
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 1824–1831
Transforming general networks into feed-forward
by using turn-prohibition q

Juan Echagüe a, Jesús Villadangos b, Vicent Cholvi a,*, Manuel Prieto b

a Universitat Jaume I, Campus del Riu sec, 12071 Castellón, Spain
b Universidad Pública de Navarra, Campus de Arrosadı́a, 31006 Pamplona, Spain

Received 3 March 2007; received in revised form 27 November 2007; accepted 28 November 2007
Available online 8 December 2007
Abstract

The issue of breaking cycles in communication networks is an important topic for several reasons. For instance, it is required when trans-
parent bridges are filling the forwarding tables. It is also needed to prevent the occurrence of deadlocks caused by certain routing protocols.
Furthermore, most of the techniques used to work with communication networks can only be applied if the network topology is free of cycles.

We present a distributed protocol which, applied to any network topology, provides a cycle-free topology. Our approach is based on
the prohibition of only certain turns in the network. In contrast to previous proposals, our protocol is fully distributed, and thus does not
require nodes to have knowledge of the global network topology. Furthermore, it allows multiple nodes to initiate the protocol in an
independent manner. This feature can be used to cope with new nodes entering the system, as well as with nodes leaving it (voluntarily
or due to a failure). We provide a detailed description of our proposal, formal proof of correctness, and an analysis of its performance.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Cycle-free networks; Feed-forward networks; QoS routing
1. Introduction

The problem of breaking cycles in communication net-
works is an issue that has been broadly addressed, since
it offers several important benefits:

• It prevents broadcast packets from circulating forever in
the network (note that Ethernet packets do not have a
TTL field and switches are not allowed to modify the
headers).

• It also guarantees that, provided the total load injected
at each link does not exceed the link rate, the network
will be stable [1,2]. That is, the number of undelivered
packets in the network can be bounded.
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.11.019

q A preliminary version of this paper appeared in the Proceedings of the
International Workshop on QoS Routing, 2004. This work has been
partially supported by the CICYT under Grant TSI2004-02940 and by
Bancaixa under Grant P1-1B2003-37.

* Corresponding author. Tel.: +34 964728332.
E-mail address: vcholvi@uji.es (V. Cholvi).
• Furthermore, it precludes the occurrence of deadlocks in
certain networks. For example a deadlock can occur as a
result of using flow control mechanisms in IEEE 802.3x
[3]. Also, deadlocks may arise in cyclic networks if the
wormhole routing protocol is used [4].

• Finally, the application of most of the methods and
techniques used to reason about performance guaran-
tees in current telecommunication networks can only
be applied if the links in the network are unable to form
cycles [5,6]. Clearly, since real networks are generally
not free of cycles, this severely restricts direct applica-
tion of the above mentioned theories.

Taking the above mentioned reasons into account and
in order to avoid the problems that are associated with
the existence of cycles, a natural solution is to restrict the
use of the network in such a way that it becomes impossible
to create any cyclic dependency.

A simple approach to transform any network topology
into a cycle-free network topology is to construct a spanning
tree and prohibit the use of links not belonging to the span-

mailto:vcholvi@uji.es

J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831 1825
ning tree. However, although a spanning tree maintains
graph connectivity, it is quite inefficient since it prohibits
the use of a high percentage of links and increases the traffic
in the links close to the spanning tree’s root node [7,8].

A more scalable approach is not to prohibit the use of
complete links, but only of certain turns, where a turn is
defined as a triplet of nodes connected by two links. A pro-
hibited turn ða; b; cÞwould forbid the forwarding of a packet
from link ða; bÞ to link ðb; cÞ (and from link ðc; bÞ to link
ðb; aÞ). The main idea is to break all the cycles in the network
through the prohibition of carefully selected turns. Although
routing protocols are usually not equipped to handle forbid-
den turns, protocols such as Turnnet [9] make it possible to
transform an arbitrary network with no prohibited turns
into a new one without prohibited turns, without raising
the routing complexity in an unacceptable manner. This
allows us to use arbitrary routing schemes.

In this paper, by following the turn-prohibition approach,
we propose a protocol that guarantees that the resulting net-
work topology will be free of cycles (i.e., feed-forward). On
the contrary to previous proposals, our protocol is fully dis-
tributed, and does not require nodes to have global knowl-
edge of the network topology. Furthermore, it allows
multiple nodes to initiate the protocol in an independent
manner, even at the same time. This feature can be used to
cope with new nodes entering the system, as well as with
nodes leaving the system (voluntarily, or due to a failure).

The rest of the paper is arranged as follows. In Section 2,
we introduce the proposed protocol, and describe how it
works. In Section 3, we prove the correctness of the above
mentioned protocol, and bound the maximum number of
prohibited turns. An experimental evaluation is carried out
in Section 4. Finally, in Section 5 we present our conclusions.
2. The DMITP protocol

In this section, we present a distributed protocol that
uses the turn-prohibition mechanism to transform any net-
work topology into an equivalent feed-forward topology.
We call it the Distributed Multiple Initiator Turn-Prohibi-

tion protocol ðDMITPÞ. In contrast to centralized solutions,
where a single node performs all the actions, and broad-
casts the resulting topology after completion [10,11],
DMITP works in a distributed fashion, forbidding turns
while carrying out the network exploration.
2.1. Definitions and notation

We model the network topology as a graph G ¼ ðV ;EÞ
consisting of a set of vertices V and a set of edges E. Ver-
tices represent network nodes and edges represent bidirec-
tional links. The terms node and vertex, and link and edge
are used interchangeably. We denote a link between node i

and j as ði; jÞ. A path is defined as a list of nodes
ði; j; k . . . ; pÞ, such that adjacent nodes are connected by a
link. We say that a path forms a direct cycle if it contains
the same edge at least twice. Note that a path may traverse
the same node several times without creating a cycle.

Algorithm 1. Code of initiate DMITP iðtÞ
1. IDi ði; tÞ {IDi consists of a pair of values ði; tÞ,

where i denotes the node that started the instance,
and t is the time at which the instance was started.
Identifiers are ordered according to the instance time,
breaking ties by using the node’s name. Initially ði; 0Þ
for all i}

2. fatheri i {fatheri stores the father of node i. Here,
we mark node i as an initiator. Initially nil}

3. exploredi true {exploredi is a Boolean variable that
takes the value true when node i has been explored
(i.e., it has received a GO message). Initially takes
the value false}

4. outi selectðV iÞ {V i is the set of neighbors of node i.
selectðSÞ returns a node randomly selected from S}

5. eNodesi outi {eNodesi contains the set of nodes that
have sent/received a GO message to/from node i. Ini-
tially ;}

6. send ½GO; IDi; ;� to outi {Start the exploration}

A pair of input–output links around a node is called a
turn. We represent a turn around node j by a triplet
ði; j; kÞ, where i; j; k 2 V and ði; jÞ; ðj; kÞ 2 E. The prohibi-
tion of turn ði; j; kÞ means that no path can contain the
sublists ði; j; kÞ or ðk; j; iÞ. That is, no path can traverse
link ðj; kÞ after traversing ði; jÞ and vice versa. We are
not considering the turns comprising the same link (i.e.,
ði; j; iÞ).

Algorithm 2. Code executed at node i on the reception of
message ½GO; d;Q� from node j

1. if ðIDi < idÞ then

2. eNodesi ;;
3. exploredi false;
4. append ðj; iÞ to LðQÞ;
5. eNodesi eNodesi [j;
6. end if
7. if ðexploredi ¼ falseÞ then

8. IDi id;
9. exploredi true;

10. fatheri j;
11. outi selectðV i � eNodesiÞ;
12. if ðouti 6¼ ;Þ then

13. eNodesi eNodesi [outi;
14. send ½GO; IDi;Q� to outi;
15. else

16. send ½DONE;Q� to fatheri;
17. end if

18. else

19. eNodesi eNodesi [j;
20. send ½BACK;Q� to j

21. end if

1826 J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831
2.2. Description of the protocol

In our proposal, any node can initiate the protocol, at
any time, by executing the function initiate DMITP iðtÞ,
where i denotes the initiating node and t is the time1 at
which the function is invoked (see Algorithm 1).

The main body of the protocol is made up of the actions
associated with the reception of three types of messages:
GO, BACK and DONE. The GO message is in charge of per-
forming network exploration (see Algorithm 2). The BACK
message is sent as a reply to a GO message when a cycle has
been detected (see Algorithm 3). Finally, the DONE mes-
sage is used to turn back when a part of the network has
finished being explored (see Algorithm 4).

The core structure used throughout the execution of the
protocol is formed by a set of pairs of the type
Q � ðLðQÞ; T ðQÞÞ (where LðQÞ is the set of already explored
links and T ðQÞ is a set of forbidden turns).

In Algorithm 4, the structure Q is used by the function
findTurniðQÞ to detect some turns intended to be forbidden in
order to transform the original topology into a feed-forward.
To implement findTurniðQÞ, we first have used a modified ver-
sion of the well-known Floyd’s cycle-finding algorithm [13]
to detect cycles in Q. Then, we extracted the turns in the form
ð�; i; jÞ, with fatherj 6¼ i, that are part of some cycle in LðQÞ
and are not already included in T ðQÞ. These turns are
returned by findTurniðQÞ to be subsequently forbidden.

As it has been stated previously, DMITP can be initiated,
independently, by several nodes, even at the same time.
This can be done without any problem since DMITP is
designed in such a way that, after completion, all nodes
belong to the same instance (see Theorem 1). Furthermore,
this feature can be used to cope with new nodes entering
and leaving the system. In the case of an entering node,
such a node only has to initiate a new instance of the pro-
tocol to create a new feed-forward topology containing it.
Similarly, when a node leaves the system, either voluntarily
or due to a crash, it is only necessary for one of its neigh-
bors to initiate a new instance of the protocol.

Algorithm 3. Code executed at node i on the reception of
message ½BACK;Q� from node j

1. forbid turn ðfatheri; i; jÞ;
2. append ðfatheri; i; jÞ to T ðQÞ;
3. if ðV i � eNodesi ¼ ;) then

4. if ðfatheri 6¼ iÞ then

5. send ½DONE;Q� to fatheri;
6. end if
7. else

8. outi selectðV i � eNodesiÞ;
9. eNodesi eNodesi [outi;

10. send ½GO; IDi;Q� to outi;
11. end if
1 We assume that, in order to be able to compare the different instances

according to their stating time, a distributed clock synchronization

algorithm is used (see for instance [12]).
2.3. Example of application of DMITP

To illustrate how DMITP works, here we provide an
example of application to a simple graph (see Fig. 1),
assuming that there is only one initiator.

Algorithm 4. Code executed at node i on the reception of
message ½DONE;Q� from node j

1. if ðV i � eNodesi ¼ ;Þ then

2. C findTurniðQÞ
3. for all c 2 C
4. forbid turn c;
5. append c to T ðQÞ;
6. end for

7. if ðfatheri 6¼ iÞthen

8. send ½DONE;Q� to fatheri;
9. end if

10. else

11. outi selectðV i � eNodesiÞ;
12. eNodesi eNodesi [outi;
13. send ½GO; IDi;Q� to outi

14. end if
(a) Fig. 1(a) shows the initial scenario, which contains the

following cycles: (0, 1,2,0,1), (0,2,3,0,2) and
(0, 1,2,3,0,1). The protocol is started by node 1, at time
t. The instance identifier is ID1 ¼ ð1; tÞ and Q ¼ ;.

(b) Node 1 sends ½GO; ð1; tÞ;Q� to node 2 through link
(1, 2). Upon receiving such a message, node 2 sets
ID2 ¼ ð1; tÞ, and appends (1, 2) to LðQÞ. Fig. 1(b)
shows the above mentioned action.

(c) Node 2 sends ½GO; ð1; tÞ;Q� to node 3 through link
(2,3). Then, node 3 sets ID3 ¼ ð1; tÞ, appends (2,3)
to LðQÞ and sends ½GO; ð1; tÞ;Q� to node 0.

(d) Node 0 sets ID0 ¼ ð1; tÞ, appends (3,0) to LðQÞ and
sends ½GO; ð1; tÞ;Q� to node 1. Node 1 appends (0,1)
to LðQÞ and, as it has already been explored, it replies
with ½BACK;Q� to node 0, which prohibits the turn (3,
0, 1) and appends (3,0,1) to T ðQÞ. Fig. 1(c) shows the
resulting scenario.

(e) As node 0 still has an unexplored neighbor, it sends
½GO; ð1; tÞ;Q� to node 2. Since node 2 has already
been explored, it also replies with ½BACK;Q�, which
makes node 0 append (2,0) to LðQÞ, forbid the turn
(3, 0, 2) and append (3,0,2) to T ðQÞ. Fig. 1(d) shows
the resulting scenario.

(f) Node 0 has explored all its adjacent nodes, so it sends
½DONE;Q� to its father (i.e., node 3).

As node 3 has already explored all its adjacent nodes, it
checks for undetected cycles by means of the function
findTurn3ðQÞ, finding that there are no cyclic dependencies.
After that, node 3 sends ½DONE;Q� to its father (i.e., node 2).

As node 2 has also explored all its neighbors, it invokes
findTurn2ðQÞ, detecting that there is a cyclic dependency
that can be broken by prohibiting the turn (1, 2,0). There-

[BACK,Q
] (5

)
[G

O,(1
,t),

Q] (4
)

[G
O,(1

,t),
Q] (2

)

[G
O

,(1
,t)

,Q
] (

6)

[B
AC

K,
Q

] (
7)

[GO,(1,t),Q] (3)

[DONE,Q] (8)

[DONE,Q] (10) [D
ONE,Q

] (9
)

[GO,(1,t),Q] (1)

f)

ID2 = (1, t)

father2 = 3

explored2 = true

eNodes2= {1,3,0}

2

ID3 = (1, t)

father3 = 2

explored3 = true

eNodes3= {2,0}

3ID1 = (1, t)

father1 = 3

explored1 = true

eNodes1= {2,0}

1

ID0 = (1, t)

father0 = 3

explored0 = true

eNodes0= {3,1,2}

0

INITIATOR

a)

ID2 = (2, 0)

father2 = nil

explored2 = false

eNodes2= ∅

2

ID3 = (3, 0)

father3 = nil

explored3 = false

eNodes3= ∅

3ID1 = (1, t)

father1 = 1

explored1 = true

eNodes1= {2}

1

ID0 = (0, 0)

father0 = nil

explored0 = false

eNodes0= ∅

0

e)

eNodes2= {1,3,0}

2

31

0

d)

2

3

eNodes1= {2,0}

1

eNodes0= {3,1,2}

0

c)

2

ID3 = (1, t)

father3 = 2

explored3 = true

eNodes3= {2,0}

31

ID0 = (1, t)

father0 = 3

explored0 = true

eNodes0= {3,1}

0

b)

ID2 = (1, t)

father2 = 1

explored2 = true

eNodes2= {1,3}

2

31

0

Fig. 1. Evolution of the execution of DMITP algorithm assuming that there is a single initiator (node 1). Each message has been labeled in order of
occurrence. Within the boxes that represent the nodes, we show the values of the data structures when the algorithm starts and ends, and when they change
as a result of receiving a message. The arcs between links show the forbidden turns.

J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831 1827
fore, node 2 prohibits that turn, appends (1,2,0) to T ðQÞ
and sends ½DONE;Q� to node 1.

Since node 1 is the initiator, it ends the algorithm.
Fig. 1(e) shows the situation described. The resulting topol-
ogy is a cycle-free topology.
We note that, depending on the initiator node and on
the order in which the network is explored, the specific pro-
hibited turns and the number of them may differ. For
instance, if the exploration of nodes had followed the path
(1,2,0,3), instead of (1, 2,3,0), our protocol would have

DMITP
TP
UD
ST

Number of Nodes

Pe
rc

en
ta

ge
 o

f p
ro

hi
bi

te
d

tu
rn

s

25020015010050

100

90

80

70

60

50

40

30

20

10

Fig. 2. Percentage of prohibited turns when varying the number of nodes
(for a fixed network degree of 4).

1828 J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831
forbidden a total of two turns (which is the minimal num-
ber of forbidden turns for transforming this topology into
feed-forward).

3. Analysis of the DMITP protocol

In this section, we present several properties that are sat-
isfied by the DMITP protocol. For the sake of clarity, here
we summarize the results without including formal proofs.
These proofs are deferred to the Appendix.

Perhaps the most important feature that must be shown
when considering a protocol is that it behaves as expected.
In our case, this means that the DMITP protocol must
transform any network topology into a feed-forward topol-
ogy, in such a way that the resulting network has to remain
connected. Theorem 2 provides a formal proof for the first
of these two results (i.e., it shows that the DMITP protocol
transforms any network topology into a feed-forward
topology), while Theorem 3 proves that after applying
the DMITP protocol, the resulting network remains
connected.

At this point, we would like to remark that in the two
theorems mentioned above it was assumed that it was a sin-
gle active instance of the protocol. However, in Theorem 1
we have shown that even when multiple executions of the
DMITP protocol are active at the same time, after comple-
tion, all nodes belong to the same instance, which will be
the greatest. According to the protocol’s behavior, their
different instances work in an independent fashion. In par-
ticular, when an instance arrives at a node, it first checks
whether such a node ‘‘belongs’’ to another active instance
of higher priority (if any). If so, the arriving instance stops
working. Otherwise, it acts as if the node did not belong to
any instance (i.e., it acts as if the new instance were the only
active instance at that node). Clearly, at the very end, the
instance with the highest priority will prevail over the rest,
and the situation will be the same as if only such an
instance were executed. Therefore, simply assuming that
there was a single active instance of the protocol was
enough to prove the correctness of Theorems 2 and 3 in
the general case.

Regarding the performance of the DMITP protocol in
terms of prohibited turns, in Lemma 1 it is shown that
it prohibits only one turn per cycle. Furthermore, the
DMITP protocol also prohibits at most 1

2
of the total num-

ber of turns in the network (see Theorem 4). This is
greater than the optimal bound provided by the protocol
proposed by Starobinski et al. [11], which is a third of the
total number of turns. However, it must be taken into
account that, in contrast to the DMITP protocol, the solu-
tion proposed in [11] is a centralized solution that requires
a global knowledge of the network. The maximum num-
ber of messages and steps taken by any instance of the
protocol clearly depends on the number of edges E of
the network topology where the protocol is executed. Spe-
cifically, it uses at most 2jEj messages and takes 2jEj time
steps (see Theorem 5).
4. Experimental evaluation

In this section, we present an experimental evaluation of
the performance of DMITP . For any particular experiment,
we generate 99 different topologies using the GT-ITM

graph generator [14,15] (33 flat random, 33 hierarchical
and 33 transit-stub), averaging the results with a confidence
interval of 95%. Furthermore, we also compare DMITP
with three well-known cycle-avoidance protocols, namely,
the Spanning Tree [16], the Up/Down [10] and the Turn-
Prohibition [11] protocols.

4.1. First experiment

Our first experiment analyzes how the increase in the
number of nodes affects the percentage of prohibited turns.
We have generated topologies with an average network
degree of 4, varying the number of nodes from 16 to 255.

Fig. 2 shows that DMITP performs much better than the
Spanning Tree, slightly better than the Up/Down and
slightly worse than the Turn-Prohibition (note that,
whereas in relative terms DMITP performs 50% worse than
the Turn-Prohibition, in absolute terms it is less than 5%
worse). However, it must be taken into account that unlike
DMITP which is fully distributed, both the Up/Down and
the Turn-Prohibition are centralized protocols (i.e., they
need to know the whole network topology).

Furthermore, Fig. 2 shows that, although Theorem 4
bounds the maximum number of prohibited turns provided
by DMITP by 50% of the total, in practice it does not
exceed 25%.

4.2. Second experiment

In our second experiment, we analyze how an increase in
the network degree affects the percentage of prohibited
turns for the different turn-prohibition protocols. We have
generated topologies with a fixed number of nodes equal to
120, varying the network degree from 4 to 10.

Fig. 3 confirms that DMITP performs much better than
the Spanning Tree, slightly better than the Up/Down and
slightly worse than the Turn-Prohibition. Furthermore,

DMITP
TP
UD
ST

Network Degree

Pe
rc

en
ta

ge
 o

f p
ro

hi
bi

te
d

tu
rn

s

10987654

100

90

80

70

60

50

40

30

20

10

Fig. 3. Percentage of prohibited turns when varying the network degree
(for a fixed number of nodes of 120).

J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831 1829
Fig. 3 also confirms the observation made in the previous
experiment (i.e., the worst case bound provided by Theo-
rem 4 is never reached in practice).

Overall and as a result of our experimental results, we
have shown that DMITP presents both the advantages of
the Spanning Tree protocol (i.e., it is fully distributed)
and of the Up/Down and Turn-Prohibition protocols
(i.e., it is very efficient).

5. Conclusions

In this paper, a distributed protocol has been presented,
which, when applied to any network topology, transforms
it into a feed-forward, while maintaining network connec-
tivity. The protocol is based on the turn-prohibition mech-
anism, which, as has been shown here, is more efficient
than forbidding the use of complete links. In contrast to
centralized solutions, where a single node performs all
the actions and broadcasts the resulting topology after
completion, DMITP works in a distributed fashion, forbid-
ding the turns while carrying out the network exploration.

An interesting property of DMITP is that several nodes
can initiate it independently, and even at the same time.
This feature can be used to cope with new nodes entering
and leaving the system.

Finally, we evaluated the performance of our algorithm,
showing that it presents both the advantages of the Span-
ning Tree protocol (i.e., it is fully distributed) and of the
Up/Down and Turn-Prohibition protocols (i.e., it is very
efficient).

Appendix. Correctness proofs

Theorem 1. The DMITP protocol guarantees that, after

completion, all nodes will belong to the same instance (which
will be the greatest one), regardless of the number of initiated

instances.

Proof. Assume that multiple initiators start a DMITP exe-
cution and assume, by the way of contradiction, that when
all the executions have finished, not all nodes belong to the
highest instance.
Let i be a node whose current instance is not the highest
one. By taking into account the protocol’s behavior, node i

will eventually receive a GO message from another node with
the highest instance. However, messages with the highest
instance are never discarded (line 1 of Algorithm 2). So, node
i will join the highest instance (line 8 of Algorithm 2) and will
discard any message belonging to a lower instance. This
contradicts our assumption and proves the Theorem. h
Theorem 2. The DMITP protocol transforms any network

topology into a feed-forward topology.

Proof. We perform the demonstration by contradiction.
Assume that after applying the DMITP protocol to a network
topology, it is still possible to create, at least, one cycle. Let
us call it c, and denote as i the first node in c that receives a
GO message (note that in a connected graph, all the nodes,
except the initiator, receive a GO message at least once).

We base our proof on the following two properties:
• Node i will execute findTurniðQÞ, for some Q: Since node
i is the first one in c that receives a GO message, it will
have at least one ‘‘unexplored’’ adjacent node. There-
fore, when it receives a GO message for the first time,
it marks itself as explored (line 10 of Algorithm 2) and
sends a GO message to one of its unexplored adjacent
nodes (line 16 of Algorithm 2), which will mark node i
as its father (line 10 of Algorithm 2). Therefore, node i

will have, at least, one son. However, since each node
eventually receives a DONE message from any of its sons
(i.e., the condition in line 1 of Algorithm 4 is fulfilled),
then node i will execute findTurniðQÞ (line 2 of Algo-
rithm 4). This proves the property.

• When node i executes findTurniðQÞ, LðQÞ already con-
tains the set of links that form c: By contradiction.
Assume that when node i executes findTurniðQÞ, LðQÞ
does not contain a given link l belonging to c. Let us
denote the nodes that connect link l as m and n.
Since node i is the first one in c that receives a GO mes-
sage, then it has necessarily started the exploration pro-
cess (line 14 of Algorithm 2). Furthermore, node i can
execute findTurniðQÞ only if nodes m and n have sent it
a DONE message through link l (line 1 of Algorithm
4). But, in this case, l will be included in LðQÞ, thus
reaching a contradiction.

Therefore, from the two above mentioned properties, we
know that node i will execute findTurniðQÞ and will return a
turn that, once prohibited, will break c (line 4 of Algorithm
4), thus contradicting the initial hypothesis. h
Theorem 3. After applying the DMITP protocol the resulting

network remains connected.

Proof. During any execution of the DMITP protocol, a
spanning tree is configured, which is rooted in the initiator
node, and which contains all the nodes of the system.

1830 J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831
Therefore, by using the links of the spanning tree, connec-
tivity is guaranteed. However, it is necessary to prove that
the DMITP protocol does not forbid any turn belonging to
that spanning tree.

The DMITP protocol performs the prohibition of a turn
(line 1 of Algorithm 3 and line 4 of Algorithm 4) in either
of the following two scenarios:

• Node i receives a BACK message from node j. In this
case the turn ðfatheri; i; jÞ is forbidden. Thus, it has to
be proved that such a turn does not belong to the span-
ning tree. But the spanning tree is formed by the links
where GO and DONE messages have been sent, and this
is not the case for the link ði; jÞ.

• The turns are returned by findTurniðQÞ (line 2 of Algo-
rithm 4). In this case, the forbidden turns will be of
the form ð�; i; jÞ, where, fatherj 6¼ i. Therefore, neither
the link between node i and node j, nor the turn ð�; i; jÞ
belong to the spanning tree. h
Lemma 1. The DMITP protocol prohibits exactly one turn
per cycle in any network topology.
Proof. We know that turns are prohibited either when
detecting a cycle during the network exploration (line 1
of Algorithm 3), or as a result of invoking findTurniðQÞ
(line 4 of Algorithm 4). So, we make a case analysis.

(1) Turns forbidden only during the network explora-
tion: By contradiction. Assume that the same cycle
causes the prohibition of more than one turn during
the network exploration. This implies that during
the exploration at least two nodes of the same cycle
have received a BACK message through the links
involved in the cycle. However, this situation is not
possible, thus reaching a contradiction.

(2) Turns forbidden only by findTurniðQÞ: Any invoca-
tion of findTurniðQÞ will obtain the turns forbidden
by previous invocations and, therefore, it only forbids
one turn per cycle.

(3) Turns forbidden both during the network exploration
and by findTurniðQÞ: In this case, we show that the
same cycle can not cause the prohibition of one turn
during the network exploration, and another turn
during the invocation of findTurniðQÞ. Assume, by
way of contradiction, that a given cycle causes the
prohibition of two turns, one during the network
exploration and the other during the invocation of
findTurniðQÞ. Due to the protocol’s behavior, the first
turn must be forbidden during the exploration.
Therefore, when findTurniðQÞ is invoked, LðQÞ will
already contain such a cycle and its associated turn.
This will prevent findTurniðQÞ from forbidding
another turn to break that cycle. h
Theorem 4. The DMITP protocol prohibits at most 1
2

of the

total number of turns in any network topology.
Proof. By Lemma 1, we have that the DMITP protocol
breaks all cycles of the topology by prohibiting only one
turn per cycle. Here, we will prove that, if we prohibit only
one turn per cycle then, at most half of the total number of
possible turns are prohibited.

The proof is performed by induction on the number of
nodes ðnÞ in the network.

Base case: When n ¼ 1 it is trivially true.
Inductive Hypothesis: Assume that it is true for n ¼ i� 1.

Inductive Step: Now, we add a new node, denoted i,
to the previous network topology.
Regarding the number of new turns,
we have that it is equal to
ðdiðdi � 1ÞÞ=2þ

P
j2V i
ðdj � 1Þ, where

V i denotes the set of neighbors of node i

and dj denotes the degree of node j. The
first component is due to the turns
created by the new node and its neigh-
bors, and the second one due to the
turns where one of the nodes is not in V i.

Taking into account that cycles
that contain node i must include two
of the new turns, then the maximum
number of turns that must be pro-
hibited to break each new cycle isP

j2V i
ðdj � 1Þ=2, which is less than

half of the total number of new turns.
This concludes the proof. h
Theorem 5. Any instance of the DMITP protocol uses, at
most, 2jEj messages and takes 2jEj time steps, E being the

number of edges of the network topology where the protocol

is executed.
Proof. Since the ‘‘token’’ (i.e., the messages of the proto-
col’s execution taken together and in order) is sent once
in each direction through each link, then 2jEj messages
are passed before the protocol terminates, and it takes
2jEj time steps (since each message takes one time unit to
be transmitted). h
References

[1] R.L. Cruz, A calculus for network delay. Part I: Network elements in
isolation, IEEE Transactions on Information Theory 37 (1) (1991)
114–131.

[2] M. Andrews, B. Awerbuch, A. Fernandez, T. Leighton, Z. Liu, J.
Kleinberg, Universal-stability results and performance bounds for
greedy contention-resolution protocols, Journal of the ACM (2001)
39–69.

[3] M. Karol, S. Golestani, D. Lee, Prevention of deadlocks and livelocks
in lossless backpressured packet networks, IEEE/ACM Transactions
on Networking 11 (6) (2003) 923–934.

[4] J. Duato, A necessary and sufficient condition for deadlock-free routing
in cut-through and store-and-forward networks, IEEE Transactions on
Parallel and Distributed Systems 7 (8) (1996) 841–851.

[5] B. Haverkort, Performance of Computer Communication Systems: A
Model-Based Approach, John Wiley & Sons, 1999.

J. Echagüe et al. / Computer Communications 31 (2008) 1824–1831 1831
[6] C. Chang, Performance Guarantees in Communication Networks,
Springer-Verlag, New York, 2000.

[7] L. Bosack, C. Hedrick, Problems in large LANs, IEEE Network 2 (1)
(1988) 49–56.

[8] Metro ethernet networks – a technical overview, Metro Ethernet Forum White
Paper. Available from: <http://www.metroethernetforum.org> (2002).

[9] M. Fidler, G. Einhoff, Routing in turn-prohibition based feed-
forward networks, in: Networking, LNCS, vol. 3042, 2004, pp.
1168–1179.

[10] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T.
Rodeheffer, Autonet: A high-speed, self-configuring local area
network using point-to-point links, IEEE JSAC 9 (8) (1991)
1318–1335.
[11] D. Starobinski, M. Karpovsky, L. Zakrevski, Application of network
calculus to general topologies using turn-prohibition, IEEE/ACM
Transactions on Networking 11 (3) (2003) 411–421.

[12] H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simu-
lations and Advanced Topics, Wiley and Sons, 2004.

[13] R.W. Floyd, Nondeterministic algorithms, Journal of the ACM 14 (4)
(1967) 636–644.

[14] K. Calvert, M. Doar, E.W. Zegura, Modeling internet topology,
IEEE Communications Magazine 35 (6) (1997) 160–163.

[15] E.W. Zegura, K. Calvert, J. Donahoo, A quantitative comparison of
graph-based models for internet topology, IEEE/ACM Transactions
on Networking 5 (6) (1997) 770–783.

[16] R. Perlman, Interconnections, Addison-Wesley, 2000.

http://www.metroethernetforum.org

	Transforming general networks into feed-forward by using turn-prohibition
	Introduction
	The DMITP protocol
	Definitions and notation
	Description of the protocol
	Example of application of DMITP

	Analysis of the DMITP protocol
	Experimental evaluation
	First experiment
	Second experiment

	Conclusions
	Correctness proofs
	References

