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Ernesto Jiménez b, Antonio Fernández a, Vicent Cholvi c,*

a Universidad Rey Juan Carlos, 28933 Móstoles, Spain
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Abstract

In this paper, we present an algorithm that can be used to implement sequential, causal, or cache consistency in distributed shared
memory (DSM) systems. For this purpose it includes a parameter that allows us to choose the consistency model to be implemented. If
all processes run the algorithm with the same value in this parameter, the corresponding consistency is achieved. (Additionally, the algo-
rithm tolerates that processes use certain combination of parameter values.) This characteristic allows a concrete consistency model to be
chosen, but implements it with the more efficient algorithm in each case (depending of the requirements of the applications). Addition-
ally, as far as we know, this is the first algorithm proposed that implements cache coherence.

In our algorithm, all the read and write operations are executed locally when implementing causal and cache consistency (i.e., they are
fast). It is known that no sequential algorithm has only fast memory operations. In our algorithm, however, all the write operations and
some read operations are fast when implementing sequential consistency. The algorithm uses propagation and full replication, where the
values written by a process are propagated to the rest of the processes. It works in a cyclic turn fashion, with each process of the DSM
system, broadcasting one message in turn. The values written by the process are sent in the message (instead of sending one message for
each write operation): However, unnecessary values are excluded. All this permits the amount of message traffic owing to the algorithm
to be controlled.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Distributed shared memory (DSM) is a well-known
mechanism for inter-process communication in a distrib-
uted environment (Steinke and Nutt, 2004; Manovit and
Hangal, 2005). Roughly speaking, it consists of using read
and write operations for inter-process communication, thus
hiding the particular communication technique employed
by the programmers to avoid the need of involvement in
the management of messages.
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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In general, most DSM protocols support replication of
data in order to increase concurrency. With replication,
there are copies (replicas) of the same variables in the local
memories of several processes of the system, which allows
these processes to use the variables simultaneously. How-
ever, the system must control the replicas when the vari-
ables are updated to guarantee the consistency of the
shared memory. This control can be performed by either
invalidating outdated replicas or propagating the new vari-
able values to update the replicas. When propagation is
used, a replica of the whole shared memory is usually kept
in each process.

An interesting property of any algorithm implementing
a consistency model is how long a memory operation can
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take. If a memory operation does not need to wait for any
communication to finish, and can be completed based only
on the local state of the process that issued it, it is said that
the operation is fast, that is, a most desirable feature. An
algorithm is fast if all its operations are fast. For instance,
one of the most widely known memory models, the causal
consistency model (Ahamad et al., 1995), has been imple-
mented in a fast way on several occasions (Ahamad
et al., 1995; Prakash et al., 1997; Raynal and Ahamad,
1998). On the contrary, it has been shown how another
of the widely known memory models, the sequential (Lam-
port, 1979), cannot be implemented in a fast manner
(Attiya and Welch, 1994). This impossibility result restricts
the efficiency of any implementation of sequential consis-
tency (Raynal, 2002; Raynal and Vidyasankar, 2004).

1.1. Our work

In this paper, we introduce a parametrized algorithm
that implements sequential, causal, and cache consistency
(Cholvi and Bernabéu, 2004), and allows us to change
the model it implements on-line. We now go on to provide
the main reasons to choose these three models of consis-
tency. It has been shown that many practical distributed
applications require competing operations (Attiya and
Friedman, 1992) (i.e., operations that need synchronization
among them). We have chosen to implement the sequential
consistency model because it is the most popular model
proposed that provides competing operations (other than
the atomic consistency model (Misra, 1986), which is more
restrictive). However, it has also been shown that there are
several classes of applications which when executed with
algorithms that implement causal consistency behave as
sequentially consistent (Ahamad et al., 1995; Raynal and
Schiper, 1996). Hence, we have also chosen to implement
the causal consistency model with an algorithm where all
memory operations are fast, thus avoiding the efficiency
problems of sequential consistency algorithms (Attiya
and Welch, 1994). The cache model is also included, even
though it is not as popular, because of the extreme simplic-
ity of its integration into our algorithm and its interest (at
least theoretical) for applications that require competing
operations, but only on the same variable. Furthermore,
and as far as we know, this is the first algorithm proposed
to implement cache consistency.

Our algorithm is implemented by using full propagation
and broadcasts to perform such a task. On one hand, it is
known that propagation is more expensive than invalida-
tion (in terms of network traffic) since, in addition to the
invalidating messages, data must be sent. In turn, by using
invalidation, when a request cannot be locally served
(because the local replica has been invalidated), this leads
to starting a process that will create a new replica, thus
increasing latency. Therefore, each mechanism has its
advantages and drawbacks. However, it must be taken into
account that, in the case of using propagation, the transfer
of data are carried out concurrently with the application
program, and when the memory operations can be immedi-
ately served, the network traffic does not affect the system’s
performance. This occurs in the 100% of cases when the
consistency model is causal or cache, and in the 99% of
the cases when the consistency model is sequential (see
our experimental results in Appendix).

The algorithm works as follows: a write operation is
propagated from the process that issues it to the rest of
processes so that they can apply it locally. However, write
operations are not propagated immediately. The algorithm
works in a cyclic turn fashion, with each process broadcast-
ing one message in turn. This scheme allows a very simple
control of the load of messages in the network, since only
one message is sent by each process in turn. This enables
several write operations to be grouped in a single propaga-
tion message, thus reducing the network load.

When implementing causal and cache consistency, all
the operations in our algorithm are fast. Obviously, this
is not the case for the sequential model (given the results
in Attiya and Welch (1994), we are reminded that the
impossibility of all memory operations being fast is
derived). However, all write operations are always fast even
in the case of the sequential model. Conversely, this does
not occur with read operations, but there is only one situ-
ation where read operations must be non-fast: when the
process that issues that read operation has not issued, since
its last turn, any write operations on the variable being
read, but has issued some write operation on another
variable. In this case, the process must wait until it reaches
its turn.

1.2. Comparison with previous work

From the set of algorithms that implement DSM, two of
them have features similar to those presented in this paper.
In the first one (proposed by Yehuda Afek and Merritt
(1993) for sequential memory), the algorithm also ensures
that write operations will be fast. Additionally, read oper-
ations are fast except for some situations, but these situa-
tions are more general than that in our algorithm, which
makes our algorithm faster. Furthermore, we do not send
each variable update in a single message as achieved in
Yehuda Afek and Merritt (1993) and we can also bound
the number of messages sent. Finally, in Yehuda Afek
and Merritt (1993) it is assumed that there is a communica-
tion medium among all processes (and with the shared
memory) that guarantees the total order among concurrent
write operations. In our case, we have no such restriction
and enforce the order of the operations by using a cyclic
turn technique.

On the other hand, the authors in Raynal and Schiper
(1996) propose an algorithm that implements three consis-
tency models (sequential, causal, and a hybrid between
both models). Such an algorithm can dynamically switch
among these three consistency models. However, there
are a number of differences with the algorithm we propose.
Firstly, their algorithm is designed by separating the
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propagation mechanism from the consistency policy. In our
algorithm on the other hand, the propagation mechanism is
sufficient to maintain the consistency model. Furthermore,
in their implementation, an adaptation of vector clocks is
used (Singh, 1996) (called version vectors) which not only
results in a large waste of memory in each node, but also
in larger messages to be sent through the network. Finally,
this implementation also forces several restrictions to
achieve a total order: (a) two update transactions cannot
be executed concurrently, and (b) no update transaction is
allowed whenever query transactions are ongoing.

The rest of the paper is arranged as follows. In Section 2,
we introduce basic definitions. In Section 3, we introduce
the algorithm we propose. We prove the correctness of
our algorithm in Sections 4–6. In Section 7, we provide
an analysis of the complexity of our algorithm. We show
consistency in Section 8 when not all the processes are exe-
cuting our algorithm with the same parameter. We finally
present our concluding remarks in Section 9.

2. Definitions

In this paper, we assume a distributed system that con-
sists of a set of n processes (each uniquely identified by a
value in the range 0, . . . , n � 1). Processes do not fail and
are connected by a reliable message passing subsystem.
These processes use their local memory and the message
passing system to implement a shared memory abstraction.
This abstraction is accessed through read and write opera-
tions on variables of the memory. The execution of these
memory operations must be consistent with the particular
memory consistency model.

Each memory operation acts on a named variable and
has an associated value. A write operation by process p,
denoted wp(x)v, stores the value v in the variable x. Simi-
larly, a read operation, denoted rp(x)v, reports the value v

stored in the variable x by a write operation to the process
p that issued it. Whenever the process that performs this
operation is of no particular importance, we will simply
will denote them as w(x)v and r(x)v. To simplify the analy-
sis, we assume that a given value is written at most once in
any given variable and that the initial values of the vari-
ables are set by using write operations.

In this paper, we present an algorithm that uses replica-
tion and propagation. We assume each process holds a
copy of the whole set of variables in the shared memory.
When the process that performs the operation is not impor-
tant, we simply denote as xp the local copy of variable x in
process p. Different copies of the same variable can hold
different values at the same time.

We use a to denote the set of read and write operations
obtained in an execution of the memory algorithm.

Now we define an order among the operations observed
by the processes in an execution of the memory algorithm.

Definition 1 (Execution Order). Let op and op 0 2 a. Then
op precedes op 0 in the execution order, denoted op � op 0, if:
(1) op and op 0 are operations from the same process and
op is issued before op 0,

(2) op = w(x)v and op 0 = r(x)v, or
(3) $op00 2 a:op � op 0 � op 0

From this last definition, we also derive the non-transi-
tive execution order (denoted as �nt) as a restriction of the
execution order if the transitive closure (i.e., the third con-
dition) is not applied. Note that if op �nt op 0, then op has
been executed before op 0. Hence, if op � op 0, then op has
also been executed before op 0. If op � op 0, we define by a
related sequence between op and op 0 a sequence of opera-
tions op1, op2, . . . , opm such that op1 = op, opm = op 0, and
opj �nt opj+1 for 1 6 j < m.

We state that ap is the set of operations obtained by
removing all read operations issued by processes other than
p from a. We also say that a(x) is the set of operations
obtained by removing all the operations on variables other
than x from a.

Definition 2 (View). We denote by system view b, process

view bp or it variable view b(x) a sequence formed with all
operations of a, ap or a(x), respectively, such that this
sequence preserves the execution order �.

Note that owing to the existence of operations that are
not affected by the execution order, a lot of sequences on
a, ap or a(x), and not only b, bp or b(x), may preserve �.

We use op! op 0 to denote that op precedes op 0 in a
sequence of operations. By abusing the notation, we will
also use set1! set2, where set1 and set2 are a set of opera-
tions, to denote that all the operations in set1 precede all
the operations in set2.

Definition 3 (Legal View). A view b on a is legal if
"r(x)v 2 a, 9=w(x)u 2 a: w(x)v! w(x)u! r(x)v in b.
Definition 4 (Sequential, Causal or Cache Algorithm).

• An algorithm implements sequential consistency if for
each execution a a legal view of it exists.

• An algorithm implements causal consistency if for each
execution a a legal view of ap exists, "p.

• An algorithm implements cache consistency if for each
execution a a legal view of a(x) exists, "x.
3. The algorithm

In this section, we present the parametrized algorithm A

that implements causal, cache and sequential consistency.
Fig. 1 presents the algorithm in detail. As noted, it is run
with a parameter model, which defines the consistency
model that the algorithm must implement. Hence, the
parameter must take one of the following values causal,
sequential, or cache.

We can see that all the write operations in Fig. 1 are fast.
When a process p issues a write operation wp(x)v, the



Fig. 1. The algorithm A(model) for process p. It is invoked with the parameter model, which defines the consistency model that it must implement.
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algorithm changes the local copy of variable x (denoted by
xp) to the value v, includes the pair (x,v) in a local set of
variable updates (which we call updatesp), and returns con-
trol. This set updatesp will later be asynchronously propa-
gated to the rest of processes. Note that, if a pair with
the variable x was already included in updatesp, it is
removed before inserting the new pair, since it does not
need to be propagated anymore.

Processes propagate their respective updatesp sets in a
cyclic turn fashion, following the order of their identifiers.
To maintain the turn, each process p uses a variable turnp

which contains the identifier of the process whose set must
be propagated next (from p’s view). When turnp = p, pro-
cess p itself uses the communication channels among
processes to send its local set of updates updatesp to the rest
of processes. This is done in the algorithm with a generic
broadcast call, which could be simply implemented by
sending n � 1 point-to-point messages if the underlying
message passing subsystem does not provide a more appro-
priate communication primitive. All this is done by the
atomic task send_updates(), which also empties the set
updatesp. The message sent implicitly passes the turn to
the next process in order (turnp + 1) mod n (see Fig. 2).

The atomic task apply_updates() is in charge of applying
the updates received from another process q in updatesq.
This task is activated whenever turnp = q and the set upda-

tesq is in the receiving buffer of process p. Note that, when
implementing sequential and cache consistency, after a
local write operation has been performed in some variable,
this task will stop applying the write operations on the
same variable from other processes. That allows the system
to ‘‘view’’ those writes as if they were overwritten with the
write value issued by the local process.

Read operations are always fast with causal and cache
consistencies. When implementing sequential consistency,
a read operation rp(x) is fast unless updatesp contains a pair
with a variable different to x. That is, the read operation is
not fast only if process p, since the most recent time it took



Fig. 2. Cyclic turn fashion.
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its turn, has not issued write operations on x, but has
issued write operations on other variables. In this case,
and only in this case, it is necessary to delay such a read
operation until turnp = p for the next time (see Fig. 3).
Otherwise, if process p issues wp(x)v (and the pair (x,v) is
included in p’s update queue) then, according to the algo-
rithm, all subsequent read operations issued by p on x will
return v (note that a pair (x,u) broadcasted from another
process is only applied by p if (x,Æ) 62 updatesp). Therefore,
the algorithm can return immediately v, instead of delaying
the read operation. As it will be formally justified later, this
’’interpretation’’ of the execution still allows to find a
sequence b that preserves the order � and is legal (which
are the conditions to have a sequential execution). On the
contrary, if wp(x)v does not exist, then the subsequent read
operation does not know, in advance, which will be the
write operation on the same variable that will immediately
precede it, and hence, has to wait until turnp = p. Note that
this condition is the same as the condition to execute the
task send_updates(). We enforce a blocked read operation
to have priority over the task send_updates(). Hence,
when turnp = p, a blocked read operation finished before
send_updates() is executed.

We have labeled the code of the read operation as
atomic because we do not wish it to be executed while
the variable updatesp is manipulated by some other task.
However, if the read operation blocks, other tasks are free
to access the algorithm variables. In particular, it is neces-
sary that apply_updates() updates the variable turnp for the
operation to finish eventually.
Fig. 3. An example of a ‘‘no
4. A(causal) implements causal consistency

In this section, we show that Algorithm A, executed with
the parameter causal, implements causal consistency. In the
rest of this section we assume that a is the set of operations
obtained in the execution of Algorithm A(causal), and ap is
the set of operations obtained by removing all read opera-
tions issued by processes other than p from a.
Definition 5. The ith writes of process q, denoted writesi
q,

i > 0, is the sequence of all write operations of process q in
ap, in the order they are issued, after send_updates() is
executed for the ith time in this process q, and before it is
executed for the i + 1st time.

To simplify, we assume that no write operation is issued
by any process before it executes send_updates() for the first
time. This allows us to consider writes0

p as the empty
sequence. Observe in A(causal) that the i + 1st updatesq

broadcasted by process q contains, for each variable, the
last (if any) write operation in writesi

q on that variable.
Then, we construct a sequence bp which we will show in

the following lemmas that preserves � and is legal.
Definition 6. We denote bp to the sequence formed with all
operations of ap as follows. Given the sequence of
operations issued by p, in the order they are issued, we
insert the sequence writesi

q in the sequence point at which
apply_updates() is executed with the updatesq for the i + 1st
time, for all q 5 p and i P 0.
n-fast’’ read operation.
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Since the execution of apply_updates() is atomic, it does
not overlap any of the operations issued by p, and the
placement of every sequence writesi

q can be easily found.

Lemma 1. Let op and op 0 be two write operations in ap

issued by different processes. If op � op 0, then op! op 0 in

bp.

Proof. From Definition 1, we know there is a related
sequence of operations op1, op2, . . . , opm such that
op1 = op, opm = op 0, and opj �nt opj+1 for 1 6 j < m. This
sequence can be divided into r subsequences of operations,
s1, . . . , sr, such that the operations in each subsequence si

are issued by the same process, the first operation of s1 is
op, the last operation of sr is op 0, and the last operation
of si writes the value read by the first operation of si+1

for two consecutive subsequences si and si+1. From Algo-
rithm A(causal) it can be seen that the last operations of
two consecutive subsequences si and si+1, i 6 r � 1, belong
to sequences writei

q and writej
s (from Definition 6) in such a

way that either j > i, or j = i and s > q. Then, op! op 0 in
bp. h

Lemma 2. bp preserves the order �.

Proof. Let op and op 0 be two operations of bp so that
op � op 0. Let us assume by way of contradiction that
op 0 ! op.

Case 1. op and op 0 are issued by the same process. Let us
assume that they are issued by process q. Recall that ap

only contains write operations of a process different to p.
From Definition 5, if op 0 ! op it is because op 0 is executed
before op. However, we know from Definition 1 that if
op � op 0, op must be executed before op 0. Hence, we reach a
contradiction. Similarly, let us assume that op and op 0 are
issued by p. From Definition 6, if op 0 ! op is because op 0 is
executed before op; but, from Definition 1, if op � op 0, then
op must be executed before op 0. Hence, we also reach a
contradiction.

Case 2. op and op 0 are issued by different processes.
First, let us suppose that op and op 0 are operations issued
by processes other than p, with differences between them.
Then, as ap only contains read operations of process p, op

and op 0 must be write operations. Therefore, from Lemma
1, op! op 0, and we reach a contradiction.

Now, let us suppose that op is a read operation issued by
p, and, as ap only contains write operations of processes
other than p, op 0 must be a write operation of a process
different to p. We know that if op � op 0, we have a related
sequence op = op1 �nt op2 �nt, . . . , �nt opn = op 0 = w(y)v.
If opi is the first write operation after op then, from
Definition 1, opi has to be issued by p, and op has to be
issued before opi. Therefore, from Definition 6, op! opi,
and, from Lemma 1, opi! op 0. Hence, op! op 0, and a
contradiction is reached.

Finally, let us suppose that op 0 is a read operation issued
by p, and, as ap only contains write operations of processes
other than p, so op must be a write operation of a process
different to p. We know that if op � op 0, we have a related
sequence op = op1 = w(x)v �nt, . . . , �nt opn�1 �nt op 0. If
opj = wq(y)v is the last write operation before op 0, from
Definition 1, opj has to be executed before op 0. With
Algorithm A(causal), it is implied that opj is propagated to
process p before op 0 is issued. This is because apply_up-

dates() is executed in process p with updatesq containing opj

before op 0 is issued. Therefore, we obtain opj! op 0 from
Definition 6, and op! opj from Lemma 1. Hence,
op! op 0, and a contradiction is reached. h
Lemma 3. bp is legal.

Proof. Let us assume, by way of contradiction, that bp is
illegal because op 0 = wq(x)u! op00 = ws(x)v! op = rp(x)u
exists in bp. We know, from Definition 6, that if op 0 pre-
cedes op00 and op00 precedes op, then in process p we find:
firstly, op 0 is issued (or applied if q 5 p), next, op00 is issued
(or applied if s 5 p), and finally, op is issued. From Algo-
rithm A(causal) we can see that, owing to these write oper-
ations op 0 and op00, the local copy xp of x will have the value
u and will later take the value v. We can also see that in
A(causal) a read operation always returns the value of
the local copy of a variable. It is not therefore possible to
have op in bp after op00, since it would mean that op would
have found the value v in xp, instead of the value u. Hence,
a contradiction is reached and bp is legal. h

Theorem 1. Algorithm A(causal) implements causal consis-

tency.

Proof. We know from Lemmas 2 and 3 that every execu-
tion of Algorithm A(causal) has a view bp of ap, "p, that
preserves � and is legal. Hence, from Definition 4, Algo-
rithm A(causal) is causal. h
5. A(sequential) implements sequential consistency

In this section, we show that Algorithm A, executed with
the parameter sequential, implements sequential consis-
tency. In the rest of this section we assume that a is the
set of operations obtained with the execution of Algorithm
A(sequential). Any time reference in this section is related
to the time at which the operations of a are executed. We
now firstly introduce some definitions of the subsets of a.

Definition 7. The ith iteration of process p, denoted iti
p,

i > 0, is the subset of a that contains all the operations
issued by process p after send_updates() is executed for the
ith time, and before it is executed for the i + 1st time.

Observe that any operation in iti
p finishes before sen-

d_updates() is executed for the i + 1st time, since all write
and most read operations are fast, and we assume that
blocked read operations have priority over the execution
of send_updates().
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Definition 8. The ith iteration tail of process p, denoted
taili

p, is the subset of iti
p that includes all the operations

from the first write operation (included) until the end of iti
p.

If iti
p does not contain any write operation, then taili

p is the
empty sequence.

Observe that all write operations in iti
p are in taili

p. Fur-
thermore, it is easy to check in A(sequential) that the i + 1st
set updatesp broadcasted by process p contains, for each
variable, the last (if any) write operation in taili

p.

Definition 9. The ith iteration header of process p, denoted
headi

p, is the subset of iti
p that contains all the operations in

iti
p that are not in taili

p.

It should be clear that all the operations in headi
p pre-

cede all the operations in taili
p in the execution of A. We

now use the time instants sets received from other processes
which are applied to partition the sequence headi

p. Note
that between the ith and the i + 1st execution of send_
updates() by p (which defines the operations that are in
iti

p, and hence in headi
p) the task apply_updates() is executed

n � 1 times, with sets from processes (p + 1) mod -
n, . . . , n � 1, 0, . . . , (p � 1) mod n (in this order).

Definition 10. The iteration subheader q of headi
p, denoted

subheadi
p;q, is the subset of headi

p that contains the
following operations.

• If q = p, then subheadi
p;p contains all the operations

issued before apply_updates() is executed with the set
updates(p+1) mod n.

• If q = (p � 1) mod n, then subheadi
p;q contains all the

operations issued after apply_updates() is executed with
the set updatesq.

• Otherwise, subheadi
p;q contains all the operations issued

after apply_updates(messq) is executed with the set upda-

tesq and before it is executed with the set
updates(q+1) mod n.

Clearly, if the first write operation in iti
p is issued before

apply_updates() is executed with the set updatesq, then
subheadi

p;q is the empty sequence (see iti�1
2 in Fig. 4).
Fig. 4. Iterations and slices. We have abbr
To simplify the notation and the analysis, we assume
that no operation is issued by any process before it executes
send_updates() for the first time. This allows us to define,
for any p and q, the sequences it0

p, tail0
p, head0

p, and
subhead0

p;q as empty sets of operations.
With these definitions, we now divide the set of opera-

tions a into slices. This division is done in such a way that
it preserves the order of the execution of a (see Fig. 4).

Definition 11. The ith slice of a, denoted ai, i P 0, is the
subset of a formed by the sets of operations taili

p; 8p,
subheadi

p;q; 8p; q : p > q, and subheadiþ1
p;q ; 8p; q : p < q.

Note that, if we consider a0 the first slice, every opera-
tion in a is in one and only one slice. There are subheaders
of iteration 0 that are not assigned to any slice, but since
they are empty by definition, they do not need further
consideration.

The slice is the basic unit that we will use to define the
sequential order that our algorithm enforces. We hereby
present the sequential order for each slice separately. The
order for the whole execution is obtained by simply concat-
enating the slices in their numerical order. To complete this
sequential order however, we still need to define an order
into each subset of operations in tails and subheads that
constitute the slice ai. Thus, from now onward in the rest
of this section, we assume that the operations in any
taili

p and subheadi
q;p are placed into order as they were

issued by process p. Hence, we define the sequence bi which
contains all the operations of the slice in the sequential
order, for each slice ai.

Definition 12. Sequence bi is obtained by placing the
operations into each taili

p and subheadj
p of ai in the order

as they were issued by process p, and by concatenating the
set of tails and subheads of ai as follows:

taili
0 ! subheadiþ1

0;0 ! subheadi
1;0 ! subheadi

2;0

! . . .! subheadi
n�1;0 !

taili
1 ! subheadiþ1

0;1 ! subheadiþ1
1;1 ! subheadi

2;1

! . . .! subheadi
n�1;1 !

� � �
eviated tail with t and subhead with s.
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taili
p ! subheadiþ1

0;p ! . . .! subheadiþ1
p;p

! subheadi
pþ1;p ! . . .! subheadi

n�1;p !
� � �
taili

n�1 ! subheadiþ1
0;n�1 ! subheadiþ1

1;n�1

! subheadiþ1
2;n�1 ! . . .! subheadiþ1

n�1;n�1

In fact, this is only one of the many ways to order the
sequences of the slice to obtain a sequential order. All
the subheaders that appear in the same line above could
be permuted in any possible way, since they only contain
read operations and each contains operations from a differ-
ent process. We chose the above order for simplicity.

We now go on to define the sequence b.

Definition 13. bis the sequence of a obtained by the
concatenation of all sequences bi in order (i.e.,
bi! bi+1, "i P 0).

From the above definitions, we find that taili
p ! tailj

q if
and only if either i < j or i = j and p < q. This is exactly the
order in which the sets associated with each tail are pro-
cessed and applied in the algorithm.

In the following Lemmas, we show that b is in fact a
view that preserves the order � and is legal.

Lemma 4. b preserves the order �.
Proof. Let op and op 0 be two operations of b in such a way
that op � op 0. From Definition 1, we know that there is a
related sequence of operations op1, op2, . . . , opm so that
op1 = op, opm = op 0, and opj �nt opj+1 for 1 6 j < m. If b
preserves �, then opj! opj+1, "j, and, hence, op! op 0.
We consider several cases.

Case 1. opj and opj+1 are operations issued by the same
process. If from Definition 1, opj � opj+1, then opj must be
issued before opj+1. Therefore, it is easy to check from the
above definitions of b and bi that operations from the same
process appear in the same order in b as they were issued.
Then, opj! opj+1, "j. Hence, op! op 0.

Case 2. opj and opj+1 are a write operation and a read
operation, respectively, issued by different processes. Let us
assume, from Definition 1, that opj = wq(x)u and
opj+1 = rs(x)u. We know that if opj � opj+1, then opj must
be executed before opj+1. From Algorithm A(sequential)
and from the above definitions of b and bi, we can see that
opj always belongs to taili

q. We have two possibilities: (a)
opj+1 belongs to subheadj

s;l, i < j, or if i = j q 6 l; or (b)
opj+1 belongs to tailj

p, i < j. In both cases, opj! opj+1, "j.
Hence, op! op 0. h
Lemma 5. b is legal.

Proof. Let us suppose that op 0 = w(x)v! op = r(x)v exists
in b. From Definition 3, b is legal if 9= op00 = w(x)u 2 a so
that op 0 ! op00 ! op in b. Therefore, this is equivalent of
saying that b is legal if op = r(x)v in b for every read oper-
ation, the nearest previous write operation in b on the var-
iable x is op 0 = w(x)v.

Let us assume that op is issued by process p. Firstly,
note that the order in which the iteration tails appear in b
is exactly the order imposed by the token passing
procedure. Then, in p, the order in b reflects the exact
order in which the sets updatesq are applied in the local
memory of p. The only exceptions are the sets updatesp,
since the write operations of p itself, are applied in its
local memory immediately, and do not wait until p holds
the token. However, also note that any update from
other processes on a variable written locally is not
applied (see apply_updates()). This gives the idea that the
local write operations have in fact been applied at the
time of p’s token possession. Then, we can consider
several cases.

Case 1. Both op and op 0 belong to the same iteration tail
taili

p. When issued by p, op 0 sets the value of the local copy
xp of x. After op 0 is executed, (x,Æ) 2 updatesp, and no
update applied from other process changes this value (see
apply_updates()). Hence, if op returns the value v it is
because op 0 wrote the value v in x.

Case 2. op belongs to an iteration subheader subheaderi
p;q.

The value v returned by op is the value of xp after applying
the write operations locally in the following tails:

• If p > q, tailj
r for each j < i, and for each r 6 q when j = i.

• If p 6 q, tailj
r for each j < i � 1, and for each r 6 q when

0 j = i � 1.

These are the tails that precede subheaderi
p;q in b As

already mentioned, these tails are applied in the order they
appear in b. Then, v has to be the value written by the
nearest write operation on x that precedes op in b, which by
definition is op 0.

Case 3. op belongs to an iteration tail taili
p, while op

belongs to a different iteration tail. Then the read opera-
tion op was issued when p had already issued a write
operation (since it belongs to a tail) on a variable different
to x (by definition of op 0). Then, op was blocked until the
token was assigned to p. The value v returned by op is
the value of xp after applying the write operations locally in
the tails tailj

q for each j < i and for each q < p when j = i,
which are the tails that precede taili

p in b. As stated
previously, these tails are applied in the order they appear
in b. Then, v has to be the value written by the nearest write
operation on x that precedes op in b, which by definition is
op 0.

Thus, in the above three cases we have shown that
op 0 = w(x)v is the nearest write operation on variable x

previous to op = r(x)v in b. Hence, b is legal. h

Theorem 2. Algorithm A(sequential) implements sequential

consistency.

Proof. From Lemmas 4 and 5, every execution of Algo-
rithm A(sequential) has a view b of a that preserves the
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order � and is legal. Hence, from Definition 4, Algorithm
A(sequential) is sequential. h
6. A(cache) implements cache consistency

In this section, we show that Algorithm A, executed with
the parameter cache in each process, implements cache con-
sistency. In the rest of this section, we assume that a is a set
of operations produced in the execution of Algorithm
A(cache), and a(x) is a set of operations formed by all
the operations in a on the variable x.

The proof of correctness follows the same lines as the
proof of correctness for A(sequential), but on a(x) instead
of a. First, we define the sequences itðxÞip, tailðxÞip,
headðxÞip, subheadðxÞip;q, and the slice a(x)i of a(x). Then
we construct the sequence b(x) from these sequences simi-
larly to how sequence b was defined in Section 5. A version
for b(x) of Lemma 4 is directly derived. Case 3 disappears
in a version for b(x) of Lemma 5 with the above sequences.
Hence, we see that b(x) is a view of a(x) that preserves the
order a and is legal. Since this is true for any variable x, we
obtain the following theorem.

Theorem 3. Algorithm A(cache) implements cache consis-
tency.
Proof. From Lemmas 4 and 5 (but only with operations of
a(x)), every execution of Algorithm A(cache) has a view
b(x) of a(x), "x, that preserves the order � and is legal.
Hence, from Definition 4, Algorithm A(cache) is cache. h
7. Complexity measures

7.1. Worst-case response time

In this section, we consider that local operations are exe-
cuted instantaneously (i.e., in 0 time units) and that any
communication takes d time units. In Algorithm A exe-
cuted with either parameter causal or cache all operations
are executed locally, while all write and some read opera-
tions are also executed locally with the parameter sequen-

tial. Therefore, the response time for them is always 0.
Let us now consider a read operation that is blocked in

Algorithm A(sequential). We will consider the worst case to
obtain the maximum response time for such a read opera-
tion. This can happen if the operation blocks (almost)
immediately after the process that issued it sent a message.
Then, the read operation will be blocked until this process
takes its turn again, which can take up to n message trans-
missions. Therefore, a process will have to wait nd time
units for the worst case.

The previous analysis assumes that the messages are
never delayed in the processes. However, the protocol
allows the processes to control when messages are sent.
For instance, it is possible for a process p, when turnp = p,
to wait a time T before executing its task to send
send_updates() (see Fig. 1). Thus, we can reduce the number
of messages sent by this process per unit of time. Obvi-
ously, this can increase the response time since in this case
the delay time of a message sent by p, in the worst case, will
be T + d.

7.2. Message size

It is easy to check in Fig. 1 that the size of the list upda-

tesp of process p depends on the number of write operations
performed by p during each round, which can be very high.
However, the number of pairs (x,v) in updatesp will be the
same as the number of shared variables, since we only hold
at most one pair for each variable, at the most.

The bound obtained may seem extremely bad. However,
note that the real number of pairs in a set updatesp actually
depends on the frequency f of write operations and the
rotation time nd. Hence, if every millisecond we have a
write operation on a variable in a system with 100 pro-
cesses and with 1 ms of delay, we will have 100 pairs in
the set updatesp broadcasted at the most, which is a reason-
able number.

Furthermore, note that most algorithms that implement
propagation and full replication send a message for every

write operation performed. This would mean that 100 mes-
sages would have to be sent. With our algorithm, only one
pair per variable is sent, and all of them are grouped into
one single message. With the overhead per message in
current networks, this implies a significant saving in
bandwidth.

7.3. Memory space

Finally, note that we do not require the communication
channels among processes to deliver messages in order.
Hence, a process could have received messages that are
held until the message from the appropriate process
arrives. It is easy to check that the maximum number of
messages that will ever be held is n � 2.

8. Consistency in A with different parameters

In this section, we show that Algorithm A, executed in
some processes with the parameter sequential and with
parameter causal in the rest of processes, implements causal
consistency. In this section, we also prove that if there are
processes executing A(sequential) and others A(cache), then
Algorithm A implements cache consistency.

In this part of this section, we assume that a is the set of
operations obtained in the execution of Algorithm
A(sequential) and Algorithm A(causal), and ap is the set
of operations obtained by removing all read operations
issued by processes other than p from a.

Theorem 4. Algorithm A implements causal consistency
when some processes execute A(sequential) and the rest

A(causal).
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Proof. As seen in Fig. 1, A(causal) and A(sequential) have
the same mechanism to propagate the write operations.
Besides, read operations are always performed locally in
both algorithms (without generating messages) in the pro-
cess where they were issued.

It should be remembered that a sequence bp is formed
with every write operation issued by any process and with
every read operation issued only by process p. Hence, from
the point of view of each process executing A(causal), the
existence of processes executing A(sequential) neither
includes nor modifies the set of operations ap to order in
bp different to other process executing A(causal). There-
fore, if we now construct bp for each process p executing
A(causal), as we did in Definition 6, bp will remain legal
and preserve the order �.

In the following two definitions, we redefine bp for each
process p that executes A(sequential). We will then show
that this new sequence bp preserves � and is legal.

For construct bp we use the notation of slice from
Section 5. However, from this point onward, we use ap

instead of a to see how the set of operations of ap is divided.
We also use writesi

p and subheadi
p;q as we defined in

Sections 4 and 5, respectively, to see how the set of
operations of ai

p is ordered.

Definition 14. The ith slice of ap, denoted ai
p, i P 0, is the

subset of ap formed by the sets of operations writesi
q; 8q,

subheadi
q;p; 8q : q > p, and subheadiþ1

q;p ; 8q : q < p.

bi
p denotes the sequence of all operations of the slice ai

p,
and bp denotes the sequence of ap formed by the concatena-
tion of bi

p in an increasing numerical order.

Definition 15. The sequence bi
p, "p executing A(sequential),

is obtained by ordering the operations into each
writesi

p and subheadj
p of ai

p in the order as they were issued
by process p, and by concatenating the set of writes and
subheads of ai

p as follows:

writesi
0 ! subheadi

p;0 !

writesi
1 ! subheadi

p;1 !

� � �

taili
p ! subheadiþ1

p;p !

� � �

writesi
n�1 ! subheadiþ1

p;n�1

Definition 16. The sequence bp, "p executing A(sequential),
is the sequence of a obtained by the concatenation of all
sequences bi

p in order (i.e., bi
p ! biþ1

p ; 8i P 0).

By comparing Definitions 12 and 15, we see that bi
p is the

same sequence as bi (and, therefore, bp and b) but with the
following two differences:

• writesi
q, q 5 p, is the same sequence as iti

q where we have
removed every read operation issued by q.
• We have removed every subhead with operations other
than process p. That is to say, every subheadj

q;n such as
q 5 p, j = i or j = i + 1, and "n.

As shown, we have constructed bp in a similar way to the
sequence b that was defined in Section 5. Then, all the oper-
ations belonging to bp are in the same order as in the def-
inition of b, and a version for bp of Lemma 4 is directly
derived. Hence, bp preserves the order �.

Similarly, we know that all the write operations which
are in bp are in the same order as in the definition of b.
Then, a version for bp of Lemma 5 is also directly derived.
Hence, bp is legal.

Thus, we have for each process p executing A(causal) a
bp is formed as described in Section 4. A bq is also formed
for each process q executing A(sequential), as in Definition
16. As in both cases, bp is legal and preserves �, and we can
affirm that A implements causal consistency when there are
processes executing A(sequential) and others A(causal).
h

In this part of this section, we assume that a is the set of
operations obtained in the execution of Algorithm
A(sequential) and Algorithm A(cache), and a(x) is the set
of operations of a on variable x.

Theorem 5. Algorithm A implements cache consistency when

some processes execute A(sequential) and the rest A(cache).

Proof. We can see in Fig. 1 that A(cache) and A(sequential)
are the same algorithm except in one case: when a read
operation is not fast. Therefore, they use the same mecha-
nism to propagate the write operations, and read opera-
tions do not add new messages because they are managed
locally in the process where it is invoked.

Hence, from the point of view of each process that
executes A(cache), the existence of processes executing
A(sequential) neither includes nor modifies the set of
operations which are ordered in b(x) and differ from the
other processes that execute A(cache). Therefore, if we now
construct b(x) for each process p that executes A(cache) as
we did in Section 6, b(x) will remain legal and will preserve
�.

Now, we will use the same definition and way of
construction of b(x) from Section 6 for all the processes
that execute A(sequential). Then, the difference between the
sequence b(x) for processes executing A(sequential) with
regard to those executing A(cache) is what happens when a
non-fast read operation occurs. To analyse this case, we use
the same notation from Section 6 to define a slice ai(x), a
tail taili

pðxÞ, and a subhead subheadj
q;pðxÞ. Then, let us

assume that a non-fast read operation occurs in a process p

that executes A(sequential) in the slice ai(x). We know, by
the definition of b(x), that this read operation belongs to
taili

pðxÞ. We will also assume that the first operation of

taili
pðxÞ takes place just after subheadj

q;pðxÞ, i = j if q > p, or

j = i + 1 if q 6 p. Hence, in this case, the unique difference



processes FD MM FFT

2 0.47% 0.07% 0.65%

4 0.06% 0.01% 0.05%

8 0.14% 0.01% 0.03%

Fig. A.1. Percentage of blocking read operations per process in
A(sequential).
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with regard to an execution in a process A(cache) is that
each subhead subsequent to subheadj

q;pðxÞ in ai(x) is always
empty. Therefore, as with the sequence b(x) of a process
executing A(cache) from Section 6, a version of Lemmas 4
and 5 for b(x) of a process executing A(sequential) is
directly derived. Hence, b(x) of a process executing
A(sequential) is legal and preserves the order �.

Thus, we have shown for each process p that executes
A(cache) or A(sequential) that there is a b(x), "x, formed as
described in Section 6, such that the order � is preserved
and is legal. Therefore, A implements cache consistency
when processes executing A(sequential) and others
A(cache), exist. h
9. Conclusions and future work

In this paper, we have presented a parametrized algo-
rithm that implements sequential, causal, and cache consis-
tency in a distributed system. To our knowledge, this is the
first algorithm that implements cache consistency.

The algorithm presented in this paper guarantees fast
operations in its causal and cache executions. It is proven
in Attiya and Welch (1994) that it is impossible to obtain
a sequential algorithm whose total number of operations
are fast. The algorithm presented in this paper guarantees
fast writes in its sequential execution and reduces the reads
to only one case that cannot be executed locally.

By considering possible extensions of this work for the
sequential version, we wish to know how many read oper-
ations are fast in real applications with several system
parameters. Our belief is that most read operations will
be fast. A second line of work deals with the scalability
of the protocol. The worst-case response time is linear in
the number of processes. Hence, it will not scale well, since
it may become high when the system has a large number of
processes. It would be ideal to eliminate this dependency.
Finally, the protocol works in a token passing fashion,
which can prove very risky in an environment with failures,
since a single failure can block the whole system. It would
be interesting to extend the protocol with fault tolerance
features.
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Appendix A. Experimental results

In Section 7, we have seen that the worst-case response
time can be linear in the number of processes. We know
that all memory operations in A are fast except for some
read operations of A(sequential). This worst case can only
occur in blocked read operations under sequential consis-
tency. However, we cannot analytically evaluate how many
read operations block in A(sequential) irrespectively of the
application that uses it. In this section, we evaluate the
number of read operations that actually block during
the executions of three typical parallel processing applica-
tions with our algorithm A(sequential).

Then, we have implemented our algorithm A(sequential)
and the following three typical parallel processing applica-
tions: finite differences for 16,384 · 1024 elements (FD),
Matrix Multiplication of 1600 · 1600 matrices (MM),
and Fast Fourier Transform for 26,2144 coefficients
(FFT). FD and MM have been implemented as in Wilkin-
son and Allen (1999), and FFT as in Akl (1989). We then
executed the resulting system.

The three applications FD, MM and FFT have been
executed in an experimental environment formed by a clus-
ter of 2, 4, and 8 computers connected via a network. Each
computer is a PC running Linux Red-Hat with a 1,5-GHz
AMD CPU and 512 Mbytes of RAM memory. The net-
work that interconnects the computers of the cluster is a
switched, full-duplex 1-Gbps Ethernet. We have imple-
mented one process per computer and the messages have
been restricted to carry at most 100 write operations. The
language used was C with sockets with the UDP/IP proto-
cols for computer intercommunication.

Fig. A.1 shows the percentage of read operations that
block in each process in relation to the total number of
read operations issued by the process when FD, MM and
FFT have been executed using A(sequential) in our experi-
mental environment. As we can observe, almost all read
operations are fast for each case.
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Cholvi, V., Bernabéu, J., 2004. Relationships between memory models.
Information Processing Letters 90 (2), 53–58.

Lamport, L., 1979. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers 28
(9), 690–691.
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