
XML and Databases
Copyright 1999-2003 by Ronald Bourret

Last updated January, 2003

Table of Contents
1.0 Introduction
2.0 Is XML a Database?
3.0 Why Use a Database?
4.0 Data versus Documents
 4.1 Data-Centric Documents
 4.2 Document-Centric Documents
 4.3 Data, Documents, and Databases
5.0 Storing and Retrieving Data
 5.1 Mapping Document Schemas to Database Schemas
 5.1.1 Table-Based Mapping
 5.1.2 Object-Relational Mapping
 5.2 Query Languages
 5.2.1 Template-Based Query Languages
 5.2.2 SQL-Based Query Languages
 5.2.3 XML Query Languages
 5.3 Storing Data in a Native XML Database
 5.4 Data Types, Null Values, Character Sets, and All That Stuff
 5.4.1 Data Types
 5.4.2 Binary Data
 5.4.3 Null Data
 5.4.4 Character Sets
 5.4.5 Processing Instructions and Comments
 5.4.6 Storing Markup
 5.5 Generating DTDs from Relational Schema and Vice Versa
6.0 Storing and Retrieving Documents
 6.1 Storing Documents in the File System
 6.2 Storing Documents in BLOBs
 6.3 Native XML Databases
 6.3.1 What is a Native XML Database?
 6.3.2 Native XML Database Architectures
 6.3.2.1 Text-Based Native XML Databases
 6.3.2.2 Model-Based Native XML Databases
 6.3.3 Features of Native XML Databases
 6.3.3.1 Document Collections
 6.3.3.2 Query Languages
 6.3.3.3 Updates and Deletes
 6.3.3.4 Transactions, Locking, and Concurrency
 6.3.3.5 Application Programming Interfaces (APIs)
 6.3.3.6 Round-Tripping
 6.3.3.7 Remote Data
 6.3.3.8 Indexes
 6.3.3.9 External Entity Storage
 6.3.4 Normalization, Referential Integrity, and Scalability
 6.3.4.1 Normalization
 6.3.4.2 Referential Integrity
 6.3.4.3 Scalability

Página 1 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

 6.3 Persistent DOMs (PDOMs)
 6.4 Content Management Systems
7.0 XML Database Products
8.0 Additional Links
9.0 Comments and Feedback

1.0 Introduction
This paper gives a high-level overview of how to use XML with databases. It describes how the
differences between data-centric and document-centric documents affect their usage with databases,
how XML is commonly used with relational databases, and what native XML databases are and
when to use them.

2.0 Is XML a Database?
Before we start talking about XML and databases, we need to answer a question that occurs to many
people: "Is XML a database?"

An XML document is a database only in the strictest sense of the term. That is, it is a collection of
data. In many ways, this makes it no different from any other file -- after all, all files contain data of
some sort. As a "database" format, XML has some advantages. For example, it is self-describing (the
markup describes the structure and type names of the data, although not the semantics), it is portable
(Unicode), and it can describe data in tree or graph structures. It also has some disadvantages. For
example, it is verbose and access to the data is slow due to parsing and text conversion.

A more useful question to ask is whether XML and its surrounding technologies constitute a
"database" in the looser sense of the term -- that is, a database management system (DBMS). The
answer to this question is, "Sort of." On the plus side, XML provides many of the things found in
databases: storage (XML documents), schemas (DTDs, XML schema languages), query languages
(XQuery, XPath, XQL, XML-QL, QUILT, etc.), programming interfaces (SAX, DOM, JDOM), and
so on. On the minus side, it lacks many of the things found in real databases: efficient storage,
indexes, security, transactions and data integrity, multi-user access, triggers, queries across multiple
documents, and so on.

Thus, while it may be possible to use an XML document or documents as a database in environments
with small amounts of data, few users, and modest performance requirements, this will fail in most
production environments, which have many users, strict data integrity requirements, and the need for
good performance.

A good example of the type of "database" for which an XML document is suitable is an .ini file --
that is, a file that contains application configuration information. It is much easier to invent a small
XML language and write a SAX application for interpreting that language than it is to write a parser
for comma-delimited files. In addition, XML allows you to have nested entries, something that is
harder to do in comma-delimited files. However, this is hardly a database, since it is read and written
linearly, and then only when the application is started and ended.

Examples of more sophisticated data sets for which an XML document might be suitable as a
database are personal contact lists (names, phone numbers, addresses, etc.), browser bookmarks, and
descriptions of the MP3s you've stolen with the help of Napster. However, given the low price and
ease of use of databases like dBASE and Access, there seems little reason to use an XML document
as a database even in these cases. The only real advantage of XML is that the data is portable, and
this is less of an advantage than it seems due to the widespread availability of tools for serializing
databases as XML.

Página 2 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

3.0 Why Use a Database?
The first question you need to ask yourself when you start thinking about XML and databases is why
you want to use a database in the first place. Do you have legacy data you want to expose? Are you
looking for a place to store your Web pages? Is the database used by an e-commerce application in
which XML is used as a data transport? The answers to these questions will strongly influence your
choice of database and middleware (if any), as well as how you use that database.

For example, suppose you have an e-commerce application that uses XML as a data transport. It is a
good bet that your data has a highly regular structure and is used by non-XML applications.
Furthermore, things like entities and the encodings used by XML documents probably aren't
important to you -- after all, you are interested in the data, not how it is stored in an XML document.
In this case, you'll probably need a relational database and software to transfer the data between
XML documents and the database. If your applications are object-oriented, you might even want a
system that can store those objects in the database or serialize them as XML.

On the other hand, suppose you have a Web site built from a number of prose-oriented XML
documents. Not only do you want to manage the site, you would like to provide a way for users to
search its contents. Your documents are likely to have a less regular structure and things such as
entity usage are probably important to you because they are a fundamental part of how your
documents are structured. In this case, you might want a product like a native XML database or a
content management system. This will allow you to preserve physical document structure, support
document-level transactions, and execute queries in an XML query language.

4.0 Data versus Documents
Perhaps the most important factor in choosing a database is whether you are using the database to
store data or documents. For example, is XML used simply as a data transport between the database
and a (possibly non-XML) application? Or is its use integral, as in the case of XHTML and
DocBook documents? This is usually a matter of intent, but it is important because all data-centric
documents share a number of characteristics, as do all document-centric documents, and these
influence how XML is stored in the database. The next two sections examine these characteristics.

(Historical footnote: I first heard the terms data-centric and document-centric on the xml-dev
mailing list. I don't know who coined them, but I've found messages from 1997 using the term
document-centric and messages from 1998 using both terms.)

4.1 Data-Centric Documents

Data-centric documents are documents that use XML as a data transport. They are designed for
machine consumption and the fact that XML is used at all is usually superfluous. That is, it is not
important to the application or the database that the data is, for some length of time, stored in an
XML document. Examples of data-centric documents are sales orders, flight schedules, scientific
data, and stock quotes.

Data-centric documents are characterized by fairly regular structure, fine-grained data (that is, the
smallest independent unit of data is at the level of a PCDATA-only element or an attribute), and little
or no mixed content. The order in which sibling elements and PCDATA occurs is generally not
significant, except when validating the document.

Data of the kind that is found in data-centric documents can originate both in the database (in which
case you want to expose it as XML) and outside the database (in which case you want to store it in a
database). An example of the former is the vast amount of legacy data stored in relational databases;

Página 3 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

an example of the latter is scientific data gathered by a measurement system and converted to XML.

For example, the following sales order document is data-centric:

 <SalesOrder SONumber="12345">
 <Customer CustNumber="543">
 <CustName>ABC Industries</CustName>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 </Customer>
 <OrderDate>981215</OrderDate>
 <Item ItemNumber="1">
 <Part PartNumber="123">
 <Description>
 <p>Turkey wrench:

 Stainless steel, one-piece construction,
 lifetime guarantee.</p>
 </Description>
 <Price>9.95</Price>
 </Part>
 <Quantity>10</Quantity>
 </Item>
 <Item ItemNumber="2">
 <Part PartNumber="456">
 <Description>
 <p>Stuffing separator:

 Aluminum, one-year guarantee.</p>
 </Description>
 <Price>13.27</Price>
 </Part>
 <Quantity>5</Quantity>
 </Item>
 </SalesOrder>

In addition to such obviously data-centric documents as the sales order shown above, many prose-
rich documents are also data-centric. For example, consider a page on Amazon.com that displays
information about a book. Although the page is largely text, the structure of that text is highly
regular, much of it is common to all pages describing books, and each piece of page-specific text is
limited in size. Thus, the page could be built from a simple, data-centric XML document that
contains the information about a single book and is retrieved from the database, and an XSL
stylesheet that adds the boilerplate text. In general, any Web site that dynamically constructs HTML
documents today by filling a template with database data can probably be replaced by a series of
data-centric XML documents and one or more XSL stylesheets.

For example, consider the following document describing a flight:

 <FlightInfo>
 <Airline>ABC Airways</Airline> provides <Count>three</Count>
 non-stop flights daily from <Origin>Dallas</Origin> to
 <Destination>Fort Worth</Destination>. Departure times are
 <Departure>09:15</Departure>, <Departure>11:15</Departure>,
 and <Departure>13:15</Departure>. Arrival times are minutes later.
 </FlightInfo>

This could be built from the following XML document and a simple stylesheet:

 <Flights>
 <Airline>ABC Airways</Airline>

Página 4 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

 <Origin>Dallas</Origin>
 <Destination>Fort Worth</Destination>
 <Flight>
 <Departure>09:15</Departure>
 <Arrival>09:16</Arrival>
 </Flight>
 <Flight>
 <Departure>11:15</Departure>
 <Arrival>11:16</Arrival>
 </Flight>
 <Flight>
 <Departure>13:15</Departure>
 <Arrival>13:16</Arrival>
 </Flight>
 </Flights>

4.2 Document-Centric Documents

Document-centric documents are (usually) documents that are designed for human consumption.
Examples are books, email, advertisements, and almost any hand-written XHTML document. They
are characterized by less regular or irregular structure, larger grained data (that is, the smallest
independent unit of data might be at the level of an element with mixed content or the entire
document itself), and lots of mixed content. The order in which sibling elements and PCDATA
occurs is almost always significant.

Document-centric documents are usually written by hand in XML or some other format, such as
RTF, PDF, or SGML, which is then converted to XML. Unlike data-centric documents, they usually
do not originate in the database. (Documents built from data inserted into a template are data-centric;
for more information, see the end of section 4.1.) For information on software you can use to convert
various formats to XML, see the links to various lists of XML software.

For example, the following product description is document-centric:

 <Product>

 <Intro>
 The <ProductName>Turkey Wrench</ProductName> from <Developer>Full
 Fabrication Labs, Inc.</Developer> is <Summary>like a monkey wrench,
 but not as big.</Summary>
 </Intro>

 <Description>

 <Para>The turkey wrench, which comes in <i>both right- and left-
 handed versions (skyhook optional)</i>, is made of the finest
 stainless steel. The Readi-grip rubberized handle quickly adapts
 to your hands, even in the greasiest situations. Adjustment is
 possible through a variety of custom dials.</Para>

 <Para>You can:</Para>

 <List>
 <Item><Link URL="Order.html">Order your own turkey wrench</Link></Item>
 <Item><Link URL="Wrenches.htm">Read more about wrenches</Link></Item>
 <Item><Link URL="Catalog.zip">Download the catalog</Link></Item>
 </List>

 <Para>The turkey wrench costs just $19.99 and, if you
 order now, comes with a hand-crafted shrimp hammer as a
 bonus gift.</Para>

Página 5 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

 </Description>

 </Product>

4.3 Data, Documents, and Databases

In practice, the distinction between data-centric and document-centric documents is not always clear.
For example, an otherwise data-centric document, such as an invoice, might contain large-grained,
irregularly structured data, such as a part description. And an otherwise document-centric document,
such as a user's manual, might contain fine-grained, regularly structured data (often metadata), such
as an author's name and a revision date. Other examples include legal and medical documents, which
are written as prose but contain discrete pieces of data, such as dates, names, and procedures, and
often must be stored as complete documents for legal reasons.

In spite of this, characterizing your documents as data-centric or document-centric will help you
decide what kind of database to use. As a general rule, data is stored in a traditional database, such as
a relational, object-oriented, or hierarchical database. This can be done by third-party middleware or
by capabilities built in to the database itself. In the latter case, the database is said to be XML-
enabled. Documents are stored in a native XML database (a database designed especially for storing
XML) or a content management system (an application designed to manage documents and built on
top of a native XML database).

These rules are not absolute. Data -- especially semi-structured data -- can be stored in native XML
databases and documents can be stored in traditional databases when few XML-specific features are
needed. Furthermore, the boundaries between traditional databases and native XML databases are
beginning to blur, as traditional databases add native XML capabilities and native XML databases
support the storage of document fragments in external (usually relational) databases.

The remainder of this paper discusses the strategies and issues surrounding the storage and retrieval
of data (section 5) and documents (section 6). For an up-to-date list of XML database products, see
XML Database Products.

5.0 Storing and Retrieving Data
In order to transfer data between XML documents and a database, it is necessary to map the XML
document schema (DTD, XML Schema, RELAX NG, etc.) to the database schema. The data transfer
software is then built on top of this mapping. The software may use an XML query language (such
as XPath, XQuery, or a proprietary language) or simply transfer data according to the mapping (the
XML equivalent of SELECT * FROM Table).

In the latter case, the structure of the document must exactly match the structure expected by the
mapping. Since this is often not the case, products that use this strategy are often used with XSLT.
That is, before transferring data to the database, the document is first transformed to the structure
expected by the mapping; the data is then transferred. Similarly, after transferring data from the
database, the resulting document is transformed to the structure needed by the application.

5.1 Mapping Document Schemas to Database Schemas

Mappings between document schemas and database schemas are performed on element types,
attributes, and text. They almost always omit physical structure (such as entities, CDATA sections,
and encoding information) and some logical structure (such as processing instructions, comments,
and the order in which elements and PCDATA appear in their parent). This is more reasonable than
it may sound, as the database and application are concerned only with the data in the XML
document. For example, in the sales order shown above, it doesn't matter if the customer number is

Página 6 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

stored in a CDATA section, an external entity, or directly as PCDATA, nor does it matter if the
customer number is stored before or after the order date.

One consequence of this is that "round-tripping" a document -- that is, storing the data from a
document in the database and then reconstructing the document from that data -- often results in a
different document, even in the canonical sense of the term. Whether this is acceptable depends on
your needs and might influence your choice of software.

Two mappings are commonly used to map an XML document schema to the database schema: the
table-based mapping and the object-relational mapping.

5.1.1 Table-Based Mapping

The table-based mapping is used by many of the middleware products that transfer data between an
XML document and a relational database. It models XML documents as a single table or set of
tables. That is, the structure of an XML document must be as follows, where the <database> element
and additional <table> elements do not exist in the single-table case:

 <database>
 <table>
 <row>
 <column1>...</column1>
 <column2>...</column2>
 ...
 </row>
 <row>
 ...
 </row>
 ...
 </table>
 <table>
 ...
 </table>
 ...
 </database>

Depending on the software, it may be possible to specify whether column data is stored as child
elements or attributes, as well as what names to use for each element or attribute. In addition,
products that use table-based mappings often optionally include table and column metadata either at
the start of the document or as attributes of each table or column element. Note that the term "table"
is usually interpreted loosely. That is, when transferring data from the database to XML, a "table"
can be any result set; when transferring data from XML to the database, a "table" can be a table or an
updateable view.

The table-based mapping is useful for serializing relational data, such as when transferring data
between two relational databases. Its obvious drawback is that it cannot be used for any XML
documents that do not match the above format.

5.1.2 Object-Relational Mapping

The object-relational mapping is used by all XML-enabled relational databases and some
middleware products. It models the data in the XML document as a tree of objects that are specific to
the data in the document. In this model, element types with attributes, element content, or mixed
content (complex element types) are generally modeled as classes. Element types with PCDATA-
only content (simple element types), attributes, and PCDATA are modeled as scalar properties. The
model is then mapped to relational databases using traditional object-relational mapping techniques
or SQL 3 object views. That is, classes are mapped to tables, scalar properties are mapped to

Página 7 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

columns, and object-valued properties are mapped to primary key / foreign key pairs.

(The name "object-relational mapping" is actually a misnomer, as the object tree can be mapped
directly to object-oriented and hierarchical databases. However, it is used because the overwhelming
majority of products that use this mapping use relational databases and the term "object-relational
mapping" is well known.)

It is important to understand that the object model used in this mapping is not the Document Object
Model (DOM). The DOM models the document itself and is the same for all XML documents, while
the model described above models the data in the document and is different for each set of XML
documents that conforms to a given DTD. For example, the sales order document shown above
could be modeled as a tree of objects from four classes -- SalesOrder, Customer, Item, and Part -- as
shown in the following diagram:

 SalesOrder
 / | \
 Customer Item Item
 | |
 Part Part

Were a DOM tree built from the same document, it would be composed of objects such as Element,
Attr, and Text:

 Element --- Attr
 (SalesOrder) (SONumber)
 ____/ / \ _____
 / / \ \
 Element Text Element Element
 (Customer) (OrderDate) (Item) (Item)
 | | |
 etc. etc. etc.

Whether the objects in the model are actually instantiated depends on the product. Some products
allow you to generate the classes in the model, then use these objects from these classes in your
application. With such products, data is transferred between the XML document and these objects
and between these objects and the database. Other products use the objects only as a tool to help
visualize the mapping and transfer data directly between the XML document and the database.
Whether it is useful to instantiate the intermediate objects depends entirely on your application.

(The binding of XML documents to objects is commonly known as XML data binding, after Sun's
Java Architecture for XML Binding. A number of products implement XML data binding; many of
these can transfer data between the objects and the database as well. For more information, see XML
Data Binding Resources.)

The way in which the object-relational mapping is supported varies from product to product. For
example:

All products support the mapping of complex element types to classes and simple element
types and attributes to properties.

All(?) products allow you to designate a root element that is not mapped to the object model or
database. This wrapper element is useful when you want to store multiple top-level objects in
the same XML document. For example, if you want to store multiple sales orders in the same
XML document, you need to wrap these in a single root element.

The wrapper element is equivalent to the <database> element when an XML document using

Página 8 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

the table-based mapping contains multiple tables and is present only to meet XML's
requirement that a document has a single root element. A few products allow you to designate
elements at lower levels as wrapper elements as well.

Most products allow you to specify whether properties are mapped to attributes or child
elements in the XML document. Some products allow you to mix attributes and child
elements; others require you to use only one or the other.

Most products allow you to use different names in the XML document and the database; a few
require you to use the same names in both.

Most products allow you to specify the order in which child elements appear in their parent,
although in such a way that it is impossible to build many content models. Fortunately, the
supported content models are sufficient for most data-centric documents. (Child order is
important if you want to validate the document.)

Some products allow you to map complex element types to scalar properties. This is useful
when the element type contains mixed content, such as the <Description> element in the sales
order example. Although the <Description> element has child elements and text in the form of
XHTML, it is more useful to view the description as a single property than to break it down
into its component pieces.

Few products support the mapping of PCDATA in mixed content.

For a complete description of the object-relational mapping, see section 3 of "Mapping DTDs to
Databases".

5.2 Query Languages

Many products transfer data directly according to the model on which they are built. Because the
structure of the XML document is often different from the structure of the database, these products
often include or are used with XSLT. This allows users to transform documents to the structure
dictated by the model before transferring data to the database, as well as the reverse. Because XSLT
processing can be expensive, some products also integrate a limited number of transformations into
their mappings.

The long term solution to this problem is the implementation of query languages that return XML.
Currently (November, 2002), most of these languages rely on SELECT statements embedded in
templates. This situation is expected to change when XQuery and SQL/XML are finalized, as major
database vendors are already working on implementations. Unfortunately, almost all of XML query
languages (including XQuery 1.0 and the initial release of SQL/XML) are read-only, so different
means will be needed to insert, update, and delete data in the near term. (In the long term, XQuery
and SQL/XML will add these capabilities.)

5.2.1 Template-Based Query Languages

The most common query languages that return XML from relational databases are template-based. In
these languages, there is no predefined mapping between the document and the database. Instead,
SELECT statements are embedded in a template and the results are processed by the data transfer
software. For example, the following template (not used by any real product) uses <SelectStmt>
elements to include SELECT statements and $column-name values to determine where the results
should be placed:

 <?xml version="1.0"?>

Página 9 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

 <FlightInfo>
 <Introduction>The following flights have available seats:</Introduction>
 <SelectStmt>SELECT Airline, FltNumber, Depart, Arrive FROM Flights</SelectS
 <Flight>
 <Airline>$Airline</Airline>
 <FltNumber>$FltNumber</FltNumber>
 <Depart>$Depart</Depart>
 <Arrive>$Arrive</Arrive>
 </Flight>
 <Conclusion>We hope one of these meets your needs</Conclusion>
 </FlightInfo>

The result of processing such a template might be:

 <?xml version="1.0"?>
 <FlightInfo>
 <Introduction>The following flights have available seats:</Introduction>
 <Flights>
 <Flight>
 <Airline>ACME</Airline>
 <FltNumber>123</FltNumber>
 <Depart>Dec 12, 1998 13:43</Depart>
 <Arrive>Dec 13, 1998 01:21</Arrive>
 </Flight>
 ...
 </Flights>
 <Conclusion>We hope one of these meets your needs.</Conclusion>
 </FlightInfo>

Template-based query languages can be tremendously flexible. Although the feature set varies from
product to product, some commonly occurring features are:

The ability to place result set values anywhere in the output document, including as parameters
in subsequent SELECT statements.

Programming constructs such as for loops and if statements.

Variables and function definitions.

Parameterization of SELECT statements through HTTP parameters.

Template-based query languages are used almost exclusively to transfer data from relational
databases to XML documents. Although some products that use template-based query languages can
transfer data from XML documents to relational databases, they do not use their full template
language for this purpose. Instead, they use a table-based mapping, as described above.

5.2.2 SQL-Based Query Languages

SQL-based query languages use modified SELECT statements, the results of which are transformed
to XML. A number of proprietary SQL-based languages are currently available. The simplest of
these uses nested SELECT statements, which are transformed directly to nested XML according to
the object-relational mapping. The next uses SQL 3 object views, also transformed directly to XML.
The last uses OUTER UNION statements and special markup to determine how results are
transformed to XML.

In addition to the proprietary languages, a number of companies have joined together to standardize
XML extensions to SQL. This effort is known as SQL/XML and the initial work has been submitted
to both ANSI and ISO. SQL/XML extends SQL so it is possible to construct XML elements and

Página 10 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

attributes. The resulting XML is returned in a column in a result set. For example, the following
query:

 SELECT XMLElement("Order",
 XMLAttributes(SONumber),
 XMLElement("Date", Date),
 XMLElement("Customer", Customer)) AS xmldocument
 FROM Orders WHERE SONumber="123"

can be used to construct the following XML document in the xmldocument column:

 <Order SONumber="123">
 <Date>10/29/02</Date>
 <Customer>Gallagher Industries</Customer>
 </Order>

For more information about SQL/XML, see the SQLX Group Web site or
ftp://sqlstandards.org/SC32/WG3/Progression_Documents/Informal_working_drafts/5wd-14-xml-
2002-08.txt. (Note: The work on SQL/XML, which was started by the SQLX Group, has been taken
over by the H2.3 task group of the H2 (SQL) committee in ANSI. Because of this, the SQLX Group
Web site may have been disabled. If this is the case, try searching Google on "XMLForest" and
"XMLAgg".)

5.2.3 XML Query Languages

Unlike template-based query languages and SQL-based query languages, which can only be used
with relational databases, XML query languages can be used over any XML document. To use these
with relational databases, the data in the database must be modeled as XML, thereby allowing
queries over virtual XML documents.

With XQuery, either a table-based mapping or an object-relational mapping can be used. If a table-
based mapping is used, each table is treated as a separate document and joins between tables
(documents) are specified in the query itself, as in SQL. If an object-relational mapping is used,
hierarchies of tables are treated as a single document and joins are specified in the mapping. It
appears likely that table-based mappings will be used in most implementations over relational
databases, as these appear to be simpler to implement and more familiar to users of SQL.

With XPath, an object-relational mapping must be used to do queries across more than one table.
This is because XPath does not support joins across documents. Thus, if the table-based mapping
was used, it would be possible to query only one table at a time.

5.3 Storing Data in a Native XML Database

It is also possible to store data in XML documents in a native XML database. There are several
reasons to do this. The first of these is when your data is semi-structured. That is, it has a regular
structure, but that structure varies enough that mapping it to a relational database results in either a
large number of columns with null values (which wastes space) or a large number of tables (which is
inefficient). Although semi-structured data can be stored in object-oriented and hierarchical
databases, you can also choose to store it in a native XML database in the form of an XML
document.

A second reason to store data in a native XML database is retrieval speed. Depending on how the
native XML database physically stores data, it might be able to retrieve data much faster than a
relational database. The reason for this is that some storage strategies used by native XML databases
store entire documents together physically or use physical (rather than logical) pointers between the

Página 11 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

parts of the document. This allows the documents to be retrieved either without joins or with
physical joins, both of which are faster than the logical joins used by relational databases.

For example, consider the sales order document shown above. In a relational database, this would be
stored in four tables -- SalesOrders, Items, Customers, and Parts -- and retrieving the document
would require joins across these tables. In a native XML database, the entire document might be
stored in a single place on the disk, so retrieving it or a fragment of it requires a single index lookup
and a single read to retrieve the data. A relational database requires four index lookups and at least
four reads to retrieve the data.

The obvious drawback in this case is that the increased speed applies only when retrieving data in
the order it is stored on disk. If you want to retrieve a different view of the data, such as a list of
customers and the sales orders that apply to them, performance will probably be worse than in a
relational database. Thus, storing data in a native XML database for performance reasons applies
only when one view of the data predominates in your application.

A third reason to store data in a native XML database is that you want to exploit XML-specific
capabilities, such as executing XML queries. Given that few data-centric applications need this today
and that relational databases are implementing XML query languages, this reason is less compelling.

One problem with storing data in a native XML database is that most native XML databases can
only return the data as XML. (A few support the binding of elements or attributes to application
variables.) If your application needs the data in another format (which is likely), it must parse the
XML before it can use the data. This is clearly a disadvantage for local applications that use a native
XML database instead of a relational database, as it incurs overhead not found in (for example) an
ODBC application. It is not a problem with distributed applications that use XML as a data transport,
since they must incur this overhead regardless of what type of database is used.

5.4 Data Types, Null Values, Character Sets, and All That Stuff

This section discusses a number of issues related to storing data from XML documents in traditional
databases. (The issues about data types and binary data apply to storing data in native XML
databases as well.) Generally, you will have no choice about how your data transfer software
resolves these issues. However, you should be aware that these issues exist, as they might help you
to choose software.

5.4.1 Data Types

XML does not support data types in any meaningful sense of the word. Except for unparsed entities,
all data in an XML document is text, even if it represents another data type, such as a date or an
integer. Generally, the data transfer software will convert data from text (in the XML document) to
other types (in the database) and vice versa. However, the number of text formats recognized for a
particular data type are likely to be limited, such as to those supported by a given JDBC driver. Dates
are most likely to cause problems, as the range of possible formats is enormous. Numbers, with their
various international formats, can cause problems as well.

5.4.2 Binary Data

There are two common ways to store binary data in XML documents: unparsed entities and Base64
encoding (a MIME encoding that maps binary data to a subset of US-ASCII). For relational
databases, both can prove problematic, as the rules governing how binary data is sent to or retrieved
from the database can be quite strict and can cause problems for the software. In addition, there is no
standard XML notation for indicating that an element contains Base64-encoded data, so the software
might not even recognize that the data is encoded binary data. Finally, the notation associated with

Página 12 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

an unparsed entity or Base64 encoded element is one of those things that most (all?) data transfer
software discards when storing data in the database. Therefore, if binary data is important to you, be
sure to check how and if your software supports it.

5.4.3 Null Data

In the database world, null data means data that simply isn't there. This is very different from a value
of 0 (for numbers) or zero length (for a string). For example, suppose you have data collected from a
weather station. If the thermometer isn't working, a null value is stored in the database rather than a
0, which would mean something different altogether.

XML also supports the concept of null data through optional element types and attributes. If the
value of an optional element type or attribute is null, it simply isn't included in the document. As
with databases, attributes containing zero length strings and empty elements are not null: their value
is a zero-length string.

When mapping the structure of an XML document to the database and vice versa, you should be
careful that optional element types and attributes are mapped to nullable columns and vice versa. The
result of not doing so is likely to be an insertion error (when transferring data to the database) or an
invalid document (when transferring data from the database).

Because the XML community is likely to have a more flexible notion of what is meant by null than
the database community -- in particular, many XML users are likely to consider attributes containing
zero-length strings and empty elements to be "null" -- you should check how your software handles
this situation. Some software offers the user the choice of defining what constitutes "null" in an
XML document, including supporting the xsi:null attribute from XML Schemas.

5.4.4 Character Sets

By definition, an XML document can contain any Unicode character except some of the control
characters. Unfortunately, many databases offer limited or no support for Unicode and require
special configuration to handle non-ASCII characters. If your data contains non-ASCII characters, be
sure to check how and if both your database and data transfer software handle these characters.

5.4.5 Processing Instructions and Comments

Processing instructions and comments are not part of the "data" of an XML document and most
(all?) data transfer software cannot handle them. The problem is that they can occur virtually
anywhere in an XML document and therefore do not easily fit into the table-based and object-
relational mappings. (One clearly unworkable solution in a relational database is to add tables for
processing instructions and comments, add foreign keys to these tables for all other tables, and to
check these tables whenever processing another table.) Thus, most data transfer software simply
discards them. If processing instructions and comments are important to you, check how and if your
software handles them. You might also consider using a native XML database.

5.4.6 Storing Markup

As was mentioned in section 5.1.2, it is sometimes useful to store elements with mixed content in the
database without further parsing. When this is done, markup is stored with markup characters.
However, a problem arises with how to store markup characters that are not used for markup. In an
XML document, these are stored using the lt, gt, amp, quot, and apos entities. This can also be done
in the database. For example, the following description:

 <description>

Página 13 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

 Confusing example: <foo/>
 </description>

can be stored in the database as:

 Confusing example: <foo/>

The problem with this is that non-XML query languages, such as SQL, do not scan column values
for markup and entity usage and interpret them accordingly. Thus, if you wanted to search for the
string "<foo/>" with SQL, you would need to know that you actually needed to search for the string
"<foo/>".

On the other hand, if entity references are expanded, the data transfer software cannot distinguish
markup from entity usage. For example, if the above description is stored in the database as follows,
the software cannot tell whether , , and <foo/> are markup or text.

 Confusing example: <foo/>

The long term solution to this problem is XML-aware databases in which actual markup is treated
differently from things that only look like markup. Still, there will probably always be problems
when non-XML applications handle XML.

5.5 Generating DTDs from Relational Schema and Vice Versa

A common question when transferring data between XML documents and a database is how to
generate XML DTDs from database schema and vice versa. Before explaining how to do this, it is
worth noting that this is a design-time operation. The reason for this is that most data-centric
applications, and virtually all vertical applications, work with a known set of DTDs and database
schema. Thus, they don't need to generate schemas at run-time. Furthermore, as will be seen below,
the procedures for generating schemas are less than perfect. Applications that need to store random
XML documents in a database should probably use a native XML database instead of generating
schemas at run time.

The easiest way to generate relational schemas from DTDs and vice versa is to simply hardcode a
path through the object-relational mapping, which has a number of optional features. Similar
procedures exist for use with object-oriented databases. (For step-by-step examples of each
procedure, see section 4 of Mapping DTDs to Databases.)

To generate a relational schema from a DTD:

1. For each complex element type, create a table and a primary key column.

2. For each element type with mixed content, create a separate table in which to store the
PCDATA, linked to the parent table through the parent table's primary key.

3. For each single-valued attribute of that element type, and for each singly-occurring simple
child element, create a column in that table. If the child element type or attribute is optional,
make the column nullable.

4. For each multi-valued attribute and for each multiply-occurring simple child element, create a
separate table to store values, linked to the parent table through the parent table's primary key.

5. For each complex child element, link the parent element type's table to the child element type's
table with the parent table's primary key.

Página 14 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

To generate a DTD from a relational schema:

1. For each table, create an element type.

2. For each data (non-key) column in that table, as well as for the primary key column(s), add an
attribute to the element type or a PCDATA-only child element to its content model.

3. For each table to which the primary key is exported, add a child element to the content model
and process the table recursively.

4. For each foreign key, add a child element to the content model and process the foreign key
table recursively.

There are a number of drawbacks to these procedures. Many of these are easy to fix by hand, such as
name collisions and specifying column data types and lengths. (DTDs do not contain data type
information, so it is impossible to predict what data types should be used in the database. Note that
data types and lengths can be predicted from an XML Schema document.)

A more serious problem is that the data "model" used by the XML document is often different (and
usually more complex) than the most efficient model for storing data in the database. For example,
consider the following fragment of XML:

 <Customer>
 <Name>ABC Industries</Name>
 <Address>
 <Street>123 Main St.</Street>
 <City>Fooville</City>
 <State>CA</State>
 <Country>USA</Country>
 <PostCode>95041</PostCode>
 </Address>
 </Customer>

The procedure for generating a relational schema from a DTD would create two tables here: one for
customers and one for addresses. However, in most cases it would make more sense to store the
address in the customer table, not a separate table.

The <Address> element is a good example of a wrapper element. Wrapper elements are generally
used for two reasons. First, they help to provide additional structure that makes the document easier
to understand. Second, they are commonly used as a form of data typing. For example, the
<Address> element could be passed to a routine that converts all addresses to Address objects,
regardless of where they occur.

While wrapper elements are useful in XML, they generally cause problems in the form of extra
structure when they are mapped to the database. For this reason, they should generally be eliminated
from the DTD before generating a relational schema. Since it is unlikely that the DTD can or should
be changed on a permanent basis, this results in a mismatch between the actual documents and the
documents expected by the data transfer software, since the wrapper elements are not included in the
mapping. This can be resolved by transforming the documents at run time, such as with XSLT:
wrapper elements are eliminated before transferring data to the database and inserted after
transferring data from the database.

In spite of these drawbacks, the above procedures still provide a useful starting point for generating
DTDs from relational schema and vice versa, especially in large systems.

Página 15 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

6.0 Storing and Retrieving Documents
There are two basic strategies to storing XML documents: store them in the file system or as a
BLOB in a relational database and accept limited XML functionality, or store them in a native XML
database.

6.1 Storing Documents in the File System

If you have a simple set of documents, such as a small documentation set, the easiest way to store
them is in the file system. You can then use tools like grep to query them and sed to modify them.
(Full text searches of XML documents are obviously inaccurate, as they cannot easily distinguish
markup from text and cannot understand entity usage. However, in a small system, such inaccuracies
may be acceptable.) If you want simple transaction control, you can place your documents in a
version control system such as CVS or RCS.

6.2 Storing Documents in BLOBs

A slightly more sophisticated option is to store documents as BLOBs in a relational database. This
provides a number of the advantages of databases: transactional control, security, multi-user access,
and so on. In addition, many relational databases have tools for searching text and can do such things
as full-text searches, proximity searches, synonym searches, and fuzzy searches. Some of these tools
are being made XML-aware, which will eliminate the problems involved with searching XML
documents as pure text.

When you store XML documents as BLOBs, you can also easily implement your own simple XML-
aware indexing, even if the database cannot index XML. One way to do this is to create two tables,
an index table (known as a side table in DB2, where the idea originated) and a document table. The
document table contains a primary key and a BLOB column in which the document is stored. The
index table contains a column containing the value to be indexed and a foreign key pointing to the
primary key of the document table.

When the document is stored in the database, it is searched for all instances of the element or
attribute being indexed. Each instance is stored in the index table, along with the primary key of the
document. The value column is then indexed, which allows an application to quickly search for a
particular element or attribute value and retrieve the corresponding document.

For example, suppose you had a set of documents that matched the following DTD and want to build
an index of authors:

 <!ELEMENT Brochure (Title, Author, Content)>
 <!ELEMENT Title (#PCDATA)>
 <!ELEMENT Author (#PCDATA)>
 <!ELEMENT Content (%Inline;)> <!-- Inline entity from XHTML -->

You could store these in the following tables:

 Authors Brochures
 ---------------------- ---------
 Author VARCHAR(50) BrochureID INTEGER
 BrochureID INTEGER Brochure LONGVARCHAR

When you insert a brochure into the database, the application inserts the brochure into the Brochures
table, then scans it for <Author> elements, storing their values and the brochure ID in the Authors
table. The application can then retrieve brochures by author with a simple SELECT statement. For

Página 16 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

example, to retrieve all of the brochures written by the author Chen, the application executes the
statement:

 SELECT Brochure
 FROM Brochures
 WHERE BrochureID IN (SELECT BrochureID FROM Authors WHERE Author='Chen')

A more sophisticated index table would contain four columns: element type or attribute name, type
(element or attribute), value, and document ID. This could store the values of multiple markup
constructs in a single table and would need to be indexed on name, type, and value. Writing a
generic SAX application to populate such a table would be relatively easy.

6.3 Native XML Databases

If you need more features than are offered by one of the simple systems described above, you should
consider a native XML database. Native XML databases are databases designed especially to store
XML documents. Like other databases, they support features like transactions, security, multi-user
access, programmatic APIs, query languages, and so on. The only difference from other databases is
that their internal model is based on XML and not something else, such as the relational model.

Native XML databases are most clearly useful for storing document-centric documents. This is
because native XML databases preserve things like document order, processing instructions,
comments, CDATA sections, and entity usage, while XML-enabled databases do not. Furthermore,
native XML databases support XML query languages, allowing you to ask questions like, "Get me
all documents in which the third paragraph after the start of the section contains a bold word." Such
queries are clearly difficult to ask in a language like SQL.

Native XML databases are also useful for storing documents whose "natural format" is XML,
regardless of what those documents contain. For example, suppose XML documents are used for
messaging in an e-commerce system. Although these documents are probably data-centric, their
natural format as messages is XML. Thus, when they are stored in a message queue, it makes more
sense to use a message queue built on a native XML database than a non-XML database. The native
XML database offers XML-specific capabilities, such as XML query languages, and will usually be
faster at retrieving whole messages. Another example of this sort of usage is a Web cache.

Several other uses for native XML databases are to store semi-structured data, to increase retrieval
speed in certain situations, and to store documents that do not have DTDs (well-formed documents).
The first two of these were described in section 5.3, Storing Data in a Native XML Database. The
last is something that non-XML databases do not do well. That is, a native XML database can
accept, store, and understand any XML document without prior configuration. Transferring the data
in an XML document to a relational or object-oriented database requires you to first create a
mapping and a database schema. The lack of prior configuration is an advantage in applications like
Web search engines, where no single DTD or set of DTDs applies to all the documents in question.

6.3.1 What is a Native XML Database?

The term "native XML database" first gained prominence in the marketing campaign for Tamino, a
native XML database from Software AG. Perhaps due to the success of this campaign, the term came
into common usage among companies developing similar products. The drawback of this is that,
being a marketing term, it has never had a formal technical definition.

One possible definition (developed by members of the XML:DB mailing list) is that a native XML
database is one that:

Página 17 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

Defines a (logical) model for an XML document -- as opposed to the data in that
document -- and stores and retrieves documents according to that model. At a minimum,
the model must include elements, attributes, PCDATA, and document order. Examples
of such models are the XPath data model, the XML Infoset, and the models implied by
the DOM and the events in SAX 1.0.

Has an XML document as its fundamental unit of (logical) storage, just as a relational
database has a row in a table as its fundamental unit of (logical) storage.

Is not required to have any particular underlying physical storage model. For example, it
can be built on a relational, hierarchical, or object-oriented database, or use a proprietary
storage format such as indexed, compressed files.

The first part of this definition is similar to the definitions of other types of databases, concentrating
on the model used by the database. It is worth noting that a given native XML database might store
more information than is contained in the model it uses. For example, it might support queries based
on the XPath data model but store documents as text. In this case, things like CDATA sections and
entity usage are stored in the database but not included in the model.

The second part of the definition states that the fundamental unit of storage in a native XML
database is an XML document. While it seems possible that a native XML database could assign this
role to document fragments, it is filled by documents in all(?) native XML databases today.

(The fundamental unit of storage is the lowest level of context into which a given piece of data fits,
and is equivalent to a row in a relational database. Its existence does not preclude retrieving smaller
units of data, such as document fragments or individual elements, nor does it preclude combining
fragments from one document with fragments for another document. In relational terms, this is
equivalent to saying that the existence of rows does not preclude retrieving individual column values
or creating new rows from existing rows.)

The third part of the definition states that the underlying data storage format is not important. This is
true, and is analogous to stating that the physical storage format used by a relational database is
unrelated to whether that database is relational.

6.3.2 Native XML Database Architectures

The architectures of native XML databases fall into two broad categories: text-based and model-
based.

6.3.2.1 Text-Based Native XML Databases

A text-based native XML database is one that stores XML as text. This might be a file in a file
system, a BLOB in a relational database, or a proprietary text format. (It is worth noting that a
relational database that has added XML-aware processing of CLOB (Character Large OBject)
columns is, in fact, a native XML database with respect to these abilities.)

Common to all text-based native XML databases are indexes, which allow the query engine to easily
jump to any point in any XML document. This gives such databases a tremendous speed advantage
when retrieving entire documents or document fragments. This is because the database can perform a
single index lookup, position the disk head once, and, assuming that the necessary fragment is stored
in contiguous bytes on the disk, retrieve the entire document or fragment in a single read. In contrast,
reassembling a document from pieces, as is done in a relational database and some model-based
native XML databases, requires multiple index lookups and multiple disk reads.

Página 18 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

In this sense, a text-based native XML database is similar to a hierarchical database, in that both can
outperform a relational database when retrieving and returning data according to a predefined
hierarchy. Also like a hierarchical database, text-based native XML databases are likely to encounter
performance problems when retrieving and returning data in any other form, such as inverting the
hierarchy or portions of it. Whether this will prove to be true is as yet unknown, but the
predominance of relational databases, whose use of logical pointers allows all queries of the same
complexity to be performed with the same speed, seems to indicate it will be the case.

6.3.2.2 Model-Based Native XML Databases

The second category of native XML databases is model-based native XML databases. Rather than
storing the XML document as text, they build an internal object model from the document and store
this model. How the model is stored depends on the database. Some databases store the model in a
relational or object-oriented database. For example, storing the DOM in a relational database might
result in tables such as Elements, Attributes, PCDATA, Entities, and EntityReferences. Other
databases use a proprietary storage format optimized for their model.

(For an example of a simple, model-based native XML database built on a relational database, see
the system described by Mark Birbeck on the XML-L mailing list for December, 1998. The system
uses five tables -- attribute definitions, element/attribute association, content model definition,
attribute values, and element values (PCDATA or pointers to other elements) -- and a model that
includes only elements, attributes, text, and document order. Look for the topics entitled "Record
ends, Mixed content, and storing XML documents on relational database" and "storing XML
documents on relational database".)

Model-based native XML databases built on other databases are likely to have performance similar
to those databases when retrieving documents for the obvious reason that they rely on those systems
to retrieve data. However, the design of the database, especially for native XML databases built on
top of relational databases, has significant room for variation. For example, a database that used a
straight object-relational mapping of the DOM could result in a system that required executing
separate SELECT statements to retrieve the children of each node. On the other hand, most such
databases optimize their storage models and retrieval software. For example, Richard Edwards has
described a system for storing the DOM in a relational database that can retrieve any document
fragment (including the entire document) with a single SELECT statement.

Model-based native XML databases that use a proprietary storage format are likely to have
performance similar to text-based native XML databases when retrieving data in the order in which
it is stored. This is because most(?) such databases use physical pointers between nodes, which
should provide performance similar to retrieving text. (Which is faster also depends on the output
format. Text-based systems are obviously faster at returning documents as text, while model-based
systems are obviously faster at returning documents as DOM trees, assuming their model maps
easily to the DOM.)

Like text-based native XML databases, model-based native XML databases are likely to encounter
performance problems when retrieving and returning data in any form other than that in which it is
stored, such as when inverting the hierarchy or portions of it. Whether they will be faster or slower
than text-based systems is not clear.

6.3.3 Features of Native XML Databases

This section briefly discusses a number of the features found in native XML databases. It should
help give you an idea of what features are available today and what features to expect in the future.

6.3.3.1 Document Collections

Página 19 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

Many native XML databases support the notion of a collection. This plays a role similar to a table in
a relational database or a directory in a file system. For example, suppose you are using a native
XML database to store sales orders. In this case, you might want to define a sales order collection so
that queries over sales orders could be limited to documents in that collection.

As another example, suppose you are storing the manuals for all of a company's products in a native
XML database. In this case, you might want to define a hierarchy of collections. For example, you
might have a collection for each product and, within this collection, collections for all of the chapters
in each manual.

Whether collections can be nested depends on the database.

6.3.3.2 Query Languages

Almost all native XML databases support one or more query languages. The most popular of these
are XPath (with extensions for queries over multiple documents) and XQL, although numerous
proprietary query languages are supported as well. When considering a native XML database, you
should probably check that the query language supports your needs, as these might range from full-
text-style searches to the need to recombine fragments from multiple documents.

In the future, most native XML databases will probably support XQuery from the W3C.

6.3.3.3 Updates and Deletes

Native XML databases have a variety of strategies for updating and deleting documents, from simply
replacing or deleting the existing document to modifications through a live DOM tree to languages
that specify how to modify fragments of a document. As a general rule, each product that can modify
fragments of a document has its own language, although a number of products support the XUpdate
language from the XML:DB Initiative. Still, update abilities are likely to remain fragmented in the
near future, as this is an area still being addressed by industry and academia. [Written February,
2002]

6.3.3.4 Transactions, Locking, and Concurrency

Virtually all native XML databases support transactions (and presumably support rollbacks).
However, locking is often at the level of entire documents, rather than at the level of document
fragments, so multi-user concurrency can be relatively low. Whether this is an issue depends on the
application and what constitutes a "document".

For example, if a user's guide has been partitioned into individual chapters, each of which is a
document, then concurrency problems are likely to be low, as two writers updating the same chapter
at the same time is an unlikely occurrence. On the other hand, if all of the customer data for an entire
company is stored in a single document (a bad design), document-level locking is likely to prove
disastrous.

In the future, most native XML databases will probably offer fragment-level locking.

6.3.3.5 Application Programming Interfaces (APIs)

Almost all native XML databases offer programmatic APIs. These are usually in the form of an
ODBC-like interface, with methods for connecting to the database, exploring metadata, executing
queries, and retrieving results. Results are usually returned as an XML string, a DOM tree, or a SAX
Parser or XMLReader over the returned document. If queries can return multiple documents, then
methods for iterating through the result set are available as well.

Página 20 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

One feature that is likely to prove interesting to data-centric applications (and which is offered in at
least one native XML database) is the ability to bind application variables to specific elements or
attributes in returned documents. This saves the application from having to parse the document in
order to build internal data objects, and is likely to be more widely supported as the use of XML data
binding technologies increases.

Although most native XML databases offer proprietary APIs, a vendor-neutral XML database API
has been developed by XML:DB.org. It has been implemented by a number of native XML
databases and may have been implemented over non-native databases as well. Whether this API or
another one becomes the industry standard, the eventual wide-spread adoption of such an API seems
inevitable.

Most native XML databases also offer the ability to execute queries and return results over HTTP.

6.3.3.6 Round-Tripping

One important feature of native XML databases is that they can round-trip XML documents. That is,
you can store an XML document in a native XML database and get the "same" document back again.
This is important to document-centric applications, for which things like CDATA sections, entity
usage, comments, and processing instructions form an integral part of the document. It is also vital to
many legal and medical applications, which are required by law to keep exact copies of documents.

(Round-tripping is less important to data-centric applications, which generally care only about
elements, attributes, text, and hierarchical order. All software that transfers data between XML
documents and databases can round-trip these. It can also round-trip sibling order (the order of
elements and PCDATA in their parent) in a limited number of cases that are important to data-
centric applications. However, because it cannot round-trip sibling order in general, and also cannot
round-trip processing instructions, comments, and physical structure (entity references, CDATA
sections and so on), it is unsuitable for document-centric applications.)

All native XML databases can round-trip documents at the level of elements, attributes, PCDATA,
and document order. How much more they can round-trip depends on the database. As a general
rule, text-based native XML databases round-trip XML documents exactly, while model-based
native XML databases round-trip XML documents at the level of their document model. In the case
of particularly minimal document models, this means round-tripping at a level less than canonical
XML.

Since the level of round-tripping you need depends entirely on your application, you may have a
choice of many native XML databases or be restricted to only a few.

6.3.3.7 Remote Data

Some native XML databases can include remote data in documents stored in the database. Usually,
this is data retrieved from a relational database with ODBC, OLE DB, or JDBC and modeled using
the table-based mapping or an object-relational mapping. Whether the data is live -- that is, whether
updates to the document in the native XML database are reflected in the remote database -- depends
on the native XML database. Eventually, most native XML databases will probably support live
remote data.

6.3.3.8 Indexes

Almost all native XML databases support the indexing of element and attribute values. As in non-
XML databases, indexes are used to speed up queries.

Página 21 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

6.3.3.9 External Entity Storage

A difficult question when storing XML documents is how to handle external entities. That is, should
they be expanded and their value stored with the rest of the document, or should the entity reference
be left in place? There is no single answer to this question.

For example, suppose a document includes an external general entity that calls a CGI program for
the current weather report. If the document is used as a Web page to give current weather reports, it
would be a mistake to expand the entity reference, as the Web page would no longer return live data.
On the other hand, if the document were part of a collection of historical weather data, it would be a
mistake not to expand the entity reference, as the document would always retrieve the current data
rather than containing the historic data.

As another example, consider a product manual that consisted of nothing but references to external
entities that point to the chapters of the manual. If some of these chapters were used in other
documents, such as manuals for differents model of the same product, it would be a mistake to
expand these references, as this would result in multiple copies of the same chapters.

I'm not sure how native XML databases handle this problem. Ideally, they should allow you to
specify whether to expand external entity references on a case-by-case basis.

6.3.4 Normalization, Referential Integrity, and Scalability

For many people, especially those with relational database backgrounds, native XML databases raise
a number of controversial issues, particularly with respect to issues surrounding the storage of data
(as opposed to documents). These are discussed in the following sections.

6.3.4.1 Normalization

Normalization refers to the process of designing a database schema in which a given piece of data is
represented only once. Normalization has several obvious advantages, such as reducing disk space
and eliminating the possibility of inconsistent data, which can occur when a given piece of data is
stored in more than one place. It is one of the cornerstones of relational technology and is a
flashpoint in discussions about storing data in native XML databases.

Before discussing normalization further, it is useful to note that it is a non-issue for many document-
centric documents. For example, consider a collection of documents describing a company's
products. In many such collections, there is only a small amount of data that is common to all
documents -- copyright notices, corporate addresses and phone numbers, product logos, and so on --
and this amount is so small in relation to the total that almost nobody considers normalizing it. (On
the other hand, other documentation sets have significant overlap between documents and are worth
normalizing.)

Like relational databases, there is nothing in native XML databases that forces you to normalize your
data. That is, you can design bad data storage with a native XML database just as easily as you can
with a relational database. Thus, it is important to consider the structure of your documents before
you store them in a native XML database. (Native XML databases have one advantage over
relational databases here. Since native XML databases do not have database schemas, you can store
similar documents with more than one schema in the database at the same time. While you may still
need to redesign queries and convert your existing documents -- a non-trivial process -- this may
ease the transition process.)

Normalizing data for a native XML database is largely the same as normalizing it for a relational
database: you need to design your documents so that no data is repeated. One difference between

Página 22 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

native XML databases and relational databases is that XML supports multi-valued properties while
(most) relational databases do not. This makes it possible to "normalize" data in a native XML
database in a way that is not possible in a relational database.

For example, consider a sales order. This consists of header information, such as the sales order
number, date, and customer number, and one or more line items, which contain a part number,
quantity, and total price. In a relational database, the header information must be stored in a separate
table from the line items, since there are multiple line items per header. In a native XML database,
this information can be stored in a single document without redundancy, since the hierarchical nature
of XML allows a given parent element to have multiple children.

Unfortunately, real-world normalization isn't this simple. For example, what happens when you want
the sales order to contain customer information, such as contact names and shipping and billing
addresses? There are two choices here. First, you can duplicate the customer information in each
sales order for that customer, leading to redundant data and all the problems it entails. Second, you
can store the customer information separately and either provide an XLink in the sales order
document to the customer document or join the two documents when the data is queried. This
assumes that either XLinks are supported (in most cases, they aren't, although support is planned) or
the query language supports joins (also not always true).

In practice, there are no clear answers. Real-world relational data is often non-normal for
performance reasons, so having non-normal XML data might not be as bad as it sounds, but this is a
decision you need to make. If you are storing document-centric documents and can normalize these
to a reasonable degree -- such as storing chapters or procedures as separate documents and joining
them to create end-user documents -- then a native XML database is probably a good solution for
you, especially since it will provide you with features such as XML query languages not found in
other databases. If you are storing data-centric documents and a native XML database improves your
application's performance or provides semi-structured data storage that you can't find in another
database, then you should use it. But if you find yourself essentially building a relational database
inside your native XML database, you might ask yourself why you aren't using a relational database
in the first place.

6.3.4.2 Referential Integrity

Closely related to normalization is referential integrity. Referential integrity refers to the validity of
pointers to related data and is a necessary part of maintaining a consistent database state: It does you
no good if a sales order contains a customer number and there is no corresponding customer record.
The shipping department won't know where to send the items purchased and the accounting
department won't know where to send the invoice.

In a relational database, referential integrity means ensuring that foreign keys point to valid primary
keys -- that is, checking that the primary key row corresponding to any foreign key exists. In a native
XML database, referential integrity means ensuring that "pointers" in XML documents point to valid
documents or document fragments.

Pointers in XML documents come in several forms: ID/IDREF attributes, key/keyref fields (as
defined in XML Schemas), XLinks, and various proprietary mechanisms. The latter includes
language-specific "referencing" elements and attributes, such as the ref attribute of the <element>
element in XML Schemas, and database-specific linking mechanisms. While language-specific
"referencing" elements and attributes are quite common, database-specific linking mechanisms are
not.

Referential integrity in native XML databases can be broken into two categories: integrity of internal
pointers (pointers within a document) and integrity of external pointers (pointers between

Página 23 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

documents). The referential integrity of internal pointers that use non-standard mechanisms is never
enforced, since native XML databases have no way of identifying such pointers. The referential
integrity of internal pointers that use a standard mechanism, such as ID/IDREF or key/keyref, is at
least partially supported through validation.

The reason that such support is partial is that most native XML databases perform validation only
when a document is inserted into the database. Thus, if updates are performed at the document level
-- that is, by deleting and then replacing a document -- validation is sufficient to ensure the integrity
of internal pointers. But if updates are performed at the node level -- that is, inserting, modifying,
and deleting individual nodes -- then the database needs to perform additional work (such as
validating all changes) to guarantee the referential integrity of internal pointers. Only a few native
XML databases do this, if any.

The referential integrity of external pointers is (as far as I know) not supported, even by the few
databases that support external pointers. If an external pointer points to a resource stored elsewhere
in the database, there is no reason not to enforce the integrity of the pointer. However, if the pointer
points to a resource outside the database, lack of enforcement is reasonable. For example, suppose a
document contains an XLink that points to a document on an external Web site. The database
obviously has no control over whether the latter document exists and thus cannot reasonably enforce
the integrity of the XLink.

In the future, most native XML databases will probably support the referential integrity of internal
pointers that use standard mechanisms. Many native XML databases will probably support external
pointers of some sort, as well as the integrity of external pointers that point to resources stored in the
database. For the moment, though, it is up to applications to enforce the integrity of pointers -- both
internal and external -- in most cases.

6.3.4.3 Scalability

Scalability is well outside my area of expertise, so most of what follows is speculation. In general,
my guess is that native XML databases will scale very well in some environments and very poorly in
others.

Like hierarchical and relational databases, native XML databases use indexes as a way to initially
find data. This means that locating documents and document fragments is related solely to index
size, not to document size or the number of documents, and that native XML databases can locate
the start of a document or fragment as fast as other databases using the same indexing technology.
Thus, native XML databases will scale as well as other databases in this respect.

Like hierarchical databases and unlike relational databases, many native XML databases physically
link related data. In particular, text-based native XML databases physically group related data
together and model-based native XML databases that use proprietary storage systems often use
physical pointers to group related data. (Model-based native XML databases built on relational
databases, like relational databases themselves, use logical links.)

Because physical links are faster to navigate than logical links, native XML databases, like
hierarchical databases, can retrieve data more quickly than relational databases. Thus, they should
scale well with respect to retrieving data. In fact, they should scale even better than relational
databases in this respect, since scalability is related to a single, initial index lookup rather than the
multiple lookups required by a relational database. (It should be noted that relational databases also
offer physical linking of data, in the form of clustered indexes. However, such linking applies to
individual tables rather than an entire hierarchy.)

Unfortunately, this scalability is limited. Like hierarchical databases, the physical wiring in native

Página 24 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

XML databases applies only to a particular hierarchy. That is, retrieving data in the hierarchy in
which it is stored is very quick, but retrieving the same data in a different hierarchy is not. For
example, suppose customer information is stored inside each sales order document. Retrieving sales
order documents will be very fast, since this is the order in which the data is stored. Retrieving a
different view of the data, such as a list of the sales orders for a given customer, will be much
slower, since the physical links no longer apply.

To alleviate this problem, native XML databases make heavy use of indexes, often indexing all
elements and attributes. While this helps decrease retrieval time, it increases update time, since
maintaining such indexes can be expensive. This is not a problem in read-only environments, but
might cause problems in heavily transactional environments.

Finally, native XML databases scale much more poorly than relational databases in searching for
unindexed data. Both native XML databases and relational databases must search the data linearly in
this case, but the situation is far worse in native XML databases due to less complete normalization.
For example, suppose you want to search for all sales orders with a given date and that dates are not
indexed. In a relational database, this means reading all the values in the OrderDate column. In a
native XML database, this means reading each sales order document in its entirety and looking for
<OrderDate> elements. Not only are the contents of each <OrderDate> element read, the contents of
all of the other elements are read as well. Worse yet, in text-based native XML databases, the text
must be parsed and converted to date format before it can be compared to the target date.

So, will scalability be a problem for you? It really depends on your application. If your application
usually needs the data in the view in which it is stored, then a native XML database should scale
well. This is the case for many document-centric documents. For example, the documents
comprising a product manual will almost always be retrieved in their entirety. On the other hand, if
your application has no preferred view of the data, then scalability may be a problem.

This concludes our description of native XML databases. In the next two sections, we will look at
two specialized types of native XML databases: persistent DOMs and content management systems.

6.3 Persistent DOMs (PDOMs)

A persistent DOM or PDOM is a specialized type of native XML database which implements the
DOM over some sort of persistent storage. Unlike most native XML databases, which can return
documents as DOM trees, the DOM tree returned by a PDOM is live. That is, changes made to the
DOM tree are reflected directly in the database. (Whether changes are actually made immediately or
as a result of a call to a commit method depends on the database.) In most native XML databases, the
DOM tree returned to the application is a copy, and changes are made to the database either through
an XML update language or by replacing the entire document.

Because PDOM trees are live, the database is usually local. That is, it is in the same process space as
the application, or at least on the same machine, although this is not necessarily required. This is
done for efficiency, as a PDOM over a remote database would require frequent calls to the remote
server.

PDOMs serve the same role for DOM applications that object-oriented databases serve for object-
oriented applications: they provide persistent storage for the application data, as well as serving as
virtual memory for the application. The latter role is particularly important for DOM applications
that operate on large documents, as DOM trees can easily exceed XML documents in size by a factor
of 10. (The actual factor depends on the average size of the text in the document, with documents
containing small average text sizes having much higher factors.)

6.4 Content Management Systems

Página 25 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

Content management systems are another specialized type of native XML database. They are
designed for managing human-written documents, such as user's manuals and white papers, and are
built on top of native XML databases. The database is generally hidden from the user behind a front
end that provides features such as:

Version and access control
Search engines
XML/SGML editors
Publishing engines, such as to paper, CD, or the Web
Separation of content and style
Extensibility through scripting or programming
Integration of database data

The term content management system, as opposed to document management system, reflects the fact
that such systems generally allow you to break your documents into discrete content fragments, such
as examples, procedures, chapters, or sidebars, as well as metadata, such as author names, revision
dates, and document numbers, rather than having to manage each document as a whole. Not only
does this simplify such things as how to coordinate the work of multiple writers working on the same
document, it allows you to assemble entirely new documents from existing components.

7.0 XML Database Products
For an up-to-date list of database products you can use with XML, see XML Database Products.

8.0 Additional Links
For links to a variety of XML / database resources, including software and more papers, see the
XML / Database Links page.

9.0 Comments and Feedback
Please send comments and feedback to Ronald Bourret at rpbourret@rpbourret.com. Please note that
I travel often and may take two to three weeks to respond.

Thanks to Michael Champion, Joern Clausen, John Cowan, Marc Cyrenne, Kelvin Ginn, Marc de
Graauw, Ingo Macherius, Lars Martin, Nick Leaton, Evan Lenz, Morten Primdahl, Michael Rys,
Walter Perry, Kimbro Staken, Jim Tivy, Phillipe Vauclair, Dylan Walsh, Irsan Widarto, and others
for their comments and patience.

Back to Ron Bourret's home page

Página 26 de 26XML and Databases

3/5/2005file://C:\Documents and Settings\aramburu\Escritorio\XML and Databases.htm

