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Abstract

Network stability is an important issue that has attracted the attention of many
researchers in recent years. Such interest comes from the need to ensure that, as
the system runs for an arbitrarily length of time, no server will suffer an unbounded
queue buildup.

Over the last few years, much research has been carried out to gain an under-
standing of the factors that affect the stability of packet-switched networks. In this
paper, we attempt to review the most noteworthy results in this area. We will fo-
cus on networks where the scheduling policy is of the FIFO type, which is, by far,
the most widely adopted policy. We gather these results and present them in an
organized manner. Furthermore, we also identify some directions open to future
research.
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1 Introduction

A growing number of networking applications today have constraints in terms
of their maximum allowable end-to-end delay, packet loss rate, bandwidth,
availability, and so forth. Therefore, it is becoming increasingly important to
find out the conditions under which a given communication network guar-
antees performance bounds when dealing with emerging real-time-oriented
networking scenarios. In spite of the significant advances in the complexity of
communication networks, much work still needs to be done in that direction.
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In order to characterize the performance of a network, one crucial issue is
that of stability , which has become a major topic of study in the last decade.
Roughly speaking, a communication network system is said to be stable if the
number of packets waiting to be delivered (backlog) is finitely bounded at
any one time. The importance of such an issue is obvious, since if one cannot
guarantee stability, then one cannot hope to be able to ensure deterministic
guarantees for most of the network performance metrics.

In a paper dating back to 1975 [1], F.J. Kelly proved that in stochastic net-
works where packet sizes and packet inter-arrival times are exponentially dis-
tributed, if the service time at servers follows the same distribution then the
well-known scheduling policy FIFO (which is by far the most widely adopted
policy) is stable. After that and for many years, the common belief was that
only overloaded queues 1 could generate instability, while underloaded ones
could only induce delays that are longer than desired, but always remain
stable. This general wisdom goes back to the models of packet-switching net-
works originally developed by Kleinrock [2], and based on Jackson queuing net-
works [3]. Stability results for more general classes of queueing networks [4,5]
also confirmed that only overload generates instability. This belief was shown
to be wrong when it was observed that, in some networks, the backlogs in
specific queues could grow indefinitely even when such queues were not over-
loaded [6,7]. It was later observed that instability could also occur, even when
the ratio between arrival rate and service rate is arbitrarily small, under the
FIFO scheduling policy, both by using probabilistic assumptions [8,9] and by
considering deterministic ones [10]. However, the above mentioned counterex-
amples required that the time needed to process a packet be different from
one to another. Clearly, this is not, in general, a valid assumption in packet-
switched networks, where servers generally have the same service rates for all
packets (such networks are usually said to be of the Kelly type [5]). Never-
theless, shortly afterwards it was shown that instability could also arise in
some types of Kelly networks, including networks using the FIFO scheduling
policy [11, 12]. These later results aroused an interest in understanding the
stability properties of packet-switched networks.

This paper provides a review and synthesis of the most important results con-
cerning stability of networks using the FIFO scheduling policy, which have usu-
ally appeared in a continuous but dispersed form. Here, we bring these results
together and present them in an organized manner. Furthermore, throughout
this survey we also identify a number of directions open to future research.

The paper has two clearly differentiated parts. In the first, which comprises
Sections 2, 3 and 4, we talk about network stability and discuss the different

1 A queue is considered to be overloaded when the total arrival rate at any server
is greater than the service rate.
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dimensions from which stability can be investigated. We also characterize the
model of input traffic we will use and formally define what we mean by sta-
bility in that model. In the second part, which comprises Sections 5, 6 and 7,
we review the state of the art concerning stability in networks with a FIFO
scheduling policy, and present the results obtained when considering several
different points of view; whereas in Section 5 we present some instability re-
sults, in Section 6 we present the most relevant directions used to approach
stability and in Section 7 we tackle the problem of deciding which networks
are stable. We finish with some concluding remarks in Section 8.

In order to keep a historical perspective of the results, in each reference we
include the first version of the paper (mostly conference versions) as well as
the final one (mostly journal papers).

2 Network Scenario

Network stability can be approached from three dimensions (G, A, P ): the
network topology G, the input traffic pattern A and the packet scheduling
protocol P .

2.1 Network topology

The network topology constitutes the underlying infrastructure by means of
which packets travel from their source to their destination. It is composed
of network switches (also referred to as routers, servers or nodes), which are
interconnected by means of unidirectional or bidirectional links. Each node
contains a server for each outgoing link. Servers may have different service
rates (link bandwidths), measured in packets per unit of time. However, in
general and for the sake of simplicity, it is assumed that each link can trans-
mit a single packet in each time step (i.e., they have a normalized service
rate of 1). Furthermore, there is a propagation delay associated to each link.
Each server schedules the packets that must cross the link using a nonpre-
emptive scheduling policy (which may be different at each server). Packets are
forwarded in a store-and-forward manner.

We will represent networks by means of directed graphs G = (V, E), where
vertices V represent the nodes and edges E are the links between servers,
the orientation of which represents the direction in which the traffic flows
through the network link. In the case where traffic can flow in both directions
of a network link, such a link will be represented by two edges, one in each
direction.
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2.2 Input traffic

When a request arrives for the transmission of a certain amount of data, a
connection is established along one or more routes. Clearly, network stability
is affected by the requests for transmission, their variabilities and the routes
followed to reach their destinations. The input traffic that is allowed is usually
characterized by specifying a constraining function that bounds the maximum
number of packets that can be injected at each time interval, the nodes where
packets ingress into the network and the route followed by each of the packets
until they reach their destination.

Although the average load on each link must be within its bandwidth capacity
in order to guarantee stability, this is not a sufficient condition [6–11]. This
raises a fundamental question about how to bound the input traffic to make
the network stable. In traditional queuing theory, the input traffic pattern
is generally assumed to be characterized by a stochastic distribution (e.g., a
Poisson distribution). However, while such an assumption is convenient for
theoretical analysis, questions have been raised about its realism [13]. In real
data networks, connection arrivals may be seriously correlated and bursty,
rather than stationary in nature. To model the bursty phenomena in data
arrivals, instead of assuming stochastic stationary arrival processes, bursty
models [12, 14] have been introduced for data communication networks, thus
allowing us to study how burstiness affects network stability. These latter
models will be formally defined in Section 3.

2.3 Scheduling protocol

The scheduling protocol is responsible for deciding the order in which packets
trying to cross a link simultaneously will be served. Since only one packet can
cross the link in a single step, the rest of the packets will have to wait in the
queue associated with the congested link.

Although scheduling algorithms have been studied for decades, almost all
routers currently implement the first-in first-out protocol (FIFO); that is, all
arriving packets are treated equally by placing them into a single queue, and
then serving them in a greedy fashion 2 in order of arrival. The reasons for the
widespread adoption of FIFO as a scheduling algorithm are clear. On the one
hand, FIFO is easily implementable, which makes it very attractive for system
designers. On the other hand, FIFO is also very fast, since the time required to
make a scheduling decision is insignificant. In addition, because it only works

2 A scheduling protocol is called greedy (also known as work-conserving) if it cannot
be idle as long as there is at least one packet queued.
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with local information (as opposed to other policies, like Farthest-to-Go, that
rely on the packets subsequent path, or the Longest-in System, that relies on
the packet injection time), it prevents packets from being faked to a higher
priority.

Nevertheless, and contrary to what one could expect, it has not usually been
easy to analyze its properties. This occurs because the ordering imposed by
the FIFO policy is so “loose´´ that it is difficult to ascertain the individual be-
havior of packets and, consequently, extract consequences about the behavior
of the whole system.

3 Adversarial Models of Input Traffic

As has been pointed out in the previous section, in real data networks, the
assumption that input traffic is characterized by a stationary process is not
realistic. Therefore, to model the bursty phenomenon in data arrivals, a new
type of model has been proposed. Such models consider the time evolution of a
packet-routing network as a game between a malicious adversary that has the
power to perform a number of actions (such as injecting packets at particular
nodes, choosing their destination, routing them, etc.) and the underlying sys-
tem. Such an adversary, based on the knowledge of behavior of the system, can
devise the scenario that maximizes the “stress” on the system. Consequently,
it provides us with a valuable tool with which to analyze the network in a
worst-case scenario. On the one hand, positive results (i.e., stability results)
are more robust in that they do not depend on particular stationary assump-
tions about the input sequences. On the other hand, since an adversary could
encompass a wider range of actions than stationary inputs, it may produce
unstable scenarios that are not allowed using a stochastic model. Thus, since
the stability results derived using adversarial models 3 are, in the above men-
tioned sense, more general than those obtained using stationary models, we
will focus on findings that take into account only adversarial models of input
traffic.

In an adversarial model each packet is injected (by the adversary) into a node
and follows a specific unique path, after which it is absorbed. Paths, however,
cannot contain the same link more than once. If more than one packet wishes
to cross an edge e in the current time step, then the protocol chooses one of
these packets to send across e; and remaining packets wait in a queue at the
tail of e.

3 They are so called to reflect the fact that the emphasis is on stability with respect
to an adversarial model of input traffic (i.e., a model where packets are injected and
routed by an adversary), rather than on an oblivious randomized process.
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To describe the dynamics of the system being considered, we introduce some
notation adopted from [15]. Let P be a set of paths that cannot contain the
same edge more than once in a network G = (V, E). Packets will follow paths
in P , which might be the set of all paths or just a subset of it. For each
path p ∈ P , let {ep

0, e
p
1, e

p
2, · · · , ep

k(p)} be the set of consecutive edges in p. Let
Ap(t1, t2) be the total number of packets that are injected during time interval
[t1, t2) and use path p. Let De,p(t1, t2) be the total number of packets following
path p and traversing edge e within the time interval [t1, t2). Finally, let Qe,p(t)
be the total number of packets following path p that are waiting to traverse
edge e at time t.

The dynamics of the network are described as follows. For each t = 0, 1, 2, ...
and each path p ∈ P

Qe
p

0
,p(t) = Qe

p

0
,p(0) + Ap(0, t) − De

p

0
,p(0, t) (1)

and for all i = 1, 2, · · · , k(p)

Qe
p

i
,p(t) = Qe

p

i
,p(0) + De

p

i−1
,p(0, t) − De

p

i
,p(0, t). (2)

For each edge e and each time interval [t1, t2) the following constraint must
hold

∑

p:e∈p

De,p(t1, t2) ≤ t2 − t1. (3)

The first concrete model that implicitly contained the concept of an adversary
was proposed by René Cruz in [14] and it is called as Permanent Session Model
(PSM ) (also known as the Session Oriented Model or the (σ, ρ)-Regulated
Session Model). In this model all packets are forced to belong to some session,
and packets from the same session follow the same path. Each session p is
associated to a rate ρp and a burst allowance σp so that the number of packets
injected by a session p during time interval [t1, t2) is bounded by

Ap(t1, t2) ≤ σp + ρp(t2 − t1). (4)

It is clear that, in order to avoid trivially overloading the system, the maximum
traffic injected in every link over long periods of time should not exceed the
amount of traffic that the link can serve. Therefore, the following load condition
must be fulfilled for all e
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∑

p:e∈p

ρp ≤ 1. (5)

Let Q(t) denote the vectors of queue lengths at time t, and A(t) and D(t)
respectively denote the vector of arrivals and departures up to time t. Any
feasible solution (Q(t), A(t), D(t)) to (1)-(4) will be called a realization in the
(G,PSM ,P) system, where P is the scheduling protocol by which packets are
chosen to cross edges.

Informally, it can be said that a PSM adversary can control individual input
streams. However, in some scenarios it seems convenient to provide a better
model for networks having heterogeneous and frequently changing rates of
traffic. That is, it seems convenient to have an adversary that globally controls
the entire input process. In [12], Borodin et al. provided a new perspective to
the analysis of stability in packet-switched networks by introducing a new
framework, known as Adversarial Queuing Theory 4 (AQT ), which has given
rise to the appearance of a large number of results. In AQT , in each time step,
the adversary injects a set of packets at some of the nodes. For each packet,
it also specifies the path it must follow (i.e., the sessions in which packets
are being injected can change over time). As in the case of PSM , in order to
avoid trivially overloading the system, the maximum traffic injected in every
link over long periods of time should not exceed the amount of traffic that the
link can serve. Formally, the number of packets injected by the adversary in
any consecutive time steps w (w ≥ 1 represents a window size) requiring any
particular link e is bounded by

∑

p:e∈p

Ap(t1, t2) ≤ ⌈wr⌉, (6)

where w = t2 − t1 and 0 < r ≤ 1 represents the normalized injection rate.

In [11], Andrews et al. introduced a new adversarial model known as the Leaky-
Bucket Model (LB) that differs from AQT in that the number of packets that
the adversary is allowed to inject during any time interval [t1, t2) and that
require the link e is now bounded by

∑

p:e∈p

Ap(t1, t2) ≤ r(t2 − t1) + b, (7)

where b ≥ 0 represents a burst allowance and 0 < r ≤ 1 represents the
sustainable normalized injection rate.

4 Also known as Windowed Adversarial Queuing.
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Fig. 1. Number of packets injected over time that require a given edge for AQT and
LB adversaries. The same value for the injection rate r has been taken, and it is
assumed that b = rw.

Figure 1 compares AQT and LB in terms of the number of packets the ad-
versary could inject in a period of time that have to cross a given edge e. As
can be seen, an LB adversary can inject at least as many packets as an AQT
adversary. In fact, Rosén [16, Fact 1] compared both models (starting with an
empty configuration), showing that they have the same power provided r < 1.
Two adversaries A1 and A2 have the same power if the set of actions (such
as injecting packets at particular nodes, choosing their destination, routing
them, etc.) performed by A1 can also be performed by an A2, and vice-versa.
To establish the equivalence, it was necessary to use adversaries with different
injection rates, but not different sequences of packet trajectories. Therefore,
we consider them as being the same, jointly called Adversarial Queuing Model
(AQM ). Similar to the case of PSM , any feasible solution (Q(t), A(t), D(t))
to (1)-(3)(6)/(7) will be called a realization in the (G,AQM ,P) system, where
P is the scheduling protocol by which packets are chosen to cross edges.

Clearly, PSM is more restrictive than AQM , since the adversarial injection
strategies in AQM are more general than in PSM . Hence, any stability result
in AQM implies an analogous result in PSM ; the converse, however, does not
necessarily hold. In turn, any instability result in PSM implies an analogous
result in AQM ; again, the converse does not necessarily hold.

Adversarial models other than AQM and PSM have been proposed. For in-
stance, Aiello et al. [17] proposed a variation of AQM where the adversary
specifies both the origin and destination of each packet and they are dynami-
cally routed according to certain network parameters (i.e., the adversary does
not specify the trajectories packets follow). A different variation was proposed
by Andrews et al. in [18], where the entire trajectory of a packet is known
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at the source, instead of being dynamically routed. Álvarez et al. [19] pro-
posed yet another variation of AQM that allows the adversary to prioritize
packets, either in a fixed fashion (at packet injection time) or in a variable
manner (the priority of each packet is assigned at each time step). However,
these models can be seen as being either a reinforcing or a weakening of the
adversarial power. So, in the following sections when we present the results,
we only consider AQM and PSM and refer, when necessary, to the factors
that strengthen or restrain their power.

4 Network Stability in Adversarial Models

In the previous sections, it has been outlined what we mean by network stabil-
ity. Now, we define stability in a more formal way when considering adversarial
models of input traffic.

Given a network G, an adversary A and a scheduling protocol P, a realization
(Q(t), A(t), D(t)) in (G,A,P) is stable if the number of packets in the system
is bounded at all times by a fixed value. That is, if

sup
t∈Z+

∑

e∈p, p∈P

Qe,p(t) < ∞.

We say that (G,A,P) is stable if every realization is stable. Furthermore,
stability can also be addressed from the point of view of the scheduling protocol
or the network. Therefore, if (G,A,P) is stable, we say that the scheduling
protocol P is stable against adversary A with network G. Alternatively, we
also say that network G is stable against adversary A with scheduling protocol
P.

In the most concrete case where a scheduling protocol P is stable against
every adversary A covered by a given adversarial model with every network,
we say that it is stable against such an adversarial model. Similarly, when a
network G is stable against every adversary A covered by a given adversarial
model with scheduling protocol P, we say that it is P-stable against such an
adversarial model.

We note that in the previous definitions nothing has been said about the initial
configuration. It has been argued in [11, Lemma 2.9] that systems with empty
initial configurations (i.e., assuming that, at time zero, there are no packets in
the system) and systems with nonempty initial configurations are equivalent,
since any adversary in the latter can be transformed into an adversary in
the former that behaves similarly. That allows us to work, without loss of
generality, with models with empty or nonempty initial configurations. But

9



it must be taken into account that the construction used to establish such
a result needs to change the network topology and creates a set of packets
that have a specific age; therefore, if the scheduling policy bases its queuing
decision on its history (e.g., Longest-in-System, Farthest-from-Source, etc.) it
is not clear if the above mentioned result remains valid. By using a very simple
transformation, Blesa [20, Fact 2] has shown the equivalence of adversaries
with and without initial configuration only by changing the parameters of
the adversary. This is a stronger result than the analogous one given in [11,
Lemma 2.9] since here the graph does not need to be changed. Nevertheless,
we remark that the FIFO scheduling policy does not take into account the
packets history.

We conclude this section by noting that one important direction for investi-
gating stability of a queuing network is the analysis of the associated fluid
limits, which are the different “limits” one obtains by shrinking the weight of
individual packets and time proportionally. The fluid limits will satisfy fluid
model equations, which correspond to the deterministic analog of the queu-
ing network under consideration. To prove stability, typically one attempts to
show that solutions of the fluid model equations are stable (i.e., their queue
lengths are 0 by a fixed time). The stability of the (non-adversarial) queuing
network then follows from the stability of these solutions, as proved by Dai [21].
Subsequently and parallelizing the result obtained by Dai, Gamarnik [15] has
shown that the stability of an adversarial fluid model implies the stability of
an underlying adversarial queuing network (AQM ). However, the connection
between a queueing network (either adversarial or not) and the associated fluid
model is a fairly complex issue, neither trivial nor subtle, and it is presently
not known when the stability of a fluid model follows from that of the corre-
sponding queueing network. Only some partial results were proven by Dai [22]
and Meyn [23], stating that when the fluid limits all have a uniformly positive
drift, then the queuing network itself is unstable. Bramson [24] and Dai et
al. [25] have also shown that there are families of queuing networks that are
stable, but whose fluid models are unstable.

5 Instability Results

Perhaps the most natural question regarding the stability of FIFO is to unveil
whether or not it is a stable policy with every network. Unfortunately, it has
been found that FIFO can be unstable in some circumstances, contrary to
what happens when considering some scheduling disciplines like Farthest-to-
Go, Longest-in-System, Nearest-to-Source, etc..

To show that a (G,A,P) system is not stable, one has to find an adversarial
injection strategy for A such that, as time goes by, the number of packets in
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Fig. 2. Baseball network GB used in [11, Theorem 2.10] to show instability of FIFO.

the system grows unboundedly. But, there is an interesting result by Hajek
in [26, Propositions 1 and 2] that shows that if a (G,A,P) system is stable then
any other (G,A′,P) system will be stable provided A and A′ have the same
injection rate. This shows that large bursts are not, in themselves, enough
to cause instability and rules out burstiness as a factor that could produce
instability, and it also implies that one must center on the injection rate to
find the adversarial injection strategy that causes the system to be unstable.
Therefore, we can turn out our attention to the injection rate as the only
factor that affects network instability.

The first result regarding instability of FIFO in adversarial models was given
by Andrews et al. In [11, Theorem 2.10] it was proven that there is a network
GB (see Figure 2) and an AQM adversary A of rate r ≥ 0.85 such that
(GB,A,FIFO) is unstable. The proof breaks the construction of A down into
phases. Briefly, it assumes that, at the very beginning, there are s packets in
the queue of v0. During the first s steps, a set X of rs packets that want to
traverse edges e0f

′

0e1 are injected in v0. Then, for the next rs steps, a set Y
of r2s packets that want to traverse edges e0f0e1 are injected in v0. The core
of the proof consists in delaying the packets in X using single-edge injections
until packets in Y are ready to traverse edge f ′

0. Therefore, the packets that
cross f ′

0 and f0 will merge in v1. By injecting new packets in v1 that want
to traverse e1, they show that the queue of e1 will contain r3s + r2s/(r + 1)
packets, which is greater than s if r ≥ 0.85. Since the graph is symmetric, one
can repeat the same process to increase the queue size in v0, and then also
repeat the whole process with a value s′ > s.

The result obtained by Andrews et al. triggered an effort to reduce the injec-
tion rates for which FIFO is unstable. Dı́az et al. [27, Theorem 3] decreased
the instability bound to 0.8357, Koukopoulos et al. [28, Theorem 3] lowered
it to 0.749, and Lotker et al. [29, Theorem 3.17] brought it down to 0.5. The
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definitive result that determines the minimum injection rate for which FIFO
is unstable was given by Bhattacharjee et al. [30, Theorem 5.4]. Specificaly,
they proved that FIFO can be unstable at arbitrary low-load injection rates.
The main idea for the proof was the construction of a gadget which, assum-
ing certain initial conditions, allows only a small fraction of packets to pass
through it for a long period of time. In particular, the fraction of packets
which escape is bounded by k/(1 + r)k, where k is a parameter of the gadget
and can be increased arbitrarily. The network is constructed using this gadget
and the adversary works in phases. At the beginning of a phase, it is assumed
that there are some packets waiting to pass through a column of gadgets.
Using each gadget in the column more packets are generated which want to
ultimately traverse through a second column. Additional copies of the gadget
are used to delay and synchronize these new packets so that, at the end of
the phase, there are more packets waiting to traverse the second column than
there were waiting at the first column at the beginning of the phase. Applying
this inductively leads to instability. One feature of the network constructed
in the above mentioned instability proof is that its size is polynomial in 1/r,
which is quite strong. However, this is unavoidable, since it has been shown
(see Section 6.2) that, regardless of the network topology, FIFO is stable if
r < 1/(d−1), where d is the network diameter (i.e., the largest number of links
crossed by any packet). Clearly, this implies that, to obtain a FIFO-unstable
network for a small injection rate, one must increase the network diameter.

The previous instability results also raise the question as to what happens if
the path each packet must follow is chosen by a routing algorithm instead of
being dictated by the adversary. Let us, for instance, consider the baseball
network in Figure 2 and not route any packet throughout the links f ′

0 and
f ′

1. Clearly, this network will behave exactly like a ring network. But since
any ring is FIFO-stable against AQM (see Section 6.1), then the baseball
network in Figure 2 will also be FIFO-stable, contrary to what happens if
the adversary dictates the routes. This evidences the fact that the ability
of the adversary to select the routes that packets must follow could make
a difference. However, that fact does not imply that FIFO is stable against
AQM when the routes are not chosen by the adversary. Indeed, it was shown
by Andrews et al. [18, Theorem 4.1] that there is a network GE (see Figure 3)
and an AQM adversary A of rate r ≥ 0.9 such that (GE ,A, F IFO) is unstable,
regardless of how the routes for the packets are chosen. The proof is similar
to the proof in [11, Theorem 2.10] to show instability of FIFO. It breaks the
packet injections into phases. Inductively, it is assumed that at the beginning
of phase j a set S of s packets with destination u0 is in the queue of e0. For the
first s steps, a set X of rs packets are injected at node v0 with destination u1.
These packets are held up at e0 by the packets in S. Furthermore, rs packets
are injected at w0 with destination u0. These newly injected packets get mixed
with those of S into the set S ′. At the end of the first s steps, rs packets from
S ′ are at f0. For the next rs steps, a set Y of r2s packets are injected at node
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Fig. 3. Extended baseball network GE used in [18, Theorem 4.1] to show instability
of FIFO, regardless of how the paths for packets are chosen.

v0 with destination u1. These packets are held up at e0 by the packets in X.
At the same time, packets are injected at w0 with destination u′

0 at rate r.
These packets delay the packets from X that are routed through f ′

0. Hence,
at most rs/(r + 1) packets of X cross f ′

0 and, at the end of these rs steps, a
set X ′ ⊆ X of at least r2s/(r + 1) packets are still at w0. Finally, for the next
| X ′ | + | Y | steps the packets in X ′ and Y move forward, and merge at v1.
Meanwhile, packets are injected at v1 with destination u1 at rate r . In the end,
the number of packets at v1 with destination u1 is at least r3s + r3s/(r + 1).
For r ≥ 0.9, r3 + r3/(r + 1) > 1. Since the graph is symmetric, one can repeat
the same process to increase the queue size in v1, and then also repeat the
whole process with a value s′ > s. Therefore, this proves that one cannot hope
to achieve FIFO-stability with general networks, even if we have the freedom
to choose the routes.

Regarding stability against PSM , it must be recalled that the set of injection
strategies in AQM are more general than in PSM . This means that instability
against AQM does not directly imply a similar result when considering PSM .
The first result regarding stability when considering PSM was presented by
Andrews in [31, Theorem 1], where he proposed a network topology that
exhibits instability for a maximum injection rate of 1−3×10−4, the analogous
instability result being parallelized for AQM . Such a network consisted of
a cycle of seven gadgets, each one made up of 15 servers, partitioned into
three columns. The proof was performed by using a fluid network, and it was
argued that it is trivial to modify it for a non-fluid network with discrete
packets. The creation of instability involves a number of phases, where the
aim was to build up fluid in the left and right columns of the gadget. By
injecting fluid into each session at a rate of 0 or 1/3 (i.e., the fluid is either on
or off ) at given time intervals and using quite involved calculations (derived
using computer calculation), he shows that it is possible to inject more fluid
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into the system than the amount that is escaping. Then, repeating the same
process indefinitely, it is possible to build up an arbitrary amount of fluid in
the network. In a subsequent work, Andrews extended his instability result
to arbitrary low injection rates [32, Lemma 6], thus answering what was, for
several years, perhaps the most relevant open question about FIFO stability.
Obviously, since the stability result for AQM also holds for PSM , the size of
the networks used to create instability was forced to grow with the inverse of
the injection rate (i.e., for all p ∈ P : ρp < 1/(d − 1), where d is the network
diameter).

• Open Issue #1: Whereas the above mentioned instability results at arbi-
trary low injection rates have, in some sense, closed an important question
regarding the stability of FIFO in general networks, it must be noted that
no restriction was set on the way the adversaries injected packets into the
network (other than satisfying either the AQM or PSM specifications).
Finding under which conditions constraining the input traffic makes FIFO
stable seems to be an interesting issue.

• Open Issue #2: In PSM , determining whether FIFO is stable or not when
the routes are not dictated by the adversaries it is still open matter.

• Open Issue #3: Similarly, determining the minimum injection rate for which
FIFO is unstable against AQM when the routes are not dictated by the
adversaries is still open.

6 Stability Results

The fact that FIFO is not a stable policy under all circumstances does not
imply that such a policy could not be stable under some conditions. In this sec-
tion, we present the most relevant directions that have been used to approach
the stability of FIFO under adversarial models.

6.1 Stable Topologies

DAGs: The first results regarding the stability of FIFO in particular net-
work topologies were achieved by Cruz in [14, Theorem 4.1]. He proved that
any directed acyclic graph or DAG is WC-stable against PSM , where WC
denotes any work-conserving packet-scheduling protocol (remember that a
scheduling protocol is said to be greedy or work-conserving if it cannot be
idle as long as there is at least one packet queued). This result was extended
to AQM by Borodin et al. in [12, Theorem 1]. In the case of PSM , the known
upper bounds on queue sizes and delays of packets are exponential in the
length of the longest path in the network and, in the case of AQM , in the
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Model DAG TREE RING

Queue Packet Queue Packet Queue Packet

Size Delay Size Delay Size Delay

PSM O(cd) O(cd) O(d) O(d) O(n) O(n)

AQM O(2m−1) O(2m−1) O(d) O(d) (b+1)n
(1−r) O( bn

(1−r)2
)

Table 1
Upper bounds on the queue size and the end-to-end packet delay for FIFO under
DAG, TREE and RING topologies. The parameter n is the number of nodes in the
ring, d is the length of the longest path in the network, m is the number of edges
in the graph and c ≥ 2.

number of edges.

Trees: The above mentioned bounds for DAGs can be improved when con-
sidering rooted tree networks (which are a special case of DAG). In this case,
the queue sizes and the packet delays are linear in the length of the longest
path in the network [12, Theorem 1], when considering both PSM and AQM .

Rings: In [33, Theorem 1], Tassiulas and Georgiadis proved that unidirec-
tional n-node ring topologies are WC-stable against PSM , evidencing that
cyclicity is not, by itself, a problem to achieve stability. Later, Andrews et
al. [11, Theorem 3.7] extended that result to AQM and showed that the queue
size is also linear on the number of nodes in the ring. More precisely, there
are never more than (b + 1)n/(1 − r) packets in the system that require any
given edge, and the maximum number of steps a packet spends in the system
is O(bn/(1− r)2) (where (b, r) are the parameters that characterize the AQM
adversary).

In Table 1, we summarize the upper bounds on the queue sizes of servers and
on the maximum end-to-end delay of packets found for the above mentioned
network topologies.

6.2 Network structure

Network stability has been also studied from the point of view of the network
structure.

By taking into account information on the largest number of links crossed by
any session in the network, denoted d, Charny and Le Boudec [34, Theorem 1]
proved that if the load condition is lower than 1

d−1
(i.e., for all p ∈ P : ρp <
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1/(d− 1)), then FIFO is stable against PSM . Furthermore, they also showed
that 1

d−1
is a tight bound, in the sense that if the load condition overpasses

1
d−1

, then for any value of the delay δ, there exists a network with a maximum
diameter d where the delay of some packet exceeds δ. The same bound was
obtained by Zhang and Duan [35, Theorem 1] by employing a technique based
on bounding the maximum delay experienced by any packet at each server.

An analogous result for AQM was achieved by Lotker et al. [29, Theorem 4.3].
Namely, they proved that any network is FIFO-stable against AQM if the ad-
versarial injection rate r is lower than 1

d
(in this case, d means the network

diameter). Such a bound was reduced to 1
d−1

by Echagüe et al. [36, Theo-
rem 3.1], also showing that the worst-case end-to-end packet delay is bounded
above by d(b/(1− r(d−1))), where (b, r) are the parameters that characterize
the AQM adversary. The proof of this last stability result is based on finding
the conditions that bound the maximum time interval a packet takes to cross
a server. If we denote by ai

s the time instant that packet i arrives at its sth
server and denote by Qi

s the time interval packet i takes to cross its sth server,
then we have that Qi

s ≤ r(ai
s−a1)+b−(ai

s−tB), where a1 is the injection time
in the network of the oldest packet present in the sth server at time instant ai

s

and tB is the last time no later than ai
s that no packet was scheduled by the sth

server. Making some algebra, the previous inequality becomes Qs
i ≤ rdQ + b

(where Q = maxi,s Qs
i ), which implies that if r < 1/(d − 1) then Q < ∞.

As can be readily observed, the stability bound for AQM coincides with the
tight bound found for PSM . Thus, since PSM is more restrictive than AQM ,
this implies that 1

d−1
is also a tight bound for AQM . To show an example

of the guarantees provided by this result, observe that the diameter of the
baseball network in Figure 2 is 5 (e.g., f0e1f1e0f

′

0). Then, if the adversarial
injection rate is below 0.25, the baseball network is FIFO-stable against AQM .
Similarly, if the maximum sum of the rates of sessions that cross any node is
lower than 0.25, the baseball network is stable against PSM .

By considering a scenario where each link capacity may take on integer val-
ues from [1, C] with C > 1, which may or may not vary over time (such a
scenario was introduced by Borodin et al. in [37] to study stability of some
protocols when the link capacity is changing dynamically), Koukopoulos et
al. [38, Theorem 15] proved that any network is FIFO-stable against AQM
if the adversarial injection rate r is lower than 1

Cd
. That is, the performance

bound in the dynamic setting has as expense a multiplicative factor of C.

Koukopoulos et al. also studied the problem of the stability of FIFO by con-
sidering other parameters that characterize the network structure, in addition
to the network diameter. In [39, Theorem 4.1], they showed that FIFO is sta-
ble against AQM if the adversarial injection rate is lower than or equal to rG,
where rG is a real number in (0, 1) satisfying the equation r2

G

∑d−1
i=0 (α + rG)i =
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1/p, d being the network diameter, p the minimum number of edge-disjoint
paths that cover the network and α the maximum number of ingoing edges in
a vertex in the network.

6.3 Pathwise constant injection rates

It is known that, even for arbitrary low injection rates, FIFO can be unstable
against both PSM and AQM (see Section 5). However, one may ask if there
are situations, regarding the injection rates, that make FIFO to be stable,
either against PSM or AQM .

Consider the case where the long-term injection rate for each session is con-
stant. More formally, when the number of packets injected by a session p
during time interval [t1, t2) is bounded not only by Equation 4 but also by

Ap(t1, t2) ≥ ρp(t2 − t1) − σ′

p, (8)

where σ′

p ≥ 0.

With this type of injection rates (usually called pathwise constant injection
rates), Gamarnik [15, Theorem 5] showed that FIFO is stable against PSM .
For the proof, he proved that, given a system (G,PSM /AQM , F IFO), if its
associated adversarial fluid model (as defined in [15]) is stable then the system
itself is also stable [15, Theorem 4]. Combining this with Bramson’s result [40]
that shows that FIFO solutions are stable in fluid networks with pathwise
constant arrival rates, Gamarnik states that FIFO is stable against PSM . A
consequence of this previous result is that, combined with Andrews’ instabil-
ity result in [31, Theorem 1], it means that FIFO exhibits non-monotonicity
properties in PSM : for pathwise constant injection rates we have stability, but
if the adversary can occasionally reduce some session rates then we can also
have instability.

6.4 Interfering sessions

Another different way to approach stability in PSM considers how the paths
followed by the traffic sessions interfere with each other. The route interference
number of a traffic session p, denoted RIN p, is defined as the number of other
traffic sessions whose paths interfere with the path followed by p, counted with
multiplicity if some sessions share several distinct sub-paths along the same
path. Chlamtac et al. [41, Corollary 1] proved that if, for each session p, the
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session 2

session 1

session 3

Fig. 4. In this network, RIN 1 = 4, RIN 2 = 4 and RIN 3 = 2. Therefore, if session 1
and session 2 inject up to a rate of 1/5, and session 3 injects up to a rate of 1/3,
this network is FIFO-stable.

interpacket time between any two consecutive packets in the same session is
at least RIN p (i.e., for all p, ρp ≤ 1/(RIN p + 1)), then

(1) Any network is FIFO-stable.
(2) The end-to-end queuing delay for a given traffic session p is bounded by

its RIN p.
(3) The backlog at any queue is bounded by

∑
i∈I Ni − mini Ni, where I is

the number of input links in the queue and Ni is the number of sessions
entering the node via input link i.

The essence of the proofs consisted in showing that, at any given time, there is
at most one packet per flow present in each queue. Then, the above mentioned
results follow almost directly.

In a subsequent work, Le Boudec and Hebuterne [42, Theorem 2.3] reduced
the backlog queue bound to

∑
i∈I Ni − maxi Ni, instead of

∑
i∈I Ni − mini Ni.

Essentially, the same result was found independently by Zhang [43, Theo-
rem 2], who also analyzed the tightness for a multipoint-to-point tree topol-
ogy [43, Theorem 3]. Fig. 4 illustrates with an example the concept of route
interference.

• Open Issue #4: Clearly, the above mentioned interpacket condition is not
tight, in the sense that, in some circumstances, it is possible to increase the
injection rate and still preserve the network stability. For instance, in Fig. 4,
the three sessions could inject up to a rate of 1/3, which is more than what
is permitted by the current interpacket condition. A challenging issue is to
find how to relax it and still preserve network stability.

6.5 Transforming Networks into FIFO-Stable

The previous results presented features that, in some sense, are intrinsic to
the networks under study. However, it is possible to implement, on top of any
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given network, a virtual one emulating a FIFO-stable topology and use it for
the communication between servers. Bearing this in mind, a simple way to
transform any network into a stable topology is to construct a virtual ring,
and use only links belonging to the ring. However, this does not appear to be
a good solution, since it will greatly affect the system’s performance. A more
scalable solution consists in implementing a virtual DAG. But this does not
guarantee bidirectional graph connectivity among the nodes.

One technique that has been proven to be very convenient for transforming
any network into FIFO-stable consists in prohibiting only certain carefully
selected turns within the original network. The concept of turn was introduced
by Schroeder et al. in [44] and it is like a triplet of nodes connected by two
links; a prohibited turn (a, b, c) would forbid the forwarding of a packet from
link (a, b) to link (b, c) (and vice-versa). Of course, it is necessary to take care to
choose the turns that guarantee that the resulting topology will become FIFO-
stable, while also preserving network connectivity. The routing of packets can
be performed by using a routing protocol, such as Turnnet [45], which has
been specially designed for such a type of network.

Taking the turn-prohibition approach, in [46] Starobinski et al. devised an
algorithm that, while preserving network connectivity, breaks all the exist-
ing cycles. Therefore, the resulting topology will behave like a DAG, which is
FIFO-stable against AQM (see Section 6.1). Figure 5 illustrates how to trans-
form a network topology into a FIFO-stable network by using turns, while
also preserving network connectivity. In addition, they also showed that the
maximum number of forbidden turns is bounded by 1/3 of the total number
of turns. In a subsequent paper [47], Starobinsky and Karpovsky presented
another algorithm (also based on forbidden turns) that allows some of the
nodes in a given spanning tree to be replaced by turn-based nodes without
creating any cycles. However, in this case the maximum number of forbidden
turns increases up to 1/2 the total number of turns.

One drawback of the previous algorithms is that they are centralized. There-
fore, to implement them, it is necessary to know the whole network topology.
In [48], Echagüe et al. presented a fully distributed turn-based algorithm that
prevents the occurrence of cycles and prohibits at most 1/2 the total number
of turns. This algorithm was later extended to allow multiple nodes to initi-
ate it in an independent manner, and it can be used to cope with new nodes
entering the system as well as with node crashes.

Finally, we remark that the previous algorithms are designed to break cycles
of nodes. Therefore, paths cannot pass through the same node more than
once. Note that such a type of paths usually called simple paths, are a slightly
restrictive version of AQM paths.
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v0w0

v1 w1

Fig. 5. This network contains cycles and, therefore, may be unstable. However, if we
prohibit turns (v0, w0, v1) and (v1, v0, w1) and turns of the (x, y, x) form, then no
cycles can occur and consequently the resulting network will become FIFO-stable.

• Open Issue #5: It would be useful to have a distributed turn-based algo-
rithm that works in a collaborative manner (i.e., where several parts of the
network are transformed in an independent fashion and then merged to
obtain the full cycle-free network).

• Open Issue #6: An approach that has not yet been considered is how to
obtain FIFO-stable topologies that are not necessarily cycle-free. For in-
stance, it is known that the ring is FIFO-stable, even though it has cycles.
Perhaps, in some circumstances, these topologies could perform better than
cycle-free ones.

7 Deciding FIFO-Stability

In this section, we consider the problem of deciding which networks are FIFO-
stable and if it is possible to detect them from the knowledge of the network’s
topological structure.

Since to decide the stability of a network against an adversarial model it
is necessary to implicitly quantify over all adversaries and all protocols, it
is not clear, a priori, whether stability is a decidable property. Surprisingly,
Andrews et al. [11, Section 3.2] showed that, contrary to what one could
expect, WC-stability against AQM is a decidable property. The approach
followed to obtain the above mentioned result was to prove that if a network
G is WC-stable against AQM , so is every minor of G. A graph is a minor of G if
it can be obtained from G by a sequence of operations involving edge deletions,
vertex deletions, and edge contractions (i.e., by merging endpoints together).
Then, they used the results obtained by Robertson and Seymour [49–51] to
prove the existence of an algorithm to decide WC-stability that runs in time
O(n2) (n being the number of nodes in the network). However, they did not
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A B C

Fig. 6. Set of forbidden subdigraphs for deciding FIFO-stability. A dotted line in-
dicates a simple path of an arbitrary number (including 0) of edges. If a path has
0 edges, the vertices at its ends coincide.

provide an explicit characterization of the networks that are WC-stable.

The first explicit algorithm to decide WC-stability was proposed by Goel
in [52, Theorem 2.8]. Namely, he constructed two simple directed graphs that
were unstable, and proved that any graph G is WC-stable against AQM if and
only if none of these unstable graphs is a minor of G. In spite of the obvious
relevance of this result, a compelling aspect of it is that it is only valid on a
slightly restrictive version of AQM . Namely, the paths chosen by the adver-
saries must be simple paths (i.e., paths where all the nodes, and necessarily
all the edges, are different).

In [53, Theorem 3.1], Gamarnik focused on the stability of undirected graphs,
proving that any connected undirected graph is WC-stable if and only if it has,
at most, two edges. Although now adversaries do not need to use simple paths
but all paths allowed by AQM (i.e., edges must be different but not nodes), he
also used a slightly restrictive version of AQM in which each undirected link
can be crossed in one direction in one time step, contrary to what happens
in the original specification of AQM where each link can be traversed, at the
same time, in each direction.

Following the same approach as Goel, in [54] Álvarez et al. attained an explicit
polynomial time algorithm for deciding WC-stability against the original spec-
ification of AQM . Specifically, they constructed three simple directed graphs,
and proved that any graph G is WC-stable against AQM if and only if no
extension of these unstable graphs is a minor of G.

At this point, we note that the previous results apply to all work-conserving
policies and not only to FIFO, which is also a work-conserving policy. Regard-
ing the stability of the particular FIFO scheduling policy Weinard, based on
previous work of Blesa [55], proposed an algorithm to decide FIFO-stability
in polynomial time [56, Theorem 2]. More particularly, the algorithm decides
that any given graph G is FIFO-stable against AQM if and only if none of the
three simple forbidden graphs (A, B and C) in Figure 6 is a minor of G. He
also proposed an algorithm to decide simple path FIFO-stability (i.e., FIFO-
stability when the paths are simple paths). For instance, the baseball network
in Figure 2 is FIFO-unstable since the forbidden subdigraph A is a minor of
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Fig. 7. Example that illustrates a FIFO-stable network, usually called U1, which
is not WC-stable. Specifically, there is an AQM adversary A of rate r > 0.841
and a scheduling policy NTG-LIS (in NTG-LIS, the highest priority is assigned
to the packet that still has to cross the smallest number of edges, solving ties by
giving priority to the packet that has been in the system the longest time) such that
(U1,A,NTG-LIS) is unstable [54, Theorem 3].

GB. In turn, both DAGs and trees are FIFO-stable, since they do not contain
any of the three forbidden sub-digraphs.

As a consequence of the previous result, it has been evidenced that there are
FIFO-stable networks that are not WC-stable [56, Corollary 1] (until recently,
the only FIFO-stable networks that had been observed were also WC-stable).
Fig. 7 shows a very simple network that is FIFO-stable but not WC-stable.

• Open Issue #7: An interesting open problem is to determine whether or
not there is an efficient algorithm that can decide FIFO-stability at reduced
injection rates.

• Open Issue #8: Contrary to what happens in the case of AQM , deciding
FIFO-stability against PSM is an issue that has not been tackled at all.
Thus, parallelizing Weinard’s result and finding an efficient algorithm to
decide FIFO-stability against PSM seems a natural direction to follow.

8 Concluding Remarks

Undoubtedly, network stability is an important issue that, in recent years,
has attracted the attention of many researchers. Such interest comes from the
need to ensure that, as the system runs for an arbitrary length of time, no
server will suffer an unbounded queue buildup.

In this survey, we have presented, in a structured manner, the recent advances
concerning the stability of FIFO in packet-switched networks. Furthermore,
we have also identified some directions open to future research. Although the
results obtained are mainly theoretical, they have contributed to form a core
of fundamental results, and it is a matter of time before such results will be
taken into account for more practical issues, such as the design of network
protocols, the analysis of multiprocessor systems, and so forth.

The current state of the art regarding the stability of FIFO constitutes a first
step toward the development of a more mature theory of stability. We think
that in the next few years many more new results will appear, especially in
the form of identifying situations where FIFO is stable (e.g., new forms of
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injection rates, networks structures, etc.), together with work carried out on
devising techniques for guaranteeing stability.
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