
Inverse Toeplitz Eigenproblem on Personal

Computer Networks �y

J. M. Bad��a1 A. M. Vidal2

January 8, 2001

1 Dpto. Inform�atica. Univ Jaume I.
12071, Castell�on, Espa~na.

badia@inf.uji.es
2 Dpto. Sistemas Inform�aticos y Computaci�on.

Univ. Polit�ecnica de Valencia.
46071, Valencia, Espa~na.

avidal@dsic.upv.es

Abstract

In this paper we present a parallel algorithm for solving the inverse
Toeplitz Eigenvalue Problem. The algorithm has been implemented by
using a cluster of personal computers, interconnected by a high per-
formance Myrinet network. We have utilized standard public domain
parallel environments for implementing the calculation part as well as
the communications, thus producing portable software. The results
obtained allow us to con�rm the scalability and e�ciency of the al-
gorithm. Besides, we have checked that by using the theoretical cost
model provided by the ScaLAPACK we can predict the behaviour of
the experimental results.

1 Introduction

The rapid development of parallel computers has made it possible to
tackle problems which cannot be dealt with by classic sequential com-
puters owning the storage and time requirements. Distributed Mem-
ory Machines are probably among the most extended computers in the
market. This is due basically to the scalability of this kind of ma-
chines which allows us to increase the performance with the number of
processors, even up to hundreds or thousands of processors.

This paper was partially supported by the project CICYT TIC96-1062-C03: \Parallel
Algorithms for the computation of the eigenvalues of sparse and structured matrices"

This paper has been published in \Concurrency: Practice and Experience. Vol. 12,
no. 13, pp. 1275{1290. (2000)."

1

The main reasons that prevented a widespread use of the massive
parallel computers were the di�culty of programming and their high
economic cost. However, the recent development of message passing
environments such as the PVM [11] or the MPI [19], facilitates the
implementation of e�cient, portable and scalable algorithms on this
kind of parallel architecture.

Nevertheless, the use of custom processors and, specially, the use
of very fast interconnection networks, enormously increases the cost of
this kind of computer, if we want to have a large number of processors
(> 100). This problem is being alleviated by two phenomena: �rst, the
use of standard processors in the MMP, which allows the price of these
components to be decreased, and the platform to be easily updated
as the technology evolves. Second, and in a more radical way, the
appearance on the market of the high performance networks connecting
personal computers, is enlarging the scope of the multiprocessors.

Nowadays, a big e�ort is being made in the development of high
performance interconnection networks, which allow us to group several
personal computers or workstations to form a multiprocessor architec-
ture. In this sense, it is worth noticing the development of Fast Eth-
ernet network (100 Mbits/s.) and, specially, the presence of networks
with a bandwidth of 1 Gbit/s., such as the Myrinet networks [4], [18].
Just to cite an example, currently the most powerful computer, in peak
performance, is a parallel computer of this kind, formed by thousands
of Pentium processors [8].

Quite recently, multiprocessor architectures were restricted to a few
universities, research centres and big companies. However, with the
personal computer networks, multiprocessors can extend their applica-
tion �eld enormously, reaching even small and medium size companies,
and spreading their use to a larger number of di�erent users.

One of the �elds where the use of multiprocessors is specially ad-
equate is the Numerical Linear Algebra. One of the problems in this
�eld that is most complex and costly in terms of computational time,
is represented by the inverse problems, because their solution involves
the solution of several, sometimes many, direct problems. In this paper
we focus on the inverse eigenvalue problem. This problem arises in a
remarkable variety of applications, such as control design, seismic to-
mography, antenna array processing, system identi�cations, structural
analysis, circuit theory, particle physics and so on.

In [6] a wide summary and a classi�cation of a collection of inverse
eigenvalue problems, and the most recently theoretical and algorithmic
results related to these problems are presented. One of the types of the
inverse problems identi�ed in that paper is the structured eigenvalue
problem, that is, the reconstruction of a matrix with a predetermined
spectrum and with a de�nite structure, for example Toeplitz structure
(all the elements in a diagonal have the same value). In this paper
we present a parallel algorithm which solves the inverse eigenvalue
problem with Toeplitz matrices, on a high performance network of
personal computers.

On the other hand, several parallel libraries for numerical linear

2

algebra have been recently developed on distributed memory environ-
ments. These libraries contain very e�cient numerical methods to
solve a large number of numerical and matrix problems. ScaLAPACK
[3] and PLAPACK [21] are examples of this kind of library.

This paper focuses on three objectives. First, to analyze the pos-
sibility of using personal computers clusters with a high performance
interconnection network to solve a problem with high computational
cost, in an e�cient and scalable way, by using parallel computing tech-
niques. The idea is to take advantage of the excellent ratio price/per-
formance of this kind of platforms to extend the �eld of high perfor-
mance parallel computing.

Second, to implement a portable algorithm, based on the use of real
standard software to perform the basic calculation operation (BLAS,
PBLAS, LAPACK, ...) and to carry out the necessary communications
(BLACS, MPI, ...). Moreover, we try to make a portable implemen-
tation by using a public domain operating system like LINUX, and
standard C or FORTRAN compilers. The use of this kind of environ-
ments and programming tools allows us to obtain portable algorithms.
Besides, the algorithms can be easily adapted to the new versions of
di�erent applications, executable on very spread platforms and with a
performance that can be increased with new versions of the software
or hardware.

The third objective of this paper is to study the validity of a theoret-
ical cost and communication model, used by ScaLAPACK, to analyze
the cost of an algorithm which combines di�erent routines of this li-
brary and other routines that parallelize intermediate operations, and
which also perform several redistributions of data.

The rest of the paper is structured as follows: In section 2, the
environment utilized for implementing the algorithm and the commu-
nication and computation cost model is presented. Section 3 contains
a brief description of the problem to solve, the sequential algorithm
utilized and its theoretical cost. In section 4, an outline of the parallel
algorithm and its theoretical cost is presented. Experimental results
and a thorough study of the scalability of the parallel algorithm in the
environment used is presented in section 5. Finally, section 6 contains
our conclusions.

2 Description and features of the environ-

ment

The target platform for our experimental study is a personal computer
cluster connected through a Myrinet network [4]. More speci�cally
speaking, the cluster consists of 32 PCs, based on 300MHz Pentium
II processors, with 128 Mbytes of SDRAM each. The interconnection
network consists of two switches of SAN type, from Myricom, model
M2M-OCT-SW8, with 16 ports each.

A Myricom network card has been incorporated in each PC in order
to connect it with one of the switches by means of a bidirectional link,

3

with a bandwidth of 1,28 Gbits/s. Thus, a bisection bandwidth of
20.48 Gbits/s. on each switch of 16 ports is achieved. The connection
between both switches allows this added bandwidth to be scaled.

Each switch is a crossbar, and both together allow the de�nition of
any kind of topology by means of the manual or automatic stating of
a set of paths among the di�erent ports. Communications are carried
out by using a cut-through protocol with low latency and ow control.

There exist speci�c implementations for Myrinet networks of some
message passing environments such as MPI [17] which o�er small la-
tencies and high bandwidths. Below, we analyze the performance of
the cluster and the interconnection network.

2.1 Communication cost

To analyze the communication cost we have adopted the same scheme
used in [7]. We have used a well-known model to represent the cost,
tc, of performing a communication of m bytes through a link:

tc = tm +mtv (1)

Here, tm stands for the startup time of the transference or latency
time, and tv represents the time of sending a byte through a link.
Thus, the bandwidth of a link is given by 1=tv. It is worth noticing
that in the communication costs, not only factors related to the speed
of the physical links but also the environment utilized to implement the
message-passing must be taken into account. In this case, the results
shown have been obtained by using the MPI environment, GM version,
which has been developed by the manufacturer of the interconnection
network.

To determine the values of the constants in (1) we have utilized the
double ping-pong algorithm, that is, a processor sends a set of packets
of di�erent sizes to another processor and the last one returns them.
The time measured is the half of that required to send and return each
packet. By sending packets of minimum size it is possible to obtain
the value of tm, while the value of tv can be obtained by sending large
size packets.

For the latency time, tm, we have obtained a value of 33 �s. How-
ever, the bandwidth depends on the size of the messages sent. Sending
a message of a few hundred bytes provides a bandwidth of 15 Mbytes/s.
When the messages are of a few Kbytes the bandwidth reaches 23
Mbytes/s. Finally, for messages of tens of Kbytes, the bandwidth tends
asymptotically to a maximum of 33 Mbytes/s. Thus, the maximum
speed of transference through a link, obtained in this environment,
gives a value of tv = 0; 03 �s/byte. This can be seen in Figure 1.

2.2 Arithmetic cost

To analyze the arithmetic performance of the processors it is important
to distinguish between the peak performance and the real performance
that we can obtain during the execution of a de�nite algorithm. The

4

Message Size

M
by

te
s/s

ec
.

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

x 10Kb

x 1Kb

x 100b

Size

Figure 1: Bandwidth of the Myrinet network with messages of di�erent sizes
using MPI-GM.

DGEMV DGEMM DGETRF

n MFlops tf (�s.) MFlops tf (�s.) MFlops tf (�s.)

200 84,42 1,18E-02 177,78 5,63E-03 132,83 7,53E-03

400 48,36 2,07E-02 180,28 5,55E-03 146,85 6,81E-03

600 47,93 2,09E-02 183,05 5,46E-03 154,65 6,47E-03

800 47,57 2,10E-02 184,84 5,41E-03 165,54 6,04E-03

1000 47,34 2,11E-02 185,53 5,39E-03 169,94 5,88E-03

Table 1: Arithmetic performance of the processors.

average execution time of a oating point operation (op) in a concrete
algorithm depends on the type of operation, on the memory access
outline, and on the exploitation of all the features of the processor.

To analyze the arithmetic performance of the processor three wi-
despread standard algorithms have been used: the �rst one, DGEMV,
performs the matrix-vector product and is integrated in the level 2 of
the computational kernel BLAS. The second one, DGEMM, performs ma-
trix products and belongs to BLAS level 3, and the third one, DGETRF,
performs the LU decomposition of a matrix and is integrated in the
LAPACK library [1]. In the case of the routines included in the BLAS
kernel, we have used a version specially devised to take advantage of
Pentium processors, which is incorporated in the ASCI Red Pentium
Pro BLAS 1.1.N [12], [13].

In table 1 we present the results obtained by the previous rou-
tines in a Pentium II-300 processor, included in the cluster utilized to
perform the experiments with the parallel algorithm. We can verify
that the performance obtained by the two last routines approaches the
200 MFlops, while the �rst one achieves a clearly inferior performance.

5

This is undoubtedly due to the ratio between the number of operations
and the number of memory accesses in each subroutine. While in the
�rst one we use the level 2 of BLAS, in the second and third ones we
refer to BLAS 3.

The di�erent performances of the previous subroutines result in
very di�erent values for the average time of execution of a oating
point operation. While in the case of the two last subroutines this
value is approximately 0,006 �s, in the �rst one the value is around
0,02 �s. Thus, the value of constant tf , which is more appropriate
to model our system, strongly depends on the characteristics of the
arithmetic operations to be performed and on the exploitation of the
di�erent levels of BLAS.

3 Description of the problem and its se-

quential solution

In this section we briey describe the inverse eigenproblem to be solved,
the sequential algorithm and its theoretical cost. This problem has
been previously studied in [15] and [10]. To obtain a more detailed
information of the algorithm [20] and [2] can also be consulted. Let
t = [t0; t1; : : : ; tn�1] be a real n-vector. We say that T (t) is a Real
Symmetric Toeplitz Matrix (TRS) generated by t if

T (t) =
�
tji�jj

�n
i;j=1

:

This kind of matrix appears in the solution of many problems in
Physics or Engineering.

Given n real values such as

�1 � �2 � : : : � �n; (2)

the inverse eigenvalue problem consists in computing a generator t, so
that the spectrum of the TRS matrix associated coincides with (2).

The TRS matrices verify some properties [5], [15] that allow their
spectrum to be divided in two parts with the same number of eigen-
values, known as even and odd eigenvalues, and associating them with
the symmetric and skew-symmetric eigenvectors, respectively. On the
other side, it is possible to compute both spectra separately, substan-
tially reducing the cost of calculating the eigenvalues and eigenvectors
of the matrix.

In [16] a method for solving the inverse eigenproblem with TRS ma-
trices is proposed. This method is equivalent to the Newton method.
This algorithm is improved in [20] by means of the adequate exploita-
tion of the previous spectral properties.

3.1 Sequential Algorithm

In this section, we briey describe the sequential method proposed in
[20]. We will call p1(t); : : : ; pr(t) the symmetric eigenvectors of T (t)

6

and q1(t); : : : ; qs(t) its skew-symmetric eigenvectors. On the other side,
we will denote the target spectrum as

� = [�1; �2; : : : ; �r; �1; �2; : : : ; �s] (3)

where the even and odd spectra have been separated, and each one has
been written in increasing order.

Let t0 be a n-vector and let � be the target spectrum, as de�ned
in (3). By using t0 as an initial generator, the method computes a
sequence tm, m = 1; 2; : : : as the solution of the equations:

pi(tm�1)TT (tm)pi(tm�1) = �i; 1 � i � r

qj(tm�1)TT (tm)qj(tm�1) = �j; 1 � j � s
(4)

where r = dn=2e and s = bn=2c. The previous equations can be written
as a linear system of dimension n = r + s; and we can obtain tm from
tm�1, thus producing an iterative method.

In each iteration of the algorithm, we start by constructing the
matrix associated with the linear system in order to solve (4). This
is performed from the eigenvectors of the TRS matrix of the previous
iteration, which have been computed with a small cost by separating
the odd and even spectra. Then, the linear system is solved, thus
obtaining a new generator for a TRS matrix, whose spectrum is calcu-
lated. The convergence of the algorithm is reached when the di�erence
between the computed spectrum and the target spectrum is smaller
than a given error �0.

Broadly speaking, the sequential algorithm we have implemented
is the following:

REPEAT
�(T (tm�1)) Compute the spectrum (eigenvalues and eigenvectors)

of T (tm�1)
C Build the linear system from (4) and the computed eigenvectors.
tm Solve the linear system Ctm = �

UNTIL j�(T (tm))� �j < �0

The method described is equivalent to Newton's method. Since
the Newton method is not globally convergent, this algorithm does
not necessarily converge to a solution of the problem. In [20] several
improvements are proposed in order to achieve the convergence of the
method. Speci�cally, if the convergence fails, we try to linearly con-
verge to a modi�ed spectrum with a less restrictive stopping criterion.
When this new convergence is reached, the computed spectrum is used
as a starting point to quadratically converge on the target spectrum.

3.2 Analysis of the theoretical cost

Each iteration of the previous sequential method performs three basic
tasks: the computation of the spectrum of a TRS matrix, the con-
struction of the coe�cient matrix of a linear system and, �nally, the
solution of the linear system.

7

By exploiting the spectral properties of the TRS matrices, the cost
of computing their spectrum is

t1 = 11n3=6 + n2=4 ops:

The construction of the coe�cient matrix implies a cost of

t2 = n3=2 + 3n2 ops:

Finally, the solution of the linear system by means of gaussian
elimination produces a cost of:

t3 = 2n3=3 ops:

Thus, if we call it the number of necessary iterations to reach the
convergence, the total cost of the sequential algorithm is given by:

t2 = (t1 + t2 + t3) = (3n3 + 13n2=4) � it ops: (5)

4 Outline of the parallel algorithm

The parallelization of the sequential method is based on the use of the
ScaLAPACK parallel linear algebra library [3]. In this environment
the algorithms use a SPMD model and a block cyclic data distribution
among the processors of a logical bidimensional mesh.

The algorithm parallelizes the three main steps of the sequential
version and performs the communications needed to redistribute the
data appropriately in order to start each step. A very simpli�ed version
of the parallel algorithm is summarized in the following pseudocode:

WHILE not converged
Compute the odd and even spectra of T (tm�1) in parallel.
Gather the eigenvectors in the �rst row of processors.
IF the processor is in the �rst row of the mesh THEN

Compute the corresponding rows of matrix C in the linear system.
Redistribute matrix C among all the processors in the mesh.
Solve the linear system in parallel.

In order to accomplish the parallel solution of the linear system
and the computation of the spectra, we have used several ScaLAPACK
routines, namely, PDGETRF, PDGETRS and PDSYEV. To compute the co-
e�cient matrix for the linear system we have exploited the fact that
each row depends on one eigenvector, and therefore, all matrix rows
can be computed in parallel.

Due to the mesh topology of the environment and the data depen-
dencies of the problem, we have to perform some redistributions of the
data in each iteration of the algorithm. These communications greatly
increase the cost of the parallel algorithm.

First, in each iteration, we must gather the eigenvectors in the
�rst row of processors in order to compute the coe�cient matrix of the

8

linear system. On the other side, we compute the odd and even spectra
separately, obtaining two matrices distributed in the whole mesh. To
obtain a properly distributed matrix containing all the eigenvectors,
once we have the eigenvectors in the �rst row of processors, we have to
redistribute them. Finally, once we have built the coe�cient matrix, we
must redistribute its elements among all the processors of the mesh in
order to solve the linear system. The computation and communication
outline in each iteration of the parallel algorithm is shown in �gure 2.

Computation and gathering
of the spectrum

Redistribution of the eigenvectors
and Computation of matrix C

Scattering of matrix C and
linear system solving

Figure 2: Computation and communication outline of the parallel algorithm.

To perform all the communications of the algorithm we have used
the routines in BLACS [9] and the auxiliary redistribution routines
included in the ScaLAPACK library.

4.1 Theoretical cost analysis

In this section we use the ScaLAPACK model in order to analyze the
theoretical cost of the parallel algorithm. In this model, p processors
are distributed in a square mesh and the matrices of size n � n are
distributed by using a block cyclic scheme with block size nb�nb. The
cost of a driver routine in ScaLAPACK ([3], pag. 97) is given by:

T (n; p) = Cf

n3

p
tf + Cv

n2p
p
tv +Cm

n

nb
tm; (6)

where Cfn
3=p represents the total number of oating point operations,

Cvn
2=
p
p represents the total number of bytes communicated through

the algorithm, and Cmn=nb represents the number of messages trans-
ferred.

We make some assumptions in order to simplify the cost analysis.
First, we are going to represent the cost in the case of a square mesh,
though, as we will see in the following sections, the con�guration of
the mesh greatly a�ects the experimental results. Second, we perform
the redistribution of the matrices using messages of size nb� nb, and
we suppose that there is no overlapping among these messages.

In the previous conditions, we have computed the values of the con-
stants in (6) which corresponds to the part of the parallel algorithm

9

that is not computed using ScaLAPACK drivers. Therefore, the fol-
lowing constants include the computation of the coe�cient matrix and
the data redistributions in each iteration.

Cf � p

2
p
p

(7)

Cv � 3

2
(
p
p + 1) (8)

Cf � 3

2
(
p
p� 1)

n

nb
(9)

If we want to obtain the total cost of the parallel algorithmwe have
to add the values associated to the ScaLAPACK routines used in each
iteration ([3], table 5.8) to the previous constants. We also have to
recall that we compute the odd and even spectra separately, and so,
we call the routine PDSYEV twice with two matrices of size n=2.

In �gure 3 we show the performance of the parallel algorithm ob-
tained by applying the previous theoretical model. Speci�cally, we
have substituted in (6) the values of the parameter tf , tv and tm
which corresponds to our parallel architecture (see x3). If we ana-
lyze the computations developed in the parallel algorithm, we can see
a combination of several BLAS levels. Therefore, we have used a value
of tf = 0; 015�s., corresponding to an intermediate point among BLAS
levels 2 and 3.

The results in �gure 3 show that the speedups are quite far from the
maximum. This behaviour is mainly due to the large communication
cost obtained if we substitute (8) and (9) in (6). Taking into account
our assumptions, both expressions represent maximum bounds for the
communication cost.

Speedup

Pr
oc

es
so

rs

0

1

2

3

4

5

6

7

8

9

10

4 9 16 25

1200

1000

800

600

400

200

Matrix Size

Figure 3: Performance using the theoretical model.

Figure 4 shows the inuence of the three factors in (6) in the the-
oretical performance of the algorithms. Speci�cally, this �gure repre-

10

sents their value using 25 processors for matrices of several sizes. We
can see that the computation cost grows more quickly than the com-
munications cost, but it is larger only with matrices of size 600 or more.
Therefore, the overload due to the communications limits the speedup
that we can obtain with the parallel algorithm except for very large
matrices.

Matrix Size

Ti
m

e
(s

ec
.)

0

1

2

3

4

5

6

200 400 600 800 1000 1200

Comput.

Bandw.

Latency

Factor

Figure 4: E�ect of the communications and computations in the duration
of the parallel algorithm. (p=25).

5 Experimental analysis

First, in table 2 we show the execution time of both, sequential and
parallel algorithm, with matrices of several sizes and using di�erent
numbers of processors. This table shows the absolute performance of
the algorithms in the experimental environment. We can see a clear
reduction in the duration of the algorithm when we use the parallel
algorithm. For example, with a matrix size of n = 1200 we reduce
the duration from 2677.39 seconds in the sequential version, to 268.21
seconds in the parallel version using 25 processors.

In the following sections we study the e�ect of the con�guration of
the mesh in the performance of the parallel algorithm and we analyze
its scalability using di�erent metrics.

5.1 E�ect of the con�guration of the mesh

In this section we study the e�ect of the con�guration of the mesh in the
performance of the parallel algorithm. This factor has a large inuence
in our algorithm, because an important part of the communication cost
depends on it.

We have shown in section 4 that in each iteration of the algorithm
we must perform two redistributions of a matrix among all the proces-

11

Matrix size

proc. 200 400 600 800 1000 1200

1 5,99 60,96 282,30 782,94 1453,61 2677,39

4 6,84 37,85 104,83 210,28 274,19 731,62

9 8,23 36,48 88,72 154,58 199,81 404,47

16 8,45 30,67 30,67 128,54 155,76 288,94

25 9,57 36,51 72,87 112,39 180,56 268,21

Table 2: Duration of the sequential and parallel algorithms in seconds.

sors in the mesh. Speci�cally, we must gather the eigenvectors in the
�rst row of processors and we must redistribute the coe�cient matrix
to all the processors. Both operations force an important communica-
tion cost whose real value depends on the con�guration of the mesh.
If we use an unidimensional mesh with only one row of processors, the
cost of these communications is zero, while if we only use one column of
processors, its cost is the maximum one. However, with large matrices
we must also take into account that the behaviour of the ScaLAPACK
routines is better with square meshes, and that this class of meshes
improve the load balance of the whole algorithm.

In �gure 5 we can see how if we use meshes with a large number
of rows, the speedups decrease due to the larger cost of the redistri-
butions, while the best performance with large matrices (n=1200) is
obtained using square or almost square meshes.

Processors

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

10

4 9 16 25

squ

1xp

px1

Mesh configuration

Figure 5: E�ect of the con�guration of the mesh in the speedups.
(n = 1200).

12

5.2 Scalability analysis

In this section we analyze the scalability of the parallel algorithm.
By scalability we mean the capacity of the algorithm to maintain the
performance when we increase the number of processors. To achieve
this behaviour we have to increase the size of the problem appropriately
while increasing the number of processors.

We use two metrics to analyze the scalability. In the �rst metric,
called isotemporal, we increase the size of the problem so that the du-
ration of the parallel algorithm can be the same as the duration of the
sequential algorithm. In the second metric, called isospatial, we keep
the size of the problem constant in each processor, thus maintaining
the memory usage per node.

5.3 Isotemporal scalability

We use the concept of scaled speedup de�ned in [14] to represent the
isotemporal scalability:

Sp =
pW

T (p; pW)
;

where W represents the cost of the sequential algorithm and T (p; pW)
represents the cost of the parallel algorithm to solve a problem of cost
pW using p processors.

As we are dealing with an algorithm with sequential cost W =
O(n3), we must increase the matrix size, n, with 3

p
p, if we want to

keep the same computation cost in the parallel algorithm.

Processors

Sc
al

ed
 S

pe
ed

up

0

2

4

6

8

10

12

14

16

18

2x2 3x3 4x4 5x5

800

600

400

200

Matrix Size

Figure 6: Scaled speedup using an isotemporal metric.

Figure 7 shows the speedups obtained without scaling, that is, if
we maintain the size of the problem while increasing the number of
processors. If we compare this �gure with �gure 6, we can see the
e�ect of scaling in the performance of the algorithm.

13

Processors

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

10

2x2 3x3 4x4 5x5

1200

1000

800

600

400

200

Matrix Size

Figure 7: Speedup without scaling.

Figure 7 also allows us to con�rm experimentally the results pre-
dicted by the theoretical analysis in section 4.1 and represented in
�gure 3. The patterns in both �gures are similar, and the di�erences
are due to several reasons. First, the theoretical computation cost is
based on a value for the parameter tf that does not have to coincide
with the mean cost of a op in our algorithm, and that is based on the
performance of several BLAS and LAPACK routines. In general, the
computation performance of our algorithm is quite far from the peak
of the machine, and it is nearer to the values obtained with routine
DGEMV than to the values obtained with routine DGEMM, (see table 1).

Second, the communication cost in the theoretical model is based on
some simpli�cations that do not take into account the possible overlap-
ping among di�erent messages, the use of pipelined communications,
the real topology of the interconnection network, the possible over-
lapping among computations and communications, etc. We must also
take into account that the bandwidth, and thus the value of tv, de-
pends, as we can see in �gure 1, on the size of the message. All these
aspects of the implementation de�ne the real cost of the communica-
tions and can justify the possible di�erences between the theoretical
and experimental results.

5.4 Isospatial scalability

When we use the isospatial scalability we must maintain the size of the
problem in each processor. In the case of the ScaLAPACK library, if we
hold constant the ratio n2=p while increasing the number of processors,
the e�ciency of the driver routines is almost maintained. When this
condition holds, it is said that these routines scale isoe�ciently.

In �gure 8 we show the performance obtained when we use an
isospatial scaling in our parallel algorithm. First, we can see a clear
decrease of the MFlops/s. per node when we increase the number of

14

processors. This behaviour is due to the fact that we are not using a
ScaLAPACK routine, but a combination of some of them, with some
routines implemented speci�cally for this algorithm. Besides we per-
form some redistributions of the data in each iteration that clearly
a�ect the global scalability of the algorithm.

On the other hand, we must point out that the biggest reduction
occurs when we go from the sequential version to the parallel version.
If we increase the number of processors in the parallel version, the per-
formance is almost maintained. This behaviour is due to the overload
of the parallelization, and mainly, to the communication cost. Besides,
when we begin with large matrices, the decrease of the performance is
not so large and we go from 64 MFlop/s. per node in the sequential
case to 33 MFlop/s. per node using 25 processors.

Processors

M
Fl

op
s/p

ro
ce

ss
or

0

10

20

30

40

50

60

70

80

1x1 2x2 3x3 4x4 5x5

500

400

300

200

100

n/sqrt(p)

Figure 8: Megaops per processor using an isospatial scaling.

6 Conclusions

In this paper we present a parallel algorithm that solves e�ciently and
in a quite scalable way the inverse eigenproblem for real symmetric
Toeplitz matrices. We show the possibility of implementing this type of
algorithm on an architecture with an excellent rate cost/performance.
Speci�cally, we have used a cluster of personal computers connected
with a high performance network.

We must always take into account that we are dealing with a com-
plex problem that involves a large number of communications. This
factor is crucial in the performance that we can obtain working with
a distributed memory multicomputer. We have tested this e�ect both
theoretically and experimentally.

To implement the algorithms we have used a standard environment
based mainly on public domain and very well known tools (Linux, MPI,
BLAS, LAPACK, ScaLAPACK, . . .). Therefore, we have obtained a

15

portable algorithm for a large range of parallel architectures. Moreover,
the performance of the algorithm can improve with the quick evolution
of the characteristics of personal computers and of high performance
networks (Fast Ethernet, Gigabit, Myrinet, . . .).

The utilization of the ScaLAPACK parallel linear algebra library
imposes a program model based on a bidimensional mesh and a block
cyclic distribution of the matrices. In the case of our algorithm, and
due to its communication pattern, the con�guration of the mesh greatly
a�ects the performance.

At the same time, we have applied the theoretical cost analysis
model of the ScaLAPACK to our algorithm. Even taking into account
several important simpli�cations and the e�ect of the communications,
the results o�ered by the model allow us to approach the general be-
haviour of the parallel algorithm and permits the analysis of the in-
uence of the di�erent factors involved, such as the computation cost,
bandwidth and latency of the communications.

We must also point out that the implementation of this type of
algorithms proves that it is possible to obtain good performances by
applying parallel programming techniques and tools to architectures
based on clusters of personal processors. It is not necessary to use
big supercomputers, with very expensive hardware and speci�cally de-
signed software to obtain good result in the solution of complex linear
algebra problems.

Besides, we have obtained a considerable degree of scalability on a
cluster of personal computers connected with an external network with
excellent performance as the Myrinet. This result is very promising, as
it proves the possibility of increasing the area of application of parallel
algorithms to architectures based on standard components with low
cost and using standard software tools.

References

[1] E. Anderson, Z. Bay, and C. Bischof. LAPACK User's Guide.
SIAM, 1992.

[2] J.M. Badia and A.M. Vidal. Parallel solution of the inverse eigen-
problem for real symmetric toeplitz matrices. Tech. Report DI
01-04/99, Dpt. Informatica, Univ. Jaume I, 1999.

[3] L.S. Blackford, J. Choi, and A. Cleary. ScaLAPACK Users'

Guide. Software, Environment, Tools. SIAM, 1997.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A gigabit-per-second
Local Area Network. IEEE Micro, 15(1):29{36, February 1995.

[5] A. Cantoni and F. Butler. Eigenvalues and eigenvectors of sym-
metric centrosymmetric matrices. Lin. Alg. Appl, (13):275{288,
1976.

[6] Moody T. Chu. Inverse eigenvalue problems. SIAM Review,
40(1):1{39, March 1998.

16

[7] J. J. Dongarra and T. Dunigan. Message-passing performance
of various computers. Technical Report UT-CS-95-299, Dpt. of
Computer Science, Univ. of Tennessee, July 1995.

[8] Jack J. Dongarra, Hans W. Meuer, and Erich Strohmaier.
TOP500 supercomputer sites. Technical Report UT-CS-98-391,
Department of Computer Science, University of Tennessee, June
1998.

[9] Jack J. Dongarra and R. ClintWhaley. LAPACK working note 94:
A user's guide to the BLACS v1.0. Technical Report UT-CS-95-
281, Department of Computer Science, University of Tennessee,
March 1995.

[10] Shamuel Friedland. Inverse eigenvalue problems for symmetric
Toeplitz matrices. SIAM Journal on Matrix Analysis and Appli-

cations, 13(4):1142{1153, October 1992.

[11] Al Geist, AdamBeguelin, Jack Dongarra, Weicheng Jiang, Robert
Manchek, and Vaidy Sunderam. PVM 3 Users Guide and Refer-

ence manual. Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee 37831, May 94.

[12] G. Henry. ASCI red pentium pro BLAS 1.1N. Technical report,
www.cs.utk.edu/ ghenry/distrib, 1999.

[13] B. Kagstrom, P. Ling, and C. van Loan. GEEM-based level
3 BLAS: High-performance model implementations and perfor-
mance evaluation benchmark. Technical Report UT-CS-95-315,
Department of Computer Science, University of Tennessee, Octo-
ber 1995. Fri, 27 Aug 99 3:05:19 GMT.

[14] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction

to Parallel Computing. Design and Analysis of Algorithms. The
Benjamin/Cumming Pub. Company, Redwood, California, 1994.

[15] H.J. Landau. The inverse eigenvalue problem for real symmetric
toeplitz matrices. J. Amer. Math Soc., (7):749{767, 1994.

[16] Dirk P. Laurie. A numerical approach to the inverse Toeplitz
eigenproblem. SIAM Journal on Scienti�c and Statistical Com-

puting, 9(2):401{405, March 1988.

[17] Myricom. The GM message-passing system. Technical report,
Myricom Inc., 1998.

[18] VITA Standards Org. Myrinet-on-VME protocol speci�cation.
Draft Standard. Technical Report 26-199x Draft 1.1., VITA, 1998.

[19] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W.
Walker, and Jack Dongarra. MPI: the complete reference. MIT
Press, Cambridge, MA, USA, 1996.

[20] William F. Trench. Numerical solution of the inverse eigenvalue
problem for real symmetric Toeplitz matrices. SIAM Journal on

Scienti�c Computing, 18(6):1722{1736, November 1997.

[21] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Al-

gebra Package. MIT Press, Cambridge, MA, USA, 1997. With
contributions by Philip Alpatov and others.

17

