
Parallel Algorithm for Extended Star Clustering�

Reynaldo Gil-Garćıa1, José M. Bad́ıa-Contelles2, and Aurora Pons-Porrata1

1 Universidad de Oriente, Santiago de Cuba, Cuba
{gil,aurora}@app.uo.edu.cu

2 Universitat Jaume I, Castellón, Spain
badia@icc.uji.es

Abstract. In this paper we present a new parallel clustering algorithm
based on the extended star clustering method. This algorithm can be
used for example to cluster massive data sets of documents on dis-
tributed memory multiprocessors. The algorithm exploits the inherent
data-parallelism in the extended star clustering algorithm. We imple-
mented our algorithm on a cluster of personal computers connected
through a Myrinet network. The code is portable to different architec-
tures and it uses the MPI message-passing library. The experimental
results show that the parallel algorithm clearly improves its sequential
version with large data sets. We show that the speedup of our algorithm
approaches the optimal as the number of objects increases.

1 Introduction

Clustering algorithms are widely used for document classification, clustering of
genes and proteins with similar functions, event detection and tracking on a
stream of news, image segmentation and so on. Given a collection of n objects
characterized by m features, clustering algorithms try to construct partitions or
covers of this collection. The similarity among the objects in the same cluster
should be maximum, whereas the similarity among objects in different clusters
should be minimum. The clustering algorithms involve three main elements,
namely: the representation space, the similarity measure and the clustering cri-
terion.

One of the most important problems in recent years is the enormous increase
in the amount of unorganized data. Consider, for example, the web or the flow
of news in newspapers. We need methods for organizing information in order
to highlight the topic content of a collection, detect new topics and track them.
The star clustering algorithm [1] was proposed for these tasks, and three scalable
extensions of this algorithm can be found in [2]. The star method outperforms
existing clustering algorithms such as single link, average link and k-means in
the organizing information task, as it can be seen in [1]. However, the clusters
obtained by this algorithm depend on the data order. In [3] we proposed a

� This work was partially supported by the Spanish CICYT projects TIC 2002-04400-
C03-01 and TIC 2000-1683-C03-03.

A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 402–409, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Parallel Algorithm for Extended Star Clustering 403

new clustering algorithm that outperforms the Aslam’s algorithm and it is also
independent of the data order.

Many recent applications involve huge data sets that cannot be clustered in a
reasonable time using one processor. Moreover, in many cases the data cannot be
stored in the main memory of the processor and it is necessary to access the much
slower secondary memory. A solution to this problem is to use parallel computers
that can deal with large data sets and reduce the time spent by the algorithms.
Parallel versions of some clustering algorithms have been developed, such as
K-Means [4], MAFIA [5], GLC [6] and the Incremental Compact Algorithm [7].

In this paper we present a new parallel algorithm that finds the clusters ob-
tained by the Extended Star Clustering Algorithm [3]. This algorithm distributes
the same number of objects to each processor and balances the workloads in
average. The parallel algorithm was tested in a cluster of personal computers
connected through a Myrinet network. Experimental results show a good behav-
ior of the parallel algorithm that clearly reduces the sequential time. Moreover,
we have achieved near linear speedups when the collection of objects and the
number of features are large.

The remainder of the paper is organized as follows. Section 2 describes the
main features of the sequential algorithm. Section 3 shows the parallel algorithm.
Section 4 includes the experimental results. Finally, conclusions are presented in
Section 5.

2 Extended Star Clustering Algorithm

Two objects are β0-similar if their similarity is greater or equal to β0, where β0

is a user-defined parameter. We call β0-similarity graph the undirected graph
whose vertices are the objects to cluster and there is an edge from vertex oi to
vertex oj , if oj is β0-similar to oi. Finding the minimum vertex cover of a graph
is a NP complete problem. This algorithm is based on a greedy cover of the
β0-similarity graph by star-shaped subgraphs. A star-shaped subgraph of l + 1
vertices consists of a single star and l satellite vertices, where there exist edges
between the star and each of the satellite vertices.

On the other hand, we define the complement degree of an object o is the
degree of o taking into account its neighbors not included yet in any cluster,
namely:

CD(o) = |N(o) \ Clu|
where Clu is the set of objects already clustered and N(o) is the set of neighbors
of the object o in the β0-similarity graph. As we can see, the complement degree
of an object decreases during the clustering process as more objects are included
in clusters.

In the extended star clustering algorithm the stars are the objects with high-
est complement degree. The isolated objects in the β0-similarity graph are also
stars. The algorithm guarantees a pairwise similarity of at least β0 between
the star and each of the satellite vertices, but such similarity is not guaranteed

404 Reynaldo Gil-Garćıa, José M. Bad́ıa-Contelles, and Aurora Pons-Porrata

Algorithm 1 Extended star clustering algorithm.
1. Calculate all the similarities between each pair of objects to build the β0-similarity

graph
2. Let N(o) be the neighbors of each object o in the β0-similarity graph
3. For each isolated object o (|N(o)| = 0): Create the singleton cluster {o}
4. Let L be the set of non-isolated objects
5. Calculate the complement degree of each object in L
6. While a non-clustered object exists:

(a) Let M0 be the subset of objects of L with maximum complement degree
(b) Let M be the subset of objects of M0 with maximum degree
(c) For each object o in M :

i. If {o} ∪ N(o) does not exist, create a cluster {o} ∪ N(o)

(d) L = L \ M
(e) Update the complement degree of the objects in L

between satellite vertices. The main steps of our algorithm are shown in the
Algorithm 1.

The complexity time of the algorithm is O(n2m) [3]. This algorithm creates
overlapped clusters. Unlike the original star clustering algorithm, the obtained
clusters are independent of the data order. Besides, the selection of stars using
the complement degree allows the algorithm to cover quickly the data and it
reduces the overlapping among the clusters.

In [3] we compare the extended star clustering algorithm with the original
star algorithm in several subcollections of TREC data1 using the F1 measure
[8]. It obtains a better cluster quality in these subcollections in most cases.

3 Parallel Algorithm

Our parallel algorithm is based on the Single Program Multiple Data (SPMD)
model using message passing, which is currently the most prevalent model on
distributed memory multiprocessors. We assume that we have p processors each
with a local memory. These processors are connected using a communication
network. We do not assume a specific interconnection topology for the commu-
nication network, but the access time to the local memory of each processor must
be cheaper than time to communicate the same data with other processor.

This algorithm uses a master-slaves model, where one of the processors acts as
the master during some phases of the algorithm. The data is cyclically distributed
among the processors, so that processor i owns the object j if i = j mod p. This
data partition tries to balance the workload among the processors in order to
improve the efficiency of the parallel algorithm. Each processor stores the indexes
of the objects connected to its n

p objects in the β0-similarity graph.
Initially, the algorithm builds the β0-similarity graph, and each processor cre-

ates the singleton clusters formed by its isolated objects. Then it spends most
1 http://trec.nist.gov

Parallel Algorithm for Extended Star Clustering 405

Algorithm 2 Parallel algorithm.
1. Build β0-similarity graph()
2. On each processor:

(a) For each isolated object o: Create the singleton cluster {o}
(b) Let L be the set of non isolated objects in this processor

3. Processor 0 gathers the singleton clusters
4. Processor 0 broadcasts the number of non-clustered objects
5. While there exist non-clustered objects

(a) Find stars()
(b) Build clusters()
(c) Update complement degree()
(d) On each processor: L = L \ M

Algorithm 3 Build β0-similarity graph()
1. Processor 0 broadcasts the number of objects n
2. On each processor:

(a) For i = 1, ..., n:

i. If processor 0: read the object oi and broadcast it
ii. If processor owns oi: store its description
iii. Calculate the similarities of its objects with oi to build the β0-similarity

subgraph

(b) Let N(o) be the neighbors of each object o in the β0-similarity graph. The
complement degree of o is |N(o)|

of the time of the algorithm to find the star shaped clusters. The algorithm ter-
minates when all objects are clustered. The main steps of our parallel algorithm
are shown in the Algorithm 2.

The parallel algorithm involves four major steps: building the β0-similarity
graph, finding of stars, constructing the clusters, and updating the complement
degree. Each of the above four steps is carried out in parallel. The algorithms
Build β0-similarity graph, Find stars, Build clusters and Update complement
degree describe each of these steps.

The Build β0-similarity graph() algorithm is embarrassingly parallel. Ob-
serve that the similarity calculations are inherently data parallel, that is, they
can be executed asynchronously and in parallel for each object. Therefore a
perfect workload balance is achieved.

In the Find stars() algorithm each processor starts by finding the candidate
stars (step 1). Given the local maximum complement degree and the local max-
imum degree on each processor, the Reduce communication operation computes
the global maxima and broadcasts them to all processors. For example, if (2, 6),
(3, 4) and (3, 5) are the maximum complement degrees and the maximum de-
grees calculated in the processors 0, 1 and 2 respectively, the obtained global
maxima are (3, 5). Notice that the global maximum degree is the maximum de-

406 Reynaldo Gil-Garćıa, José M. Bad́ıa-Contelles, and Aurora Pons-Porrata

Algorithm 4 Find stars()
1. On each processor:

(a) Let M0 be the subset of objects of L with maximum complement degree
(b) Let M be the subset of objects of M0 with maximum degree

2. Reduce communication to get the global maximum complement degree and its
corresponding global maximum degree

3. On each processor:

(a) If its local maximum complement degree and its local maximum degree coincide
with the global maxima, the stars are the objects of M . Else, M = Ø

Algorithm 5 Build clusters()
1. On each processor:

(a) For each star object o of M , build the cluster with o and its neighbors N(o)
(b) Determine the number of non-clustered objects

2. Reduce communication to obtain the global clusters and the global number of
non-clustered objects

gree corresponding to the global maximum complement degree. Finally, the stars
are found by the processors whose maxima coincide with the global ones.

The algorithm 5 builds the clusters from the obtained stars. This process
may lead to identical clusters being formed. We need to identify the repeated
clusters and retain only one of them. Elimination of identical clusters is carried
out on each processor and also on the Reduce communication operation. The
elimination on each processor is not needed, but it decreases greatly the time
during the Reduce operation. Finally, both the global clusters and the global
number of non-clustered objects are broadcast to all processors.

The clusters built in this iteration, incorporate some objects that were not
even clustered, that is, the objects that did not belong to any cluster built in
previous iterations. The algorithm 6 firstly constructs the set of these objects.

Algorithm 6 Update complement degree()
1. On each processor:

(a) Let C be the set of its objects clustered in this iteration
(b) Build the set of pairs (o, v), where o is a neighbor of an object of C and v is

the value in which its complement degree must be decreased. v is the number
of objects of C that are neighbors of o.

2. Reduce communication to get the global set of pairs (o, v)
3. On each processor:

(a) For each object o of the global set of pairs (o, v)

i. If this processor owns o, decrease its complement degree in v

Parallel Algorithm for Extended Star Clustering 407

The neighbors of these objects change its complement degree and therefore we
need update them. For this purpose, we build a data structure that contains these
neighbors and the value in which its complement degree must be decreased. Since
each processor only knows the complement degree decreases due to its objects
clustered in this iteration, a Reduce communication operation is performed so
that all processors have the global decreases. Finally, each processor updates the
complement degree of its objects.

As we can see, the tasks are divided among the processors such that each pro-
cessor gets approximately an equal amount of work when the number of objects
is large. The description of objects and the β0-similarity graph are fairly dis-
tributed among the processors. Thus the memory used by the parallel algorithm
is similar in each processor. On the other hand, the overhead of communication
is reduced by packing several informations in a single message.

4 Performance Evaluation

The target platform for our experimental analysis is a cluster of personal com-
puter connected through a Myrinet network. The cluster consists of 34 Intel
Pentium IV-2GHz processors, with 1 Gbyte of RAM each one. The algorithm
has been implemented on a Linux operating system, and we have used a specific
implementation of the MPI message-passing library that offers small latencies
and high bandwidths on the Myrinet network. We have executed the parallel
algorithm varying the number of processors from 1 to 32.

We used data (in Spanish) from the TREC-4 and TREC-5 conferences as our
testing medium. The TREC-4 collection contains a set of “El Norte” newspaper
articles in 1994. This collection has 5828 articles classified in 50 topics. The
TREC-5 consists of articles from AFP agency in 1994-1996 years, classified in 25
topics. We only used the data from 1994, for a total of 695 classified articles. The
TREC-4 document collection were partitioned in three subcollections to evaluate
the performance of the parallel algorithm using data sets with different sizes.
The documents are represented using the traditional vectorial model. Terms are
statistically weighted using the normalized term frequency. Moreover, we use the
traditional cosine measure to compare the documents. The obtained results are
shown in table 1.

The clusters obtained with the parallel algorithm are independent of the
number of processors involved. As we can see, the parallel algorithm clearly

Table 1. Experimental results.

Time (sec.) Number of processors

Collection Size 1 2 4 8 12 16 20 24 28 32

afp 695 9.22 4.74 2.83 1.50 1.47 1.22 1.30 1.60 1.58 1.14

eln-1 1380 56.27 29.16 15.85 8.90 6.78 5.82 5.35 5.10 4.72 4.66

eln-2 2776 232.83 119.43 62.15 32.48 23.59 18.93 16.62 14.48 13.88 13.01

eln-3 5552 972.37 494.67 255.20 129.89 90.06 70.74 60.85 51.32 46.23 41.82

408 Reynaldo Gil-Garćıa, José M. Bad́ıa-Contelles, and Aurora Pons-Porrata

reduces the sequential time in all collections. The time reductions are larger as
we increase the size of the data sets.

Figure 1 shows the speedups obtained with the parallel algorithm using dif-
ferent data sets. From the plot it can be seen that we have achieved near linear
speedups for up to a certain number of processors depending on the data size.
The computation time decreases almost linearly with the number of processors
except in the smaller data (afp). Besides, when we deal with few objects, the
number of stars and neighbors per processor could be quite different, and so the
workload per processor could be unbalanced. However, with large data sets, all
processor should have a similar number of stars, thus balancing the workload.
On the other hand, the effect of the communication time is smaller as we in-
crease the size of the data sets. Therefore, the higher the data size, the greater
the speedup for the same number of processors.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35

S
pe

ed
up

Processors

afp
eln−1
eln−2
eln−3

Fig. 1. Speedups on TREC data.

5 Conclusions

In this paper we present a parallel extended star clustering algorithm. The gen-
erated set of clusters is unique, independently of the arrival order of the objects.
Another advantage of this algorithm is that it can deal with mixed incomplete
object descriptions and it obtains overlapped clusters. On the other hand, the
algorithm is not restricted to the use of metrics to compare the objects. The pro-
posed parallel algorithm can be used in many applications such as information
organization, browsing, filtering, routing and topic detection and tracking. Be-

Parallel Algorithm for Extended Star Clustering 409

sides, the resulting parallel algorithm is portable, because it is based on standard
tools, including the MPI message-passing library.

We have implemented and tested the parallel code in a cluster of personal
computers. The experimental evaluations on TREC data show the gains in per-
formance. The obtained results show a good behavior of the parallel algorithm
that clearly reduces the sequential time. Moreover, we have achieved near linear
speedups with large data sets. The main reason for this behavior is that we have
tried to minimize the communications and to balance the load on the processors
by carefully distributing the objects and the tasks that each processor performs
during each step of the algorithm.

References

1. Aslam, J.; Pelekhov, K. and Rus, D.: Static and Dynamic Information Organization
with Star Clusters. In Proceedings of the 1998 Conference on Information Knowledge
Management, Baltimore, MD, 1998.

2. Aslam, J.; Pelekhov, K. and Rus, D.: Scalable Information Organization. In Pro-
ceedings of RIAO, 2000.

3. Gil-Garćıa, R. J.; Bad́ıa-Contelles, J. M. and Pons-Porrata, A.: Extended Star Clus-
tering Algorithm. In Proceedings of the 8th Iberoamerican Congress on Pattern
Recognition, LNCS 2905, Springer Verlag, pp. 480-487, 2003.

4. Dhillon, I. and Modha, B. A.: Data Clustering Algorithm on Distributed Memory
Multiprocessor. Workshop on Large-scale Parallel KDD Systems, pp. 245-260, 2000.

5. Nagesh, H.; Goil, S. and Choudhary, A.: A Scalable Parallel Subspace Clustering
Algorithm for Massive Data Sets. International Conference on Parallel Processing,
pp. 447-454, 2000.

6. Gil-Garćıa, R. and Bad́ıa-Contelles, J.M.: GLC Parallel Clustering Algorithm. In
Pattern Recognition. Advances and Perspectives. Research on Computing Science
(In Spanish), pp. 383-394, 2002.

7. Gil-Garćıa, R. J.; Bad́ıa-Contelles, J. M. and Pons-Porrata, A.: A Parallel Algorithm
for Incremental Compact Clustering. In Proceedings of the Europar2003, LNCS
2790, Springer-Verlag, pp. 310-317, 2003.

8. Larsen, B. and Aone, C.: Fast and Effective Text Mining Using Linear-time Docu-
ment Clustering. In KDD’99, San Diego, California, pp. 16-22, 1999.

	1 Introduction
	2 Extended Star Clustering Algorithm
	3 Parallel Algorithm
	4 Performance Evaluation
	5 Conclusions
	References

