with a column of p processors. Blocks Ĝi in (8)
are cyclically distributed among the processors Pk , k = 0, . . . , p−1, so that the row block Ĝi is stored
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in processor P(i−1) modp. The Generalized Schur Algorithm mainly works with a generator containing a
very small number of columns. The parallelism of the algorithm resides in the operations with different
groups of rows and not in the operations with the elements on each row. Therefore, we distribute blocks
of rows of the generator in a column of processors, but we do not distribute the elements of each row in
a second dimension of processors. We could use a two-dimensional topology and perform the different
transformations on each row in each iteration in parallel, but the communication cost involved would
exceed the advantages of the parallelism due to the very small granularity of the computations.

3.4. First version of the parallel algorithm

The code for the first version of the parallel algorithm is the following.

Algorithm 3.1 (Parallel algorithm 1). Given a matrix T and vector b defined in (1), this algorithm
computes its solution vector x.

On each processor Pk , for k = 0, . . . , p − 1:

1. parallel computation of the generator for the displacement T̂ TT̂ ;
2. triangular factorization T̂ TT̂ = LLT using Algorithm 3.2;
3. parallel solution of the seminormal equations, x ← T̂ Tb, x ← L−1x, x ← L−T x, and

permutation of the solution vector, x ← Px; where P in (7) is the permutation matrix that relates
T and T̂ .

The computation of the generator Ĝ in step 1 is performed without communications [33]. We only
need to replicate an operation of O(mν2) flops on each processor. The theoretical cost of computing
the generator in parallel is (mnν + nν2)/p + 2ν2m− (2ν3)/3 flops.

The triangular factorization in step 2, is the core of the algorithm and the most costly part. We show
this step in Algorithm 3.2.

Algorithm 3.2 (Parallel Generalized Schur Algorithm—Version 1). Given the generator Ĝ of the
displacement of T̂ TT̂ with respect to matrix F̂ cyclically distributed over p processors, the following
algorithm computes the lower triangular factor L in T̂ TT̂ = LLT using the same distribution as Ĝ.

On each processor Pk , for k = 0, . . . , p − 1:

for i = 1, . . . , n

Let �gi ∈ R
1×2(µ+ν) be the i row of Ĝ, then,

if �gi ∈ Pk

1. Choose a J -unitary transformation � (9) that zeroes all the elements of �gi except the first.
2. lii ← �gi1.
3. Broadcast transformation � to the rest of processors.

else
Receive the transformation �.

end if
for j = i + 1, . . . , n
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Let �gj and �gj−1 be the rows j and (j − 1) of Ĝ respectively, then,
if �gj ∈ Pk

1. Apply transformation � to row �gj .
2. lj i ← �gj1.
if �gj−1 ∈ Pk

�gj1 ← lj−1i .
else
�gj1 ← 0.

end if
end if

end for
end for

The computation cost of Algorithm 3.2 is given by

n2(4(µ+ ν)+ 3)

p
− (4(µ+ ν)+ 3)n

p
+ 6n(µ+ ν)+ 7n = O

(
n2(µ+ ν)

p

)
flops (10)

Regarding the communication cost, the algorithm only includes a broadcast on each of the n

iterations. The cost of sending a message of size n is modeled by β + nτ , where β is the latency
and τ is the cost of transferring one element. Then, the total cost of Algorithm 3.2 is

O

(
n2(µ+ ν)

p

)
tflop + n(β + (2(µ+ ν)+ 4)τ ) (11)

where 2(µ+ ν)+ 4 is the number of values to represent a J -unitary transformation �.
Usually the latency β is much larger than τ , so sending many small messages reduces the efficiency

of the algorithm. In our algorithm we could try to reduce the communication cost by grouping the
transformations sent by each message. For example, one processor can compute a full block with n/ν

transformations and broadcast them in only one message. The rest of the processors could then apply
all of the received transformations to their rows. In this case, the resulting cost would be

O

(
n2(µ+ ν)

p

)
tflop + ν

(
β + n

ν
(2(µ+ ν)+ 4)τ

)

The experimental results show that the best results are not obtained by sending individual
transformations, nor by sending full blocks with n/ν transformations. The optimal number of
transformations to group into one message has a value 1 ≤ η ≤ n/ν, that depends on the computer
architecture and the size of the matrix.

Finally, step 3 in Algorithm 3.1 includes four basic operations. The matrix–vector product T̂ Tb =
PT Tb can be performed fully in parallel without communications, because all of the processors own
the first row and column of blocks of T and the independent vector b. The result of this product is
stored following the same cyclic distribution applied to the generator Ĝ and the triangular factor L.
The two triangular systems are solved by using PBLAS routines that are part of the ScaLAPACK [40]
parallel library. The last operation, the permutation, is performed in processor P0. The total cost of the
third step of Algorithm 3.1 is of (mn+ 2n2)/p flops.
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3.5. Second version of the parallel algorithm

The spatial cost of Algorithm 3.1 is O(n2/p), because it stores the triangular factor L. This could limit
the maximum size of the problems that can be solved. In this section we describe a parallel algorithm
that solves the least-squares problem without having to store the triangular factor L. This algorithm
theoretically doubles the computational cost of Algorithm 3.1, but the experiments will show that the
difference is not so big, and that in some cases this second version of the algorithm is even faster than
the first version.

We embed the matrix T̂ TT̂ in a larger matrix

M̂ =
(

T̂ TT̂ I

I 0

)
(12)

and we define the following partition of M̂

M̂ =
(

T̂ TT̂ I

I 0

)
=
(

L

L−T

) (
LT L−1

)− (0 0
0 (T̂ TT̂ )−1

)
(13)

where L is the lower triangular factor of the seminormal equations, such that T̂ TT̂ = LLT.
Matrix M̂ has a displacement structure given by

∇K = M̂ − K̂M̂K̂T = ˆ̄GJ̄ ˆ̄GT (14)

where

K̂ = F̂ ⊕ F̂ =
(

F̂ 0
0 F̂

)

The generator ˆ̄G ∈ R
2n×2(µ+ν) can be analytically obtained [33] taking into account that T̂ = QTPT,

M̂ = P̄MP̄ T, P̄ = P ⊕ P ,

M =
(

T TT I

I 0

)
where

M − KMKT = ḠJ̄ ḠT

is the displacement of M with respect to K = F⊕F . Following the idea in (7), and taking K̂ = P̄KP̄ T,

we can see that ˆ̄G = P̄ Ḡ.
If we apply n iterations of the Generalized Schur Algorithm to the generator Ĝ, we obtain the

matrices L and L−T in the factorization (13). From these matrices we can obtain the solution x of the
least-squares problem (1) by solving the following triangular systems:

Ly = w

z = L−T y
(15)

where w = T̂ Tb and x = Pz.
It is not necessary to store all of the factors L and L−T . The Generalized Schur Algorithm computes

column i of both factors in iteration i. Given this column, it is possible to update (15).
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First, consider the following partition

Ly = w→



L11

L21

[
lii

li L22

]





y1[
yii

y2

]

 =




w1[
wii

w2

]



The factors L11 ∈ R
(i−1)×(i−1) and L21 ∈ R

(n−i+1)×(i−1) contain the (i − 1) columns of L computed
in the first (i − 1) iterations. From the previous equation we can see that L11y1 = w1, where
y1, w1 ∈ R

(i−1) and L21y1 = (wii w2
T)T where w2 ∈ R

(n−i) and wii is a scalar. On iteration i,
y1, wii and w2 are known, and it is not necessary to store factors L11 and L21, computed in previous
iterations. On that iteration, the Generalized Schur Algorithm computes the vector (lii lT

i )T where
li ∈ R

(n−i) and lii is a scalar. From these values, the algorithm computes yii = wii/ lii and updates
w2, w2 ← w2 − yii li . It is apparent that it is not necessary to store the column of L computed in
iteration i to perform the next iterations.

Now, consider the following partition

z = L−T y →


[

z1

zii

]

z2


 =



[
L−T

11 l′i
l′ii

]
L12

L−T
22





[
y1
yii

]
y2




where L12 ∈ R
i×(n−i). From this partition, it can be seen that z1 = L−T

11 y1, where z1 ∈ R
(i−1) is a

vector computed in the (i − 1) previous iterations. In iteration i the Generalized Schur Algorithm
computes column i of L−T and the vector (l′Ti l′ii )T. Using this data, the algorithm computes
zii = l′iiyii and updates z1, z1 ← z1 + yii l

′
i .

This version of the algorithm uses the same data distribution as version 1. However, in this case we
distribute the 2n rows of the generators ˆ̄G in 2ν blocks with n/ν rows. Vectors w and z in (15) are
distributed so that vector (wT zT)T is divided into 2ν blocks with n/ν elements.

The following algorithm is a version of the Generalized Schur Algorithm (Algorithm 3.2) for the
generator of the displacement of matrix M̂ (14). The algorithm has been modified to update (15) on
each iteration.

Algorithm 3.3 (Parallel Generalized Schur Algorithm—Version 2). Given the generator of the
displacement of the matrix M̂ (14), ˆ̄G ∈ R

2n×2(µ×ν), with respect to the matrix K̂ , given a partition
of this generator in 2ν blocks of size n/ν × 2(µ + ν) cyclically distributed over p processors, and
given the vector w = T̂ Tb, the following algorithm computes the solution of the seminormal equations
LLTz = w.

On each processor Pk , for k = 0, . . . , p − 1:

for i = 1, . . . , n

Let �gi ∈ R
1×2(µ+ν) be the row i of ˆ̄G, then,

if �gi ∈ Pk

1. Choose a J -unitary transformation � (9) that zeroes all the elements of �gi except the first.
2. wi ← wi/�gi1.
3. Broadcast the transformation � and wi to the rest of the processors.
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else
Receive the transformation � and wi .

end if
for j = i + 1, . . . , 2n

Let �gj and �gj−1 be the rows j and (j − 1) of ˆ̄G respectively, then,
if �gj ∈ Pk and �gj �= �0

1. Apply the transformation � to the row �gj .
2. if j ≤ n

wj ← wj − �gi1wi .
else

wj ← wj + �gi1wi .
end if

3. if �gj−1 ∈ Pk

�gj1 ← lj−1i .
else
�gj1 ← 0.

end if
end if

end for
end for

The cost of Algorithm 3.3 is of

2n2(4(µ+ ν)+ 3)

p
+ 2n2

p
+ 6n(µ+ ν)+ 7n = O

(
2n2(µ+ ν)

p

)
flops (16)

In Algorithm 3.3 when a J -unitary transformation � is computed n rows are updated, because there
are only n rows of the generator different from �0 between j and 2n. In contrast, in Algorithm 3.2 the
number of rows to update in each iteration decreases. This is the main reason for the different computa-
tional cost of both algorithms. However, in the second version of the algorithm the workload is balanced
if we use ν processors or an integer divisor of this value. In this case the n rows of the generator to
update are always equally distributed among the processors. On the other hand, in the first version of
the algorithm the workload becomes unbalanced when the number of rows of the generator decreases.

The communication cost is the same in both versions of the algorithm. In the second version we
have also grouped η transformations in each message in order to reduce its number, and so reduce the
communication cost.

The complete second version of the parallel algorithm can be seen in Algorithm 3.4.

Algorithm 3.4 (Parallel Algorithm 2). Given the matrix T and the vector b, the following algorithm
computes the solution vector x of the problem in (1)

On each processor Pk , k = 0, . . . , p − 1:

1. Compute in parallel the generator ˆ̄G of the augmented matrix of displacement M̂ (14) and
compute w = T̂ Tb, where T̂ = QTPT.

2. Compute the vector z using Algorithm 3.3.
3. In P0 solve x = Pz.
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The cost of step 1 of Algorithm 3.4 is the same as the cost of step 1 of Algorithm 3.1 plus the cost
of the matrix vector product T̂ Tb. The cost of solving the triangular systems in step 3 of Algorithm 3.1
is now included in the cost of step 2.

4. EXPERIMENTAL RESULTS

The target platform for the main part of the experimental study is a personal computer cluster connected
through a Myrinet network [41]. The cluster consists of 32 PCs, based on 300 MHz Intel Pentium II
processors, with 128 Mbytes of SDRAM and 512 Kbytes of cache each. The interconnection network
consists of two Myrinet 16-port SAN crossbar switches.

A Myricom network card has been incorporated into each PC in order to connect it with one of the
switches by means of a bidirectional link, with a bandwidth of 1.28 Gbps. Thus, a bisection bandwidth
of 20.48 Gbps on each switch of 16 ports is achieved. The connection between both switches allows
this added bandwidth to be scaled.

Each switch is a crossbar and together they allow the definition of any kind of topology by manually
or automatically configuring a set of paths between the different ports. Communications are carried out
by using a cut-through protocol with low latency and flow control.

There exist specific implementations for Myrinet networks of some message-passing environments.
In our case a MPICH/GM environment is used where MPICH [42] is a standard implementation from
Argonne National Laboratory and GM is the Myrinet message-passing library, which implemented the
zero-copy protocol and offers small latencies and high bandwidths.

In Table I we present the time taken by each of the three main steps of Algorithm 3.2 with matrices
of different sizes. We also include the percentage of time taken by each of these steps.

It can be seen that step 1 (the computation of the generator) is most affected by the increment in
the number of rows of the matrix, m. This parameter has a slight influence in the other two steps of
the algorithm. We can also see how the main part of the time of the algorithm is devoted to step 2
(the factorization of the matrix).

Table II shows the times taken by steps 1 and 2 of the algorithm with a fixed size matrix. We vary the
block size (µ and ν) and the number of processors. We can see that the time spent by the computation
of the generator (step 1) basically depends on the number of columns of each block (ν), and it is slightly
influenced by the number of rows of each block (µ). The reduction of the speed-up is mainly due to
the replication of part of the computations in each processor, because this step does not involve any
communication. The number of columns of the generator Ĝ is given by 2(µ + ν), and so the number
of rows and columns of each block equally affect the cost of step 2.

The superlinear speed-up in Table II is due to the memory management of the algorithm. It is
easy to see that when all the elements of the generator can be stored in cache memory, the time of
the algorithm [33] notably decreases. When the generator cannot be fully stored in cache with one
processor, but does fit in cache in the multiprocessor case, the speed of the algorithm increases more
than proportionally to the number of processors, and so we obtain superlinear speed-up.

The order in which the different elements of the matrices are accessed has a big influence on the
efficiency of the sequential and parallel algorithms. In algorithms where the computational cost is of
O(n2) the influence of the memory access time can be at least as important as the influence of the
number of computations. Therefore, we have tried to optimize the arrangement of the elements in
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Table I. Time in seconds of the three steps of Algorithm 3.2 with
matrices of size T ∈ Rm×720 on one processor. The size of the

blocks is always 60× 40.

m Step 1 Step 2 Step 3 Total

720 0.35 (3.7%) 9.19 (96.0%) 0.03 (0.3%) 9.57
840 0.41 (4.2%) 9.31 (95.5%) 0.03 (0.3%) 9.75
960 0.96 (9.3%) 9.27 (90.3%) 0.04 (0.4%) 10.27

1080 1.29 (12.3%) 9.16 (87.3%) 0.04 (0.4%) 10.49
1200 1.61 (14.9%) 9.13 (84.7%) 0.04 (0.4%) 10.78
1320 2.59 (22.3%) 8.98 (77.3%) 0.05 (0.4%) 11.62
1440 2.17 (19.2%) 9.10 (80.4%) 0.05 (0.4%) 11.32

Table II. Time in seconds of steps 1 and 2 of Algorithm 3.1 using 1, 2, 4, 8 and 16
processors. Matrix T has a size of 1080× 720, µ = 60, 120 and ν = 60, 120. The speed-

ups are shown in brackets.

ν µ 1 2 4 8 16

Step 1 60 60 1.65 0.91 (1.81) 0.40 (4.13) 0.26 (6.35) 0.18 (9.17)
120 1.58 0.85 (1.86) 0.41 (3.85) 0.28 (5.64) 0.18 (8.78)

120 60 4.33 2.70 (1.60) 1.75 (2.47) 1.23 (3.52) 0.96 (4.51)
120 4.29 2.73 (1.57) 1.74 (2.47) 1.23 (3.49) 0.94 (4.56)

Step 2 60 60 5.47 2.37 (2.31) 1.09 (5.02) 0.60 (9.12) 0.38 (14.4)
120 11.7 5.37 (2.18) 2.47 (4.73) 1.06 (11.0) 0.57 (20.5)

120 60 11.7 5.24 (2.24) 2.42 (4.85) 1.23 (9.54) 0.62 (18.9)
120 14.4 6.90 (2.09) 2.93 (4.93) 1.48 (9.76) 0.71 (20.3)

memory in order to minimize the memory access time for all the algorithms. In other words, we have
tried to arrange the elements in such a way that consecutive operations access to adjacent elements in
order to reuse the same cache line.

Matrices in ScaLAPACK are stored in a Fortran way, that is, by columns. In order to optimize
the memory access in the second step of the algorithm we have distributed ĜT in a logical
row of processors. However, in each iteration of this step (Algorithm 3.2) we have stored the computed
column of L as if we had a column of processors. Using this data distribution, access is always to
elements that are contiguous in memory in both matrices. When we have applied this idea, we have
obtained improvements of more than 50% in the execution time [33].

The previous data distribution forces us to change the logical mesh of processors between steps 2
and 3 of Algorithm 3.1. This change can easily be performed by using two different ScaLAPACK
contexts, one with a processor row topology and one with a processor column topology.
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Figure 1. Time and efficiency of Algorithm 3.1 with a matrix T ∈ R1440×1080, µ = 48 and ν = 24, 36, 60.

Another parameter that affects the performance of the algorithm is the number of transformations
grouped into each message, η. This value can vary from 1 to n/ν. The experimental results show that
the worst results are obtained when η is near to either of these limits, but varies only slightly when we
group an intermediate number of transformations. The optimal value of η is around (2n)/(3(µ+ ν)).
Furthermore, this behavior is independent of the number of processors.

Figure 1 shows the time and efficiency of Algorithm 3.1 for different values of ν. We can see a
constant decrease of the time when we increase the number of processors, allowing efficiencies greater
than 60% even with 16 processors. In addition, the efficiency of the parallel algorithm increases with
larger block sizes, especially when we increase the number of columns of the block.

We have performed a similar experimental analysis with Algorithm 3.4 and the main conclusions are
quite the same. The computation time of the algorithm is mainly spent in step 2 (>90%), which in this
case includes the solution of the triangular systems. The influence of cache memory also produces
superlinear speed-up. On the other hand, the influence of the parameter η is slightly less than in
Algorithm 3.1, but the optimal size of the messages is very similar.

The results in Figure 2 allow us to compare both versions of the parallel algorithm. First, it
can be seen that the sequential time of the second version is double that of the first version,
confirming the theoretical analysis of previous sections. However, the time of the second version
decreases faster than that of the first version, and so the second version obtains better efficiencies.
This behavior causes that the time of the second version to be almost the same as that of the first
version when we use many processors. Let us note that an efficiency of around 90% is obtained with
24 processors. This is a very good result with a low-cost algorithm and shows the small influence of
the communication cost.

On the other hand, we wanted to test the effect of the communication and computation speed of the
architecture on the behavior of the parallel algorithms. Therefore, we tested both parallel algorithms
on another cluster of PCs with different characteristics. The second cluster is composed of 12 nodes
(IBM xSeries 330 SMP). Each node contains two Intel Pentium III processors with a clock rate of
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Figure 2. Time and efficiency of Algorithms 3.1 and 3.4 with a matrix T ∈ R1536×768

and blocks of size µ× ν = 96× 96.

Table III. Characteristics of the two clusters
of PCs used in the experiments.

Myrinet Gigabit

β 62 µs 122 µs
τ 0.021 µs 0.030 µs
Mflops 196.46 645.16
tf 5.09 × 10−3 1.55× 10−3

866 MHz and 512 MBytes of memory. The interconnection network is Gigabit Ethernet composed
of two backbone switches with eight full-duplex 1000BASE-SX (SC-type) ports (TigerSwitch 1000
SMC 8) with 16 Gbps of bandwidth where each node has an SX Ethernet Gigabit NIC for xSeries.
We denote the first parallel architecture as Myrinet and the second one as Gigabit.

Table III shows the characteristics of both clusters. We represent the communication speed with the
parameters β (latency) and τ (transfer rate). We represent the computation speed of the processors
using the performance obtained with the matrix–matrix product (DGEMM) included in a BLAS3 kernel
optimized for each architecture. The table also includes the time required to perform a flop obtained
from the results of the previous routine. We can see that the Myrinet network is faster than the Gigabit
network, but the second cluster has processors more than three times faster than the first.

If we compare Figures 2 and 3, we can see the different behavior of both clusters with the same
matrices. As was expected, the algorithms take less time in the second architecture. However, the
behavior of the parallel algorithms is worse on the Gigabit cluster. This is due to the larger ratio of
communication to computation cost in the second architecture. In this case, the negative effect of the
communications on the efficiency is greater.
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Figure 3. Time and efficiency of Algorithms 3.1 and 3.4 with a matrix T ∈ R1536×768 and a block size of
µ× ν = 96× 96 obtained on the Gigabit machine.

Table IV. Memory use (in Mbytes) of both parallel
algorithms with matrices T ∈ R10000×8000 and a

block size of (µ× ν) = (20× 20).

Processors

1 2 4 8 16

Algorithm 3.1 497 251 127 78 53
Algorithm 3.4 14 9 6 5 5

However, we can see that in the second architecture Algorithm 3.4 is even faster than Algorithm 3.1
when we use more than eight processors. This fact is due to the better load balancing of the second
version of the algorithm. The weight of the time used for communications in Algorithm 3.4 is smaller
than in Algorithm 3.1 regarding the computation time. Therefore, although, theoretically, the second
version of the parallel algorithm doubles the cost of the first, in some circumstances the second version
can be faster. Specifically, the second version of the algorithm overcomes the first when we use a large
enough number of processors, when the relation n/ν is small and when the computer architecture has
a large ratio of communication to computation.

There is another important factor that differs on both parallel algorithms: the storage cost. The second
version of the algorithm does not store the triangular factor L, and so its storage cost is smaller than the
storage cost of the first version (see Table IV). Therefore, the second version can be used with much
larger matrices.

Finally, we analyse the precision of the results obtained with both parallel algorithms. In Table V
the relative errors of both algorithms with matrices whose elements are generated randomly are shown.
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Table V. Relative error of results of Algorithms 3.1 and 3.4 when solving
problem (1) with T ∈ R1440×1080 and different block sizes.

Algorithm 3.1

µ× ν refs = 0 refs = 1 refs = 2 Algorithm 3.4

4× 4 9.15 × 10−15 1.53× 10−15 1.13× 10−15 1.56× 10−14

12× 12 2.34 × 10−14 5.45× 10−15 5.44× 10−15 2.42× 10−14

20× 12 2.36 × 10−14 1.61× 10−15 1.08× 10−15 1.43× 10−14

The parameter used is
‖x̃ − x‖2
‖x‖2 (17)

where x̃ is the computed solution, and x is the exact solution (xi = 1, for all i).
We can see that both algorithms produce solutions with a similar relative error. However, the first

version allows the application of several iterative refinement steps to improve the precision of the
results.

5. CONCLUDING REMARKS

In this paper we presented two versions of a parallel algorithm for solving the least-squares problem
with block–Toeplitz matrices on distributed-memory multiprocessors.

Both parallel algorithms have the following characteristics related to performance.

• They involve only broadcasts and avoid the point-to-point communications of previous versions.
• The cost of the broadcasts has been reduced by grouping the parameters of several iterations

into one message. This is especially important with distributed-memory architectures with large
latency cost.
• Our algorithms cannot profit from the efficiency of the BLAS3 routines, but we have increased

the granularity of the computations by computing and applying groups of transformations.
• The memory access cost can be very important with low-cost algorithms. We have reduced this

effect by trying to optimize the arrangement of the elements in memory for all of the algorithms.
• The effect of the cache memory can produce superlinear speed-up.
• We have used standard and efficient routines included in the libraries LAPACK and

ScaLAPACK. This increased the efficiency of the algorithms and improves portability.

Regarding the precision of the results, we raise the following points.

• Our algorithms are based on the triangular factorization of the matrix T TT using the Generalized
Schur Algorithm. This matrix is positive-definite and so strongly regular. In this case, it is well
known that the algorithm is stable.
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• We have computed and applied the hyperbolic rotations in a factored form, which is well known
to provide numerical stability.

Finally, the two parallel versions implemented have different characteristics.

• Algorithm 3.1 has half the theoretical cost of Algorithm 3.4. However, the second version
produces better load balancing. The experimental results show that the second version is more
efficient. Moreover, in some cases the second version can be even faster than the first.
• Algorithm 3.4 has a much smaller storage cost than Algorithm 3.1.
• The precision of the results is similar for both algorithms. However, Algorithm 3.1 allows the

application of several iterative refinement steps.
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