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Message Passing with MPI

Graham E Fagg
CS 594 Spring 2006

Notes

• This talk is a combination of lots of 
different material from a host of sources 
including:
– David Cronk & David Walker
– EPCC
– NCSA
– LAM and MPICH teams

Introduction to MPI

• What is MPI?
– MPI stands for “Message Passing Interface”
– In ancient times (late 1980’s early 1990’s) each 

vender had its own message passing library
• Non-portable code
• Not enough people doing parallel computing due to 

lack of standards

What is MPI?

• April 1992 was the beginning of the MPI forum
– Organized at SC92
– Consisted of hardware vendors, software vendors, 

academicians, and end users
– Held 2 day meetings every 6 weeks
– Created drafts of the MPI standard
– This standard was to include all the functionality 

believed to be needed to make the message passing 
model a success

– Final version released may, 1994

What is MPI?

• A standard library specification!
– Defines syntax and semantics of an extended message 

passing model
– It is not a language or compiler specification
– It is not a specific implementation
– It does not give implementation specifics

• Hints are offered, but implementers are free to do things 
however they want

• Different implementations may do the same thing in a very 
different manner

– http://www.mpi-forum.org

What is MPI

• A library specification designed to support parallel 
computing in a distributed memory environment
– Routines for cooperative message passing

• There is a sender and a receiver
• Point-to-point communication
• Collective communication

– Routines for synchronization
– Derived data types for non-contiguous data access 

patterns
– Ability to create sub-sets of processors
– Ability to create process topologies
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What is MPI?

• Continuing to grow!
– New routines have been added to replace old 

routines
– New functionality has been added

• Dynamic process management
• One sided communication
• Parallel I/O

Getting Started with MPI
• Outline

– Introduction
– 6 basic functions
– Basic program structure
– Groups and communicators
– A very simple program
– Message passing
– A simple message passing example
– Types of programs

• Traditional
• Master/Slave
• Examples

– Unsafe communication

Getting Started with MPI

• MPI contains 128 routines (more with the 
extensions)!

• Many programs can be written with just 6 
MPI routines!

• Upon startup, all processes can be identified 
by their rank, which goes from 0 to N-1 
where there are N processes

6 Basic Functions

• MPI_INIT: Initialize MPI
• MPI_Finalize: Finalize MPI
• MPI_COMM_SIZE: How many processes 

are running?
• MPI_COMM_RANK: What is my process 

number?
• MPI_SEND: Send a message
• MPI_RECV: Receive a message

MPI_INIT (ierr)

• ierr:  Integer error return value.  0 on success, non-
zero on failure.

• This MUST be the first MPI routine called in any 
program.
– Except for MPI_Initialized ( ) can be called to check if 

MPI_Init has been called!!
• Can only be called once
• Sets up the environment to enable message 

passing

MPI_FINALIZE (ierr)

• ierr:  Integer error return value.  0 on success, non-
zero on failure.

• This routine must be called by each process before 
it exits

• This call cleans up all MPI state
• No other MPI routines may be called after 

MPI_FINALIZE
• All pending communication must be completed 

(locally) before a call to MPI_FINALIZE
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Basic Program Structure
program main
include ‘mpi.h’
integer ierr

call MPI_INIT (ierr)
………
Do some work
………
call MPI_FINALIZE (ierr)
Maybe do some additional
Local computation
………………….
end

#include “mpi.h”

int main ()
{
MPI_Init ()
………
Do some work
………
MPI_Finalize ()
Maybe do some additional
Local computation
………………….
}

Groups and communicators

• Communicators are containers that hold messages 
and groups of processes together with additional 
meta-data

• All messages are passed only within 
communicators

• Upon startup, there is a single set of processes 
associated with the communicator 
MPI_COMM_WORLD

• Groups can be created which are sub-sets of this 
original group, also associated with 
communicators

Groups and communicators

• Why do communicators exist

– To keep different message passing libraries 
from interfering with each other

– Allows the building of multiple layers of 
message passing code

Groups and communicators
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MPI_COMM_RANK (comm, rank, 
ierr)

• comm:  Integer communicator. 
• rank: Returned rank of calling process
• ierr: Integer error return code

• This routine returns the relative rank of the 
calling process, within the group associated 
with comm.

MPI_COMM_SIZE (comm, size, 
ierr)

• Comm: Integer communicator identifier
• Size: Upon return, the number of processes in the 

group associated with comm.  For our purposes, 
always the total number of processes

• This routine returns the number of processes in the 
group associated with comm

A Very Simple Program
Hello World

program main
include ‘mpi.h’
integer ierr, size, rank

call MPI_INIT (ierr)
call MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE (MPI_COMM_WORLD, size, ierr)
print *, ‘Hello World from process’, rank, ‘of’, size
call MPI_FINALIZE (ierr)
end

Hello World
> mpirun –np 4 a.out
>
> Hello World from 2 of 4
> Hello World from 0 of 4
> Hello World from 3 of 4
> Hello World from 1 of 4

> mpirun –np 4 a.out
>
> Hello World from 3 of 4
> Hello World from 1 of 4
> Hello World from 2 of 4
> Hello World from 0 of 4

Message Passing

• Message passing is the transfer of data from 
one process to another
– This transfer requires cooperation of the sender 

and the receiver, but is initiated by the sender
– There must be a way to “describe” the data
– There must be a way to identify specific 

processes
– There must be a way to identify messages

Message Passing

• Data is described by a triple
1. Address:  Where is the data stored
2. Count: How many elements make up the 

message
3. Datatype:  What is the type of the data

› Basic types (integers, reals, etc)
› Derived types (good for non-contiguous data 

access)



5

Message Passing

• Processes are specified by a double
1. Communicator: safe space to pass message
2. Rank:  The relative rank of the specified 

process within the group associated with the 
communicator

• Messages are identified by a single tag
– This can be used to differentiate between 

different types of messages
• Max tag can be looked up but must be atleast 32k

MPI_SEND(buf, cnt, dtype, dest, 
tag, comm, ierr)

• buf: The address of the beginning of the 
data to be sent

• cnt: The number of elements to be sent
• dtype: datatype of each element
• dest: The rank of the destination
• tag: The message tag
• comm: The communicator

MPI_SEND

• Once this routine returns, the message has been 
copied out of the user buffer and the buffer can be 
reused

• This may require the use of system buffers.  If 
there are insufficient system buffers, this routine 
will block until a corresponding receive call has 
been posted

• Completion of this routine indicates nothing about 
the designated receiver

MPI_RECV (buf, cnt, dtype, 
source, tag, comm, status, ierr)

• buf: Starting address of receive buffer
• cnt: Max number of elements to receive
• dtype: Datatype of each element
• source: Rank of sender (may use 

MPI_ANY_SOURCE)
• tag: The message tag (may use MPI_ANY_TAG)
• comm: Communicator
• status: Status information on the received message

MPI_RECV

• When this call returns, the data has been 
copied into the user buffer

• Receiving fewer than cnt elements is ok, but 
receiving more is an error

• Status is a structure in C (MPI_Status) and 
an array in Fortran (integer 
status(MPI_STATUS_SIZE))

MPI_STATUS
• The status parameter is used to retrieve information about a 

completed receive
• In C, status is a structure consisting of at least 3 fields: 

MPI_SOURCE, MPI_TAG, MPI_ERROR
• status.MPI_SOURCE, status.MPI_TAG, and 

status.MPI_ERROR contain the source, tag, and error 
code, respectively

• In Fortran, status must be an integer array of size 
MPI_STATUS_SIZE

• status(MPI_SOURCE), status(MPI_TAG), and 
status(MPI_ERROR) contain the source, tag, and error 
code
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Send/Recv Example
program main
include ‘mpi.h’
CHARACTER*20 msg
integer ierr, rank, tag, status (MPI_STATUS_SIZE)

tag = 99
call MPI_INIT (ierr)
call MPI_COMM_RANK (MPI_COMM_WORLD, rank, ierr)
if (myrank .eq. 0) then

msg = “Hello there”
call MPI_SEND (msg, 11, MPI_CHARACTER, 1, tag, &

MPI_COMM_WORLD, ierr)
else if (myrank .eq. 1) then

call MPI_RECV(msg, 20, MPI_CHARACTER, 0, tag, &
MPI_COMM_WORLD, status, ierr)

endif
call MPI_FINALIZE (ierr)
end

Types of MPI Programs

• Traditional
– Break the problem up into about even sized parts and 

distribute across all processors
– What if problem is such that you cannot tell how much 

work must be done on each part?
• Master/Slave

– Break the problem up into many more parts than there 
are processors

– Master sends work to slaves
– Parts may be all the same size or the size may vary

Traditional Example
Compute the sum of a large array of N integers

Comm = MPI_COMM_WORLD
Call MPI_COMM_RANK (comm, rank)
Call MPI_COMM_SIZE (comm, npes)
Stride = N/npes
Start = (stride * rank) + 1
Sum = 0
DO (I = start, start+stride)

sum = sum + array(I)
ENDDO

If (rank .eq. 0) then
DO (I = 1, npes-1)

call MPI_RECV(tmp, 1, MPI_INTEGER, 
&           I, 2, comm, status)

sum = sum + tmp
ENDDO

ELSE 
MPI_SEND (sum, 1, MPI_INTEGER, &

&    0, 2 comm)
ENDIF

Unsafe Communication Patterns

0 1

send

recv

recv

send

time

Unsafe Communication Patterns
• Process 0 and process 1 must exchange data
• Process 0 sends data to process 1 and then 

receives data from process 1
• Process 1 sends data to process 0 and then 

receives data from process 0
• If there is not enough system buffer space for 

either message, this will deadlock
• Any communication pattern that relies on system 

buffers is unsafe
• Any pattern that includes a cycle of blocking 

sends is unsafe

Communication Modes

• Outline
– Standard mode

• Blocking
• Non-blocking

– Non-standard mode
• Buffered
• Synchronous
• Ready

– Performance issues
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Point-to-Point Communication 
Modes

• Standard Mode:
– blocking:

• MPI_SEND (buf, count, datatype, dest, tag, comm)
• MPI_RECV (buf, count, datatype, source, tag, comm, status)

– Generally ONLY use if you cannot call earlier AND there is no other 
work that can be done!

– Standard ONLY states that buffers can be used once calls return.  It is 
implementation dependant on when blocking calls return.

– Blocking sends MAY block until a matching receive is posted.  This is 
not required behavior, but the standard does not prohibit this behavior 
either.  Further, a blocking send may have to wait for system resources 
such as system managed message buffers.

– Be VERY careful of deadlock when using blocking calls!

Point-to-Point Communication 
Modes (cont)

• Standard Mode:
– Non-blocking (immediate) sends/receives:

• MPI_ISEND (buf, count, datatype, dest, tag, comm, request)
• MPI_IRECV (buf, count, datatype, source, tag, comm, request)
• MPI_WAIT (request, status)
• MPI_TEST (request, flag, status)

– Allows communication calls to be posted early, which may improve
performance.

» Overlap computation and communication
» Latency tolerance
» Less (or no) buffering

• * MUST either complete these calls (with wait or 
test) or call MPI_REQUEST_FREE 

MPI_ISEND (buf, cnt, dtype, 
dest, tag, comm, request)

• Same syntax as MPI_SEND with the addition of a 
request handle

• Request is a handle (int in Fortran) used to check 
for completeness of the send

• This call returns immediately
• Data in buf may not be accessed until the user has 

completed the send operation
• The send is completed by a successful call to 

MPI_TEST or a call to MPI_WAIT

MPI_IRECV(buf, cnt, dtype, 
source, tag, comm, request)

• Same syntax as MPI_RECV except status is 
replaced with a request handle

• Request is a handle (int in Fortran) used to check 
for completeness of the recv

• This call returns immediately
• Data in buf may not be accessed until the user has 

completed the receive operation
• The receive is completed by a successful call to 

MPI_TEST or a call to MPI_WAIT

MPI_WAIT (request, status)

• Request is the handle returned by the non-
blocking send or receive call

• Upon return, status holds source, tag, and error 
code information

• This call does not return until the non-blocking 
call referenced by request has completed

• Upon return, the request handle is freed
• If request was returned by a call to MPI_ISEND, 

return of this call indicates nothing about the 
destination process

MPI_TEST (request, flag, status)
• Request is a handle returned by a non-blocking send or 

receive call
• Upon return, flag will have been set to true if the 

associated non-blocking call has completed.  Otherwise it 
is set to false

• If flag returns true, the request handle is freed and status
contains source, tag, and error code information

• If request was returned by a call to MPI_ISEND, return 
with flag set to true indicates nothing about the destination 
process
– Why?
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Non-blocking Communication

• Simple example

– Process wants to exchange data will all others

– (later on we will show how to use a collective 
to do this)

Non-blocking Communication
for (I=0;I<size;I++) {

if (I!=myrank)
ierr = MPI_Send (data, cnt, dtype, 

I, tag, comm)
}

for (I=0;I<size;I++)  {
if (I!=myrank)

ierr = MPI_RECV (data, cnt, dtype, 
I, tag, comm, &status)

}

Clearly unsafe,
Why ?

for (I=0;I<size;I++) {
if (myrank!=I)

ierr = MPI_Isend (data, cnt, dtype, 
I, tag, comm, &request)

}

for (I=0;I<size;I++) {
if (myrank!=I)

ierr = MPI_Recv (data, cnt, dtype, 
I, tag, comm, &status)

}

May run out of handles
Why ?

Non-blocking Communication
for (I=0;I<size;I++) {

if (myrank!=I)
ierr = MPI_Isend (data, cnt, dtype, 

I, tag, comm, &request(I))
}

for (I=0;I<size;I++) {
if (myrank!=I)

ierr = MPI_Wait (request(I), &status)
}

………..
receive data
………..

Unsafe
why? Safe…….

But how could you do it better 
and why ?

for (I=0;I<size;I++) {
if (myrank!=I)

ierr = MPI_Isend (data, cnt, dtype, 
I, tag, comm, &request(I))

}

………..
receive data
………..

for (I=0;I<size;I++) {
if (myrank!=I)

ierr = MPI_Wait (request(I), &status)
}

Non-blocking communication
for (I=0;I<size;I++) {

if (myrank!=I)
ierr = MPI_Isend (data, cnt, dtype, 

I, tag, comm, &srequest(I))
}

for (I=0;I<size;I++) {
if (myrank!=I)

ierr = MPI_Irecv (data, cnt, dtype, 
I, tag, comm, &rrequest(I))

}

MPI_Waitall (…)

Safe,
And [maybe] faster? Why?
What does it have to do with the MPI implementation or
how many processes are involved and the network???

Point-to-Point Communication 
Modes (cont)

• Non-standard mode communication
– Only used by the sender! (MPI uses the push 

communication model)
– Buffered mode - A buffer must be provided by 

the application
– Synchronous mode - Completes only after a 

matching receive has been posted
– Ready mode - May only be called when a 

matching receive has already been posted

Point-to-Point Communication 
Modes: Buffered

• MPI_BSEND (buf, count, datatype, dest, tag, comm)
• MPI_IBSEND (buf, count, dtype, dest, tag, comm, req)
• MPI_BUFFER_ATTACH (buff, size)
• MPI_BUFFER_DETACH (buff, size)

– Buffered sends do not rely on system buffers
– The user supplies a buffer that MUST be large enough for all 

messages
– User need not worry about calls blocking, waiting for system 

buffer space
– The buffer is managed by MPI
– The user MUST ensure there is no buffer overflow
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Buffered Sends
#define BUFFSIZE 1000

char *buff;

char b1[500], b2[500]

MPI_Buffer_attach (buff, BUFFSIZE);

Seg violation

#define BUFFSIZE 1000

char *buff;
char b1[500], b2[500];

buff = (char*) malloc(BUFFSIZE);
MPI_Buffer_attach(buff, BUFFSIZE);
MPI_Bsend(b1, 500, MPI_CHAR, 1, 1, 

MPI_COMM_WORLD);
MPI_Bsend(b2, 500, MPI_CHAR, 2, 1,

MPI_COMM_WORLD);

Buffer overflow

int size;
char *buff;
char b1[500], b2[500];

MPI_Pack_size (500, MPI_CHAR,
MPI_COMM_WORLD, &size);

size += MPI_BSEND_OVERHEAD;
size = size * 2;
buff = (char*) malloc(size);
MPI_Buffer_attach(buff, size);
MPI_Bsend(b1, 500, MPI_CHAR, 1, 1, 

MPI_COMM_WORLD);
MPI_Bsend(b2, 500, MPI_CHAR, 2, 1,

MPI_COMM_WORLD);
MPI_Buffer_detach (&buff, &size);

Safe

Point-to-Point Communication 
Modes: Synchronous

• MPI_SSEND (buf, count, datatype, dest, tag, comm)
• MPI_ISSEND (buf, count, dtype, dest, tag, comm, req)

– Can be started (called) at any time.
– Does not complete until a matching receive has been posted and 

the receive operation has been started
• * Does NOT mean the matching receive has completed

– Can be used in place of sending and receiving acknowledgements
– Can be more efficient when used appropriately

• buffering may be avoided

Point-to-Point Communication 
Modes: Ready Mode

• MPI_RSEND (buf, count, datatype, dest, tag, comm)
• MPI_IRSEND (buf, count, dtype, dest, tag, comm, req)

– May ONLY be started (called) if a matching receive has already 
been posted.

– If a matching receive has not been posted, the results are undefined
– May be most efficient when appropriate

• Removal of handshake operation

• Should only be used with extreme caution
• Only really faster on an Intel Paragon or a system that 

RDMA (pinned memory). Why ?

Ready Mode

MASTER

while (!done) {
MPI_Recv (NULL, 0, MPI_INT, MPI_ANYSOURCE,

1, MPI_COMM_WORLD, &status);
source = status.MPI_SOURCE;
get_work (…..);
MPI_Rsend (buff, count, datatype, source, 2, 

MPI_COMM_WORLD);
if (no more work) done = TRUE;

}

UNSAFE

while (!done) {
MPI_Send (NULL, 0, MPI_INT, MASTER,

1, MPI_COMM_WORLD);
MPI_Recv (buff, count, datatype, MASTER,

2, MPI_COMM_WORLD, &status);
…

}

SLAVE

SAFE

while (!done) {
MPI_Irecv (buff, count, datatype, MASTER,

2, MPI_COMM_WORLD, &request);
MPI_Ssend (NULL, 0, MPI_INT, MASTER,

1, MPI_COMM_WORLD);
MPI_Wait (&request, &status);

…
}

Point-to-Point Communication 
Modes:  Performance Issues

• Non-blocking calls are almost always the way to go
– Communication can be carried out during blocking system calls
– Computation and communication can be overlapped if there is 

special purpose communication hardware
– Less likely to have errors that lead to deadlock
– Standard mode is usually sufficient - but buffered mode can offer 

advantages
• Particularly if there are frequent, large messages being sent
• If the user is unsure the system provides sufficient buffer space

– Synchronous mode can be more efficient if acks are needed
• Also tells the system that buffering is not required

• But, if no overlapping then non blocking is Slower due to 
extra data structures and book keeping!
– Only way to know.. Benchmark it!

Point to Point summary

• Covered all basic communications
– For here we can build all other communication 

patterns
• Manually
• May be slower than ‘collectives’ that can use special 

features of some MPP/SMPs.
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Point 2 point case study

• Master has a large number of ‘tests’ that need to 
ran and some average result needs to be 
calculated.

• We will consider four things
– Overall execution structure
– What this means for message passing
– Performance issue
– Improving the structure for better performance

P2p example

master

work

Potential workers

P2p case study

• What to consider
– Do we have more work than workers?
– How big is the work?
– Is the work independent from each other
– Are their intermediate results?

• Do they need to get shared? Stored on disk?

– Does the master need to do some work as well?

P2p case study

master

work

Potential workers

More work than worker..

P2p case study

master

work

Potential workers

Work definition is small...

P2p case study

master

work

Potential workers

Master CAN do some of the work
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P2p case study

master

work

Potential workers

Work result needs to be at the master

P2p case study

masterwork

Master sends data to the workers : Slaves receive work

P2p case study

masterwork

Works send partial results to the master : Master receiver partial results

P2p case study

masterwork

Master calculates the final answer

Point 2 point case study

• To consider how this looks as a parallel 
algorithm we need to draw it as a DAG

P2p case study
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P2p case study P2p case study

P2p case study P2p case study

If the master
does work as well

P2p case study

If the master
does work as well

Data does not need to move?

P2p case study

If you do not
distribute or
send out all
work in one go
we need to 
loop until all the
work is done
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P2p case study

• What does this look like in terms of code?

• The job of each process is defined by who 
they are (master or slave)

• Arcs in the graphs are data in the form of 
messages

P2p case study

• What does this look like in terms of code?

• The job of each process is defined by who they are 
(master or slave)
– In MPI we can use RANK to define a master
– RANK can also identify who the slaves are

• Arcs in the graphs are data in the form of 
messages
– Depending on if your master or worker and which arc, 

we know if we are Sending to Receiving data

P2p case study
• Master

MPI_Init (..)

MPI_Comm_rank 
(MPI_COMM_WORLD, &rank)

If (rank==0) { 
/* I AM MASTER */
Do_master ( )
}

MPI_Finalize ( ) 

• Worker

MPI_Init (..)

MPI_Comm_rank
(MPI_COMM_WORLD, &rank);

If (rank!=0) { 
/* I am Worker */
Do_worker ( rank )

}
MPI_Finalize ( ) 

P2p case study
• Do_master ( ) 

/* find out how many workers */
MPI_Comm_size (MCW, &size);
Workers=size-1;
Loop for each worker I 

Work [I] = dividework (I)

loop {
MPI_Send (work[I],1, worker)

}
Loop

MPI_Recv (result[I],1, worker..)
}
Do_calculate_result ()
Display_result ()
} 

• Do_Worker (my id)
• {
• /* get work */

• MPI_Recv (work, 1, 0, status)
• PResult = Do_work (work)
• MPI_Send (work, 1, 0..)

• }

P2p case study

• To make the previous code work if the work 
does not divide up into the workers 
correctly you need to change the data being 
sent:
– Special value for no-more work
– you need to tell workers how much work they 

have
– they can ask for work

P2p case study

• Special value for no-more work
Loop {

MPI_Recv (work, 1, 0, .. Status)
If (work==NOWORKLEFT) return ();
Else

Presult = Do_work ( ) …
MPI_Send (Presult…)

}
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P2p case study

• you need to tell workers how much work they 
have

Master:
work has 3 pieces of work…
MPI_Send (howmuch, work..)
loop { 

MPI_Send (work[I]…)
}

P2p case study

• you need to tell workers how much work they 
have

Slave:
do_work

MPI_recv (howmuch,…)
loop (1..howmuch)

MPI_Recv (work, 1, 0, .. Status)
Presult = Do_work ( ) …
MPI_Send (Presult…)

P2p case study

– they can ask for work

– Master 
• If work-left or workers-still-working{

MPI_Recv (what&who..)
If what=result add it to partial result
If work-left MPI_Send (nextwork, who..)
Else MPI_Send (NOMOREWORK, who…)
}

P2p case study
– they can ask for work

– Worker 

MPI_Send (Iwantsomework, 1, 0…)
Loop {

MPI_Recv (work, 1, 0, .. Status)
If (work==NOWORKLEFT) return ();
Else

Presult = Do_work ( ) …
MPI_Send (Presult…)

}

Collective Communication

• Outline
– Introduction
– Barriers
– Broadcasts
– Gather
– Scatter
– All gather
– Alltoall
– Reduction
– Performance issues

Collective Communication
• Total amount of data sent must exactly match the total 

amount of data received
• Collective routines are collective across an entire 

communicator and must be called in the same order from 
all processors within the communicator

• Collective routines are all blocking
– This simply means buffers can be re-used upon return

• Collective routines return as soon as the calling process’ 
participation is complete
– Does not say anything about the other processors
– Collective routines may or may not be synchronizing

• No mixing of collective and point-to-point communication
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Collective Communication

• Barrier: MPI_BARRIER (comm)
– Only collective routine which provides explicit 

synchronization
– Returns at any processor only after all 

processes have entered the call

Collective Communication

• Collective Communication Routines:
– Except broadcast, each routine has 2 variants:

• Standard variant: All messages are the same size
• Vector Variant: Each item is a vector of possibly varying length

– If there is a single origin or destination, it is referred to as the root
– Each routine (except broadcast) has distinct send and receive 

arguments
– Send and receive buffers must be disjoint
– Each can use MPI_IN_PLACE, which allows the user to specify 

that data contributed by the caller is already in its final location.

Collective Communication: Bcast

• MPI_BCAST (buffer, count, datatype, root, 
comm)
– Strictly in place
– MPI-1 insists on using an intra-communicator
– MPI-2 allows use of an inter-communicator
– REMEMBER: A broadcast need not be synchronizing.  

Returning from a broadcast tells you nothing about the 
status of the other processes involved in a broadcast.  
Furthermore, though MPI does not require 
MPI_BCAST to be synchronizing, it neither prohibits 
synchronous behavior.

BCAST

OOPS!

If (myrank == root) {
fp = fopen (filename, ‘r’);
fscanf (fp, ‘%d’, &iters);
fclose (&fp);
MPI_Bcast (&iters, 1, MPI_INT,
root, MPI_COMM_WORLD);

}
else {

MPI_Recv (&iters, 1, MPI_INT, 
root, tag, MPI_COMM_WORLD,
&status);

}
THAT’S BETTER

If (myrank == root) {
fp = fopen (filename, ‘r’);
fscanf (fp, ‘%d’, &iters);
fclose (&fp);

}
MPI_Bcast (&iters, 1, MPI_INT,

root, MPI_COMM_WORLD);
cont

Collective Communication: 
Gather

• MPI_GATHER (sendbuf, sendcount, sendtype, recvbuf, 
recvcount, recvtype, root, comm)
– Receive arguments are only meaningful at the root
– Each processor must send the same amount of data
– Root can use MPI_IN_PLACE for sendbuf:

• data is assumed to be in the correct place in the recvbuf
P1 = root

P2

P3

P2

MPI_GATHER

MPI_Gather
int tmp[20];
int res[320];

for (i = 0; i < 20; i++) {
do some computation
tmp[i] = some value;

}
MPI_Gather (tmp, 20, MPI_INT, res,

20, MPI_INT, 0, MPI_COMM_WORLD);
if (myrank == 0)

write out results

WORKS

for (i = 0; i < 20; i++) {
do some computation
if (myrank == 0)
res[i] = some value

else tmp[i] = some value
}
if (myrank == 0) 

MPI_Gather (MPI_IN_PLACE,
20, MPI_INT, RES, 20, MPI_INT,
0, MPI_COMM_WORLD);

write out results
else

MPI_Gather (tmp, 20, MPI_INT,
tmp, 320, MPI_REAL,
MPI_COMM_WORLD);

A OK
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Collective Communication: 
Gatherv

• MPI_GATHERV (sendbuf, sendcount, sendtype, recvbuf, 
recvcounts, displs, recvtype, root, comm)
– Vector variant of MPI_GATHER
– Allows a varying amount of data from each proc
– allows root to specify where data from each proc goes
– No portion of the receive buffer may be written more 

than once
– MPI_IN_PLACE may be used by root.

Collective Communication: 
Gatherv (cont)

1   2    3    4 counts

9   7    4    0 displs

P1 = root

P2

P3

P4

MPI_GATHERV

Collective Communication: 
Scatter

• MPI_SCATTER (sendbuf, sendcount, sendtype, recvbuf, 
recvcount, recvtype, root, comm)
– Opposite of MPI_GATHER
– Send arguments only meaningful at root
– Root can use MPI_IN_PLACE for recvbuf

MPI_SCATTER

B (on root)

P2

P4

P3

P1

Collective Communication: 
Scatterv

• MPI_SCATTERV (sendbuf, scounts, displs, sendtype, 
recvbuf, recvcount, recvtype)
– Opposite of MPI_GATHERV
– Send arguments only meaningful at root
– Root can use MPI_IN_PLACE for recvbuf
– No location of the sendbuf can be read more than once

Collective Communication: 
Scatterv (cont)

B (on root)

1   2    3    4
counts

9   7    4    0
dislps

MPI_SCATTERV

P1

P2

P3

P4

Collective Communication: 
Allgather

• MPI_ALLGATHER (sendbuf, sendcount, 
sendtype, recvbuf, recvcount, recvtype, comm)
– Same as MPI_GATHER, except all processors get the 

result
– MPI_IN_PLACE may be used for sendbuf of all 

processors
– Equivalent to a gather followed by a bcast
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Collective Communication: 
Allgatherv

• MPI_ALLGATHERV (sendbuf, sendcount, 
sendtype, recvbuf, recvcounts, displs, recvtype, 
comm)
– Same as MPI_GATHERV, except all processors get the 

result
– MPI_IN_PLACE may be used for sendbuf of all 

processors
– Equivalent to a gatherv followed by a bcast

Collective Communication: 
Alltoall (scatter/gather)

• MPI_ALLTOALL (sendbuf, sendcount, sendtype, recvbuf, 
recvcount, recvtype, comm)

Collective Communication: 
Alltoallv 

• MPI_ALLTOALLV (sendbuf, sendcounts, sdispls, 
sendtype, recvbuf, recvcounts, rdispls, recvtype, comm)
– Same as MPI_ALLTOALL, but the vector variant

• Can specify how many blocks to send to each processor, location of 
blocks to send, how many blocks to receive from each processor, and 
where to place the received blocks

Collective Communication: 
Alltoallw 

• MPI_ALLTOALLW (sendbuf, sendcounts, sdispls, 
sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm)
– Same as MPI_ALLTOALLV, except different 

datatypes can be specified for data scattered as well as 
data gathered

• Can specify how many blocks to send to each processor, location of 
blocks to send, how many blocks to receive from each processor, and 
where to place the received blocks

• Displacements are now in terms of bytes rather that types

Collective Communication: 
Reduction

• Global reduction across all members of a group
• Can us predefined operations or user defined operations
• Can be used on single elements or arrays of elements
• Counts and types must be the same on all processors
• Operations are assumed to be associative
• User defined operations can be different on each processor, 

but not recommended

Collective Communication: 
Reduction (reduce)

• MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, 
root, comm)
– recvbuf only meaningful on root
– Combines elements (on an element by element basis) in sendbuf 

according to op
– Results of the reduction are returned to root in recvbuf
– MPI_IN_PLACE can be used for sendbuf on root
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Collective Communication: 
Reduction (cont)

• MPI_ALLREDUCE (sendbuf, recvbuf, 
count, datatype, op, comm)
– Same as MPI_REDUCE, except all processors 

get the result
• MPI_REDUCE_SCATTER (sendbuf, 

recv_buff, recvcounts, datatype, op, comm)
– Acts like it does a reduce followed by a scatterv

Collective Communication: 
Prefix Reduction

• MPI_SCAN (sendbuf, recvbuf, count, 
datatype, op, comm)
– Performs an inclusive element-wise prefix 

reduction
• MPI_EXSCAN (sendbuf, recvbuf, count, 

datatype, op, comm)
– Performs an exclusive prefix reduction
– Results are undefined at process 0

MPI_SCAN

MPI_SCAN (sbuf, rbuf, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD)

MPI_EXSCAN (sbuf, rbuf, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD)

Collective Communication: 
Reduction - user defined ops

• MPI_OP_CREATE (function, commute, op)
– if commute is true, operation is assumed to be 

commutative
– Function is a user defined function with 4 arguments

• invec: input vector
• inoutvec: input and output value
• len: number of elements
• datatype: MPI_DATATYPE
• Returns invec[i] op inoutvec[i], i = 0..len-1

• MPI_OP_FREE (op)

Collective Communication: 
Performance Issues

• Collective operations should have much better 
performance than simply sending messages directly
– Broadcast may make use of a broadcast tree (or other mechanism)
– All collective operations can potentially make use of a tree (or

other) mechanism to improve performance

• Important to use the simplest collective operations which 
still achieve the needed results

• Use MPI_IN_PLACE whenever appropriate
– Reduces unnecessary memory usage and redundant data movement

Case study again

• In the previous example we sent all the 
work out using point to point calls

• Received all the results using point to pint 
calls.

• Could use collectives
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Case study Case study

Broadcast or scatter ?

Case study

Broadcast

If broadcast all nodes get the same set of work
the workers have to understand what work they are doing

Case study

scatter

If scatter then custom work per worker can be sent

Case study

Gather

What Else is There

• Lots of other routines 
– Derived datatypes
– Process groups and communicators
– Process topologies
– Profiling

• MPI-2
– Parallel I/O
– Dynamic process management
– One sided communication

But we stop here
The rest is useful
as a reference
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Derived Datatypes
• A derived datatype is a sequence of primitive datatypes 

and displacements
• Derived datatypes are created by building on primitive 

datatypes
• A derived datatype’s typemap is the sequence of (primitive 

type, disp) pairs that defines the derived datatype
– These displacements need not be positive, unique, or increasing.

• A datatype’s type signature is just the sequence of 
primitive datatypes

• A messages type signature is the type signature of the 
datatype being sent, repeated count times

Derived Datatypes (cont)

Typemap = 
(MPI_INT, 0) (MPI_INT, 12) (MPI_INT, 16) (MPI_INT, 20) (MPI_INT, 36)

Type Signature =
{MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT}

Type Signature =
{MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT}

In collective communication, the type signature of data sent must
match the type signature of data received!

Derived Datatypes (cont)

• Lower Bound:  The lowest displacement of an entry of this 
datatype

• Upper Bound:  Relative address of the last byte occupied 
by entries of this datatype, rounded up to satisfy alignment 
requirements

• Extent:  The span from lower to upper bound
• MPI_GET_EXTENT (datatype, lb, extent)
• MPI_TYPE_SIZE (datatype, size)
• MPI_GET_ADDRESS (location, address)

Datatype Constructors

• MPI_TYPE_DUP (oldtype, newtype)
– Simply duplicates an existing type
– Not useful to regular users

• MPI_TYPE_CONTIGUOUS (count, oldtype, newtype)
– Creates a new type representing count contiguous occurrences of 

oldtype
– ex: MPI_TYPE_CONTIGUOUS (2, MPI_INT, 2INT)

• creates a new datatype 2INT which represents an 
array of 2 integers

Datatype 2INT

CONTIGUOUS DATATYPE
P1 sends 100 integers to P2

P1
int buff[100];
MPI_Datatype dtype;
...
...
MPI_Type_contiguous (100,

MPI_INT, &dtype);
MPI_Type_commit (&dtype);

MPI_Send (buff, 1, dtype, 2, tag,
MPI_COMM_WORLD)

P2
int buff[100]

MPI_Recv (buff, 100, MPI_INT, 1, tag,
MPI_COMM_WORLD, &status)

Datatype Constructors (cont)
• MPI_TYPE_VECTOR (count, blocklength, stride, 

oldtype, newtype)
– Creates a datatype representing count regularly spaced 

occurrences of blocklength contiguous oldtypes
– stride is in terms of elements of oldtype
– ex: MPI_TYPE_VECTOR (4, 2, 3, 2INT, AINT)

AINT
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Datatype Constructors (cont)

• MPI_TYPE_HVECTOR (count, blocklength, stride, 
oldtype, newtype)
– Identical to MPI_TYPE_VECTOR, except stride is given in bytes 

rather than elements.
– ex: MPI_TYPE_HVECTOR (4, 2, 20, 2INT, BINT)

BINT

EXAMPLE
• REAL a(100,100), B(100,100)

• CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
• CALL MPI_TYPE_SIZE (MPI_REAL, sizeofreal, ierr)
• CALL MPI_TYPE_VECTOR (100, 1, 100,MPI_REAL, rowtype, ierr)
• CALL MPI_TYPE_CREATE_HVECTOR (100, 1, sizeofreal, 

rowtype, xpose, ierr)
• CALL MPI_TYPE_COMMIT (xpose, ierr)
• CALL MPI_SENDRECV (a, 1, xpose, myrank, 0, b, 100*100, 

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Datatype Constructors (cont)
MPI_TYPE_INDEXED (count, blocklengths, displs, oldtype, newtype)

•Allows specification of non-contiguous data layout
•Good for irregular problems
•ex: MPI_TYPE_INDEXED (3, lengths, displs, 2INT, CINT)

•lengths = (2, 4, 3)     displs = (0,3,8)

•Most often, block sizes are all the same (typically 1)
•MPI-2 introduced a new constructor

CINT

Datatype Constructors (cont)

• MPI_TYPE_CREATE_INDEXED_BLOCK (count, 
blocklength, displs, oldtype, newtype)
– Same as MPI_TYPE_INDEXED, except all blocks are the same 

length (blocklength)
– ex: MPI_TYPE_INDEXED_BLOCK (7, 1, displs, MPI_INT, 

DINT)
• displs = (1, 3, 4, 6, 9, 13, 14)

DINT

Datatype Constructors (cont)

• MPI_TYPE_CREATE_HINDEXED (count, blocklengths, 
displs, oldtype, newtype)
– Identical to MPI_TYPE_INDEXED except displacements are in 

bytes rather then elements

• MPI_TYPE_CREATE_STRUCT (count, lengths, displs, 
types, newtype)
– Used mainly for sending arrays of structures
– count is number of fields in the structure
– lengths is number of elements in each field
– displs should be calculated (portability)

MPI_TYPE_CREATE_STRUCT
struct s1 {

char class;
double d[6];
char b[7];

};

struct s1 sarray[100];

Non-portable

MPI_Datatype stype;
MPI_Datatype types[3] =

{MPI_CHAR, MPI_DOUBLE,
MPI_CHAR};

int lens[3] = {1, 6, 7};
MPI_Aint displs[3] = {0,

sizeof(double), 7*sizeof(double)};

MPI_Type_create_struct (3, lens,
displs, types, &stype);

MPI_Datatype stype;
MPI_Datatype types[3] =

{MPI_CHAR, MPI_DOUBLE,
MPI_CHAR};

int lens[3] = {1, 6, 7};
MPI_Aint displs[3];

MPI_Get_address (&sarray[0].class,
&displs[0]);

MPI_Get_address (&sarray[0].d,
&displs[1]);

MPI_Get_address (&sarray[0].b,
&displs[2]);

for (i=2;i>=0;i--) displs[i] -=displs[0]
MPI_Type_create_struct (3, lens,

displs, types, &stype);

Semi-portable
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MPI_TYPE_CREATE_STRUCT
int i;
char c[100];
float f[3];
int a;
MPI_Aint disp[4];
int lens[4] = {1, 100, 3, 1};
MPI_Datatype types[4] = {MPI_INT, MPI_CHAR, MPI_FLOAT, MPI_INT};
MPI_Datatype stype;

MPI_Get_address(&i, &disp[0]);
MPI_Get_address(c, &disp[1]);
MPI_Get_address(f, &disp[2]);
MPI_Get_address(&a, &disp[3]);

MPI_Type_create_struct(4, lens, disp, types, &stype);
MPI_Type_commit (&stype);
MPI_Send (MPI_BOTTOM, 1, stype, ……..);

Derived Datatypes (cont)

• MPI_TYPE_CREATE_RESIZED  
(oldtype, lb, extent, newtype)
– sets a new lower bound and extent for oldtype
– Does NOT change amount of data sent in a 

message
• only changes data access pattern

MPI_TYPE_CREATE_RESIZED

Struct s1 {
char class;
double d[2];
char b[3];

};

struct s1 sarray[100];

Really Portable

MPI_Datatype stype, ntype;
MPI_Datatype types[3] =

{MPI_CHAR, MPI_DOUBLE,
MPI_CHAR};

int lens[3] = {1, 6, 7};
MPI_Aint displs[3];

MPI_Get_address (&sarray[0].class,
&displs[0];

MPI_Get_address (&sarray[0].d,
&displs[1];

MPI_Get_address (&sarray[0].b,
&displs[2];

for (i=2;i>=0;i--) displs[i] -=displs[0]
MPI_Type_create_struct (3, lens,

displs, types, &stype);
MPI_Type_create_resized (stype, 0,

sizeof(struct s1), &ntype);

Datatype Constructors (cont)

• MPI_TYPE_CREATE_SUBARRAY (ndims, 
sizes, subsizes, starts, order, oldtype, newtype)
– Creates a newtype which represents a contiguous 

subsection of an array with ndims dimensions
• This sub-array is only contiguous conceptually, it may not be 

stored contiguously in memory!

– Arrays are assumed to be indexed starting a zero!!!
– Order must be MPI_ORDER_C or 

MPI_ORDER_FORTRAN
• C programs may specify Fortran ordering, and vice-versa

Datatype Constructors: Subarrays

MPI_TYPE_CREATE_SUBARRAY (2, sizes, subsizes, 
starts, MPI_ORDER_FORTRAN, MPI_INT, sarray)

sizes = (10, 10)
subsizes = (6,6)
starts = (3, 3)

(1,1)

(10,10)

Datatype Constructors: Subarrays

MPI_TYPE_CREATE_SUBARRAY (2, sizes, subsizes, 
starts, MPI_ORDER_FORTRAN, MPI_INT, sarray)

sizes = (10, 10)
subsizes = (6,6)
starts = (2,2)

(1,1)

(10,10)



23

Datatype Constructors: Darrays

• MPI_TYPE_CREATE_DARRAY (size, rank, dims, 
gsizes, distribs, dargs, psizes, order, oldt, newtype)
– Used with arrays that are distributed in HPF-like fashion on 

Cartesian process grids
– Generates datatypes corresponding to the sub-arrays stored on each 

processor
– Returns in newtype a datatype specific to the sub-array stored on 

process rank

Datatype Constructors (cont)

• Derived datatypes must be committed before they 
can be used
– MPI_TYPE_COMMIT (datatype)
– Performs a “compilation” of the datatype description 

into an efficient representation
• Derived datatypes should be freed when they are 

no longer needed
– MPI_TYPE_FREE (datatype)
– Does not effect datatypes derived from the freed 

datatype or current communication

Pack and Unpack

• MPI_PACK (inbuf, incount, datatype, outbuf, outsize, 
position, comm)

• MPI_UNPACK (inbuf, insize, position, outbuf, outcount, 
datatype, comm)

• MPI_PACK_SIZE (incount, datatype, comm, size)
– Packed messages must be sent with the type MPI_PACKED
– Packed messages can be received with any matching datatype
– Unpacked messages can be received with the type MPI_PACKED
– Receives must use type MPI_PACKED if the messages are to be 

unpacked

Pack and Unpack
int i;
char  c[100];
MPI_Aint disp[2];
int lens[2] = {1, 100];
MPI_Datatype types[2] = {MPI_INT, MPI_CHAR};
MPI_Datatype type1;

MPI_Get_address (&i, &(disp[0]);
MPI_Get_address(c, &(disp[1]);
MPI_Type_create_struct (2, lens, disp, types, &type1);
MPI_Type_commit (&type1);

MPI_Send (MPI_BOTTOM, 1, type1, 1, 0, MPI_COMM_WORLD)

int i;
char c[100];
char buf[110];
int pos = 0;

MPI_Pack(&i, 1, MPI_INT, buf, 110, &pos, MPI_COMM_WORLD);
MPI_Pack(c, 100, MPI_CHAR, buf, 110, &pos, MPI_COMM_WORLD);

MPI_Send(buf, pos, MPI_PACKED, 1, 0, MPI_COMM_WORLD);

Char c[100];
MPI_Status status;
int i, comm;
MPI_Aint disp[2];
int len[2] = {1, 100};
MPI_Datatype types[2] = {MPI_INT, MPI_CHAR};
MPI_Datatype type1;

MPI_Get_address (&i, &(disp[0]);
MPI_Get_address(c, &(disp[1]);
MPI_Type_create_struct (2, lens, disp, types, &type1);
MPI_Type_commit (&type1);

comm = MPI_COMM_WORLD;
MPI_Recv (MPI_BOTTOM, 1, type1, 0, 0, comm, &status);

int i, comm;
char c[100];
MPI_Status status;
char buf[110]
int pos = 0;

comm = MPI_COMM_WORLD;
MPI_Recv (buf, 110, MPI_PACKED, 1, 0, comm, &status);
MPI_Unpack (buf, &pos, &i, 1, MPI_INT, comm);
MPI_Unpack (buf, 110, &pos, c, 100, MPI_CHAR, comm);

Derived Datatypes: Performance 
Issues

• May allow the user to send fewer or smaller messages
– System dependant on how well this works

• May be able to significantly reduce memory copies
• can make I/O much more efficient
• Data packing may be more efficient if it reduces the 

number of send operations by packing meta-data at the 
front of the message
– This is often possible (and advantageous) for data layouts that are 

runtime dependant

Communicators and Groups

• If you need to handle lots of processes in a 
simple way by breaking them into relative 
groups that have a certain relationship
– Column communicator
– Row communicator
– Simplifying communication

• A group just for summing a residue value
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Communicators and Groups
• Many MPI users are only familiar with 

MPI_COMM_WORLD
• A communicator can be thought of a handle to a group
• A group is an ordered set of processes

– Each process is associated with a rank
– Ranks are contiguous and start from zero

• For many applications (dual level parallelism) maintaining 
different groups is appropriate

• Groups allow collective operations to work on a subset of 
processes

• Information can be added onto communicators to be 
passed into routines

Communicators and 
Groups(cont)

• While we think of a communicator as spanning 
processes, it is actually unique to a process

• A communicator can be thought of as a handle to 
an object (group attribute) that describes a group 
of processes

• An intracommunicator is used for communication 
within a single group

• An intercommunicator is used for communication 
between 2 disjoint groups

Communicators and 
Groups(cont)

MPI_COMM_WORLD
Comm1
Comm2

P3

P2

P1

Communicators and Groups(cont)
• Refer to previous slide

– There are 3 distinct groups
– These are associated with MPI_COMM_WORLD, 

comm1, and comm2
– P3 is a member of all 3 groups and may have different 

ranks in each group(say 0, 3 , & 4)
– If P2 wants to send a message to P1 it can use 

MPI_COMM_WORLD (intracommunicator) or an 
intercommunicator (covered later)

– If P2 wants to send a message to P3 it can use 
MPI_COMM_WORLD (send to rank 0), comm1 (send 
to rank 3), or and intercommunicator

Group Management

• All group operations are local
• As will be clear, groups are initially not 

associated with communicators
• Groups can only be used for message 

passing within a communicator
• We can access groups, construct groups, 

and destroy groups

Group Accessors

• MPI_GROUP_SIZE(group, size)
– MPI_Group group
– int size
– This routine returns the number of processes in the 

group

• MPI_GROUP_RANK(group, rank)
– MPI_Group group
– int rank
– This routine returns the rank of the calling process
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Group Accessors (cont)

• MPI_GROUP_TRANSLATE_RANKS (group1, 
n, ranks1, group2, ranks2)
– MPI_Group group1, group2
– int n, *ranks1, *ranks2
– This routine takes an array of n ranks (ranks1) which 

are ranks of processes in group1.  It returns in ranks2 
the corresponding ranks of the processes as they are in 
group2

– MPI_UNDEFINED is returned for processes not in 
group2

Groups Accessors (cont)
• MPI_GROUP_COMPARE (group1, group2 

result)
– MPI_Group group1, group2
– int result
– This routine returns the relationship between group1 

and group2
– If group1 and group2 contain the same processes, 

ranked the same way, this routine returns MPI_IDENT
– If group1 and group2 contain the same processes, but 

ranked differently, this routine returns MPI_SIMILAR
– Otherwise this routine returns MPI_UNEQUAL

Group Constructors

• Group constructors are used to create new groups 
from existing groups

• Base group is the group associated with 
MPI_COMM_WORLD

• Group creation is a local operation
– No communication needed

• Following group creation, no communicator is 
associated with the group
– No communication possible with new group

Group Constructors (cont)

• MPI_COMM_GROUP (comm, group)
– MPI_Comm comm
– MPI_Group group
– This routine returns in group the group 

associated with the communicator comm

Group Constructors (cont)
Set Operations

• MPI_GROUP_UNION(group1, group2, 
newgroup)

• MPI_GROUP_INTERSECTION(group1, 
group2, newgroup)

• MPI_GROUP_DIFFERENCE(group1, 
group2, newgroup)
– MPI_Group group1, group2, *newgroup

Group Constructors (cont)
Set Operations

• Union: Returns in newgroup a group consisting of 
all processes in group1 followed by all processes 
in group2, with no duplication

• Intersection: Returns in newgroup all processes 
that are in both groups, ordered as in group1

• Difference: Returns in newgroup all processes in 
group1 that are not in group2, ordered as in 
group1
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Group Constructors (cont)
Set Operations

• Let group1 = {a,b,c,d,e,f,g} and group2 = 
{d,g,a,c,h,I}

• MPI_Group_union(group1,group2,newgroup)
– Newgroup = {a,b,c,d,e,f,g,h,I}

• MPI_Group_intersection(group1,group2,newgrou
p)
– Newgroup = {a,c,d,g}

• MPI_Group_difference(group1,group2,newgroup)
– Newgroup = {b,e,f}

Group Constructors (cont)
Set Operations

• Let group1 = {a,b,c,d,e,f,g} and group2 = 
{d,g,a,c,h,I}

• MPI_Group_union(group2,group1,newgroup)
– Newgroup = {d,g,a,c,h,l,b,e,f}

• MPI_Group_intersection(group2,group1,newgrou
p)
– Newgroup = {d,g,a,c}

• MPI_Group_difference(group1,group2,newgroup)
– Newgroup = {h,i}

Group Constructors (cont)

• MPI_GROUP_INCL(group, n, ranks, 
newgroup)
– MPI_Group group, *newgroup
– int n, *ranks
– This routine creates a new group that consists 

of all the n processes with ranks 
ranks[0]..ranks[n-1]

– The process with rank i in newgroup has rank 
ranks[i] in group

Group Constructors (cont)

• MPI_GROUP_EXCL(group, n, ranks, 
newgroup)
– MPI_Group group, *newgroup
– int n, *ranks
– This routine creates a new group that consists 

of all the processes in group after deleting 
processes with ranks ranks[0]..ranks[n-1]

– The ordering in newgroup is identical to the 
ordering in group

Group Constructors (cont)

• MPI_GROUP_RANGE_INCL(group, n, ranges, 
newgroup)
– MPI_Group group, *newgroup
– int n, ranges[][3]
– Ranges is an array of triplets consisting of start rank, 

end rank, and stride
– Each triplet in ranges specifies a sequence of ranks to 

be included in newgroup
– The ordering in newgroup is as specified by ranges

Group Constructors (cont)

• MPI_GROUP_RANGE_EXCL(group, n, ranges, 
newgroup)
– MPI_Group group, *newgroup
– int n, ranges[][3]
– Ranges is an array of triplets consisting of start rank, 

end rank, and stride
– Each triplet in ranges specifies a sequence of ranks to 

be excluded from newgroup
– The ordering in newgroup is identical to that in group
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Group Constructors (cont)
• Let group = {a,b,c,d,e,f,g,h,i,j}
• n=5, ranks = {0,3,8,6,2}
• ranges= {(4,9,2),(1,3,1),(0,9,5)}
• MPI_Group_incl(group,n,ranks,newgroup)

– newgroup = {a,d,I,g,c}
• MPI_Group_excl(group,n,ranks,newgroup)

– newgroup = {b,e,f,h,j}
• MPI_Group_range_incl(group,n,ranges,newgroup)

– newgroup = {e,g,I,b,c,d,a,f}
• MPI_Group_range_excl(group,n,ranges,newgroup)

– newgroup = {h}

Communicator Management

• Communicator access operations are local, thus 
requiring no interprocess communication

• Communicator constructors are collective and 
may require interprocess communication

• All the routines in this section are for 
intracommunicators, intercommunicators will be 
covered separately

Communicator Accessors
• MPI_COMM_SIZE (comm, size)

– Returns the number of processes in the group associated with 
comm

• MPI_COMM_RANK (comm, rank)
– Returns the rank of the calling process within the group associated 

with comm
• MPI_COMM_COMPARE (comm1, comm2, result) 

returns:
– MPI_IDENT if comm1 and comm2 are handles for the same 

object
– MPI_CONGRUENT if comm1 and comm2 have the same group 

attribute
– MPI_SIMILAR if the groups associated with comm1 and 

comm2have the same members but in different rank order
– MPI_UNEQUAL otherwise

Communicator Constructors

• MPI_COMM_DUP (comm, newcomm)
• This routine creates a duplicate of comm
• newcomm has the same fixed attributes as comm
• Defines a new communication domain

– A call to MPI_Comm_compare (comm, newcomm, 
result) would return MPI_CONGRUENT

• Useful to library writers and library users

Communicator Constructors

• MPI_COMM_CREATE (comm,group,newcomm)
– This is a collective routine, meaning it must be called 

by all processes in the group associated with comm
– This routine creates a new communicator which is 

associated with group
– MPI_COMM_NULL is returned to processes not in 

group
– All group arguments must be the same on all calling 

processes
– group must be a subset of the group associated with 

comm

Communicator Constructors
• MPI_COMM_SPLIT(comm,color,key,newcomm)

– MPI_Comm comm, newcomm
– int color, key
– This routine creates as many new groups and 

communicators as there are distinct values of color
– The rankings in the new groups are determined by the 

value of key, ties are broken according to the ranking in 
the group associated with comm

– MPI_UNDEFINED is used as the color for processes to 
not be included in any of the new groups
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Communication Constructors
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Both process a and j are returned MPI_COMM_NULL
3 new groups are created

{i, c, d}
{k, b, e, g, h}
{f}

Destructors

• The communicators and groups from a 
process’ viewpoint are merely handles

• Like all handles in MPI, there is a limited 
number available – YOU CAN RUN OUT

• MPI_GROUP_FREE (group)
• MPI_COMM_FREE (comm)

Intercommunicators

• Intercommunicators are associated with 2 
groups of disjoint processes

• Intercommunicators are associated with a 
remote group and a local group

• A communicator is either intra or inter, 
never both

Intercommunicators

Intercommunicator

Intercommunicator Accessors

• MPI_COMM_TEST_INTER (comm, flag)
– This routine returns true if comm is an 

intercommunicator, otherwise, false

• MPI_COMM_REMOTE_SIZE(comm, size)
– This routine returns the size of the remote group 

associated with intercommunicator comm

• MPI_COMM_REMOTE_GROUP(comm, group)
– This routine returns the remote group associated with 

intercommunicator comm

Intercommunicator Constructors

• The communicator constructors described 
previously will return an intercommunicator if the 
are passed intercommunicators as input
– MPI_COMM_DUP: returns an intercommunicator with 

the same groups as the one passed in
– MPI_COMM_CREATE: each process in group A must 

pass in group the same subset of group A (A1).  Same 
for group B (B1).  The new communicator has groups 
A1 and B1 and is only valid on processes in A1 and B1

– MPI_COMM_SPLIT: As many new communicators as 
there are distinct pairs of colors are created
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Communication Constructors
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Intercommunicator Constructors

• Processes a, j, l, o, and u would all have 
MPI_COMM_NULL returned in newcomm

• newcomm1 would be associated with 2 
groups: {e, i, d} and {t, n}

• newcomm2 would be associated with 2 
groups: {k, b, c, g, h} and {v, m, p, r, q}

• newcomm3 would be associated with 2 
groups: {f} and {s}

Intercommunicator Constructors
• MPI_INTERCOMM_CREATE (local_comm, local_leader, 

bridge_comm, remote_leader, tag, newintercomm)
• This routine is called collectively by all processes in 2 disjoint groups
• All processes in a particular group must provide matching local_comm 

and local_leader arguments
• The local leaders provide a matching bridge_comm (a communicator

through which they can communicate), in  remote_leader the rank of 
the other leader within bridge_comm, and the same tag

• The bridge_comm, remote_leader, and tag are significant only at the 
leaders

• There must be no pending communication across bridge_comm that 
may interfere with this call

Intercommunicators

comm1
comm2
comm3

Intercommunicators

• MPI_INTERCOMM_MERGE (intercomm, high, 
newintracomm)
– This routine creates an intracommunicator from a union 

of the two groups associated with intercomm
– High is used for ordering.  All process within a 

particular group must pass the same value in for high 
(true or false)

– The new intracommunicator is ordered with the high 
processes following the low processes

– If both groups pass the same value for high, the 
ordering is arbitrary

Attribute Caching

• It is possible to cache attributes to be 
associated with a communicator

• This cached information is process specific.
• The same attribute can be cached with 

multiple communicators
• Many attributes can be cached with a single 

communicator
• This is most commonly used in libraries
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Selected References

• MPI - The Complete Reference Volume 1, The 
MPI Core

• MPI - The Complete Reference Volume 2, The 
MPI Extensions

• USING MPI: Portable Parallel Programming with 
the Message-Passing Interface

• Using MPI-2: Advanced Features of the Message-
Passing Interface


