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Abstract

We consider a FIFO multiplexer fed by flows that are individually constrained by arrival curves, and look for the best
possible arrival curve for every output flow. This problem arises in scenarios where aggregate multiplexing is performed, such
as differentiated services or front ends to optical switches. We obtain an exact result for a fluid model and for piecewise linear
concave arrival curves, which are common in practice and correspond to combinations of leaky buckets.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a FIFO multiplexer fed by flows that are individually constrained by arrival curves. This
scenario arises in scenarios where aggregate multiplexing is performed such as: Internet differentiated
services[2,4,8,13], or front ends to optical switches[18]. Multiplexing several flows into a FIFO scheduler
causes an increase in the burstiness of every flow. Capturing this effect is important in order to properly
dimension buffers in complex scenarios where multiplexers are interconnected. However, it is not easy
to capture the burstiness increase due to FIFO multiplexing, and this does not appear to be done in a
general setting. Partial results indicate that, on one hand, in some cases, FIFO multiplexing may lead
to instability, even when the maximum utilization is less than 1[1,12]. On the other hand, under some
strict conditions on source rate or on multiplexing architecture, one can find explicit delay and burstiness
bounds for a FIFO ATM network[9,10,16].

Our problem is to quantify the worst case burstiness increase due to FIFO multiplexing. More precisely,
given the set of arrival curve constraints for the input flows, we would like to find arrival curve constraints
that apply to the output flows, and that are as tight as possible. In this paper, we present a first step in
this direction. We consider piecewise linear concave arrival curves, which are common in practice and
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correspond to combinations of leaky buckets. We take a fluid approach, and leave packetization effects
for further study; these effects are likely to impact our results by one maximum packet size[7,15]. We
find a worst case bound when the FIFO node is a constant rate server. We illustrate our bound numerically
and by simulation.

We compare our bound to previous ones. A method based on a service curve approach, was proposed in
[10] and further developed in[17], Chapter 6. If the arrival curve constraints are defined by a single leaky
bucket, these bounds coincide with ours. Furthermore, in the general case where we have for example
both peak rate and sustainable rate limitations, we show that the method of service curves could also be
used to provide tight bounds for FIFO multiplexing, in general.

The paper is organized as follows.Section 2gives our assumption and notation.Section 3gives our
main result. InSection 4we give some simulation results that confirm our results.Section 5compares
our result with the state of the art. The proof of our main result relies on a number of technical lemmas,
which are given in theAppendix A.

2. FIFO aggregate scheduling: model and notation

In this section we describe our model and assumption. We considerI flows, served as one aggregate in
a constant rate server, with rateR. Aggregation of all flows is done in a FIFO manner. CallAi(t) the input
function, which is defined as the number of bits observed on flowi at theinputbetween 0 andt . Similarly,
let Bi(t) be the output function. We assume thatAi(t) is left-continuous, which does not appear to be a
loss of generality. In this framework, the input–output characterization of our system is as follows. Let
A(t) = ∑I

i=1 Ai(t) be the aggregate input function; the aggregate output functionB(t) = ∑I
i=1 Bi(t) is

given by[6]

B(t) = inf
0≤s≤t

A(s) + R(t − s).

For any timet , definev(t) by

v(t) = sup{s such thats ≤ t andA(s) ≤ B(t)}. (1)

The timev(t) is interpreted as the minimum oft and the arrival time of the first bit leaving aftert . Then
the input–output characterization for alli is:

Bi(t) = Ai(v(t)). (2)

We assume that input flowi is constrained by an arrival curveαi , in other words[11]

for all t, s such thats ≤ t : Ai(t) − Ai(s) ≤ αi(t − s), (3)

and our problem is, for a given set of arrival curvesαi(t), to find the best possible arrival curves for the
output functionsBi(t), under the constraints thatEq. (3)is satisfied.

Without loss of generality, we can focus on flowi = 1 and consider the set of all flowsj �= i as one
aggregate flow. Thus we can limit ourselves to the caseI = 2 and find an arrival curve for the output of
flow 1.

In this paper, we focus on the case where the arrival curvesαi are concave piecewise linear, which
correspond to constraints imposed by combination of leaky buckets. InProposition 2, we focus on the
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caseα1(x) = min{p1x, b1 + r1x}. This corresponds to the variable bit rate case, or T-SPEC, used by
the IETF[5,17] (we neglect the MTU, consistent with our fluid model assumption);p1 is the peak rate,
r1 the sustainable rate (we assume thatp1 ≥ r1) andb1 is the burst tolerance, or burstiness, of flow 1.
We also assume thatα2(x) is concave and piecewise linear, which is consistent with the fact that, flow 2
represents the aggregate of all flows other than 1.

We fix the collection of parametersp1, r1, b1 and the functionα2(x) and callscenarioany arbitrary
collection of functions(Ai(t))1≤i≤I that are wide-sense increasing and non-negative, and that satisfy
Eq. (3). The corresponding output functionsBi(t) are given byEq. (2). For convenience, when necessary,
we use a super-index to identify a scenario. For example, for scenarioγ , Bγ

i (t) is the output function of
flow i andvγ (t) is the minimum oft and the arrival time of the first bit leaving aftert .

Let Γ be the set of all scenarios. Our problem is now to find the best possible arrival curveα∗
1(x) for

the output flowB1(t), in other words, we should have, for any scenarioγ ∈ Γ :

for all t, s such thats ≤ t : B
γ

1 (t) − B
γ

1 (s) ≤ α∗
1(t − s), (4)

andα∗
1 should be as small as possible.

Call Breq := supx≥0[α1(x) + α2(x) − Rx] the worst case buffer required for a loss-free operation. We
assume the finiteness condition

Breq < ∞. (5)

Otherwise, it can easily be seen that our problem has no finite solution.

3. Arrival curve for the output flow

The following theorem gives the solution to our problem.

Theorem 1. Consider a FIFO system serving two flows, with the assumptions inSection2. Define

α∗
1(x) = min{Rx, α1(x + a1(x))},

wherea1(x) is the maximum value for a from the set of couples(a ≥ 0, b ≥ 0) that solveEq. (6):

α1(b + a + x) − α1(a + x) + α2(b) − R(a + b) = 0. (6)

Then

(1) α∗
1 is an arrival curve for the output flowB1(t);

(2) it is the best arrival curve that can be found under these assumptions.

The theorem requires the solution of a one-dimensional maximization problem, in order to finda1(x).
We give later in this section an algorithm (seeProposition 2) to perform this whenα1 has the formα1(x) =
min{p1x, b1 + r1x}. It can easily be generalized to the case whereα1 is concave, piecewise linear.

Proof. First, note that the finiteness condition(5) implies that for any non-negative(a, b) satisfying(6)
we havea ≤ Breq/R, which in turn implies thata1(x) is well defined and is unique.

Second, consider some arbitrary but fixed time interval [s, t ]. To simplify the writing, we use the
notationsβ = vβ(s). Define
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• Λ1(s, t) as the set of scenariosβ ∈ Γ such thatAβ

1(t) − A
β

1(s
β) = α1(t − sβ),

• s1 the minimum value ofsβ among all scenarios inΛ1(s, t),
• Ψ1(s, t) as the set of scenarios inβ ∈ Λ1(s, t) such that∀β ∈ Ψ1(s, t) (sβ = s1),
• Φ1(s, t) as the set of scenariosβ ∈ Λ1(s, t) such that in time interval [s ′β, sβ) (wheres ′β denotes the

start of the busy period1 which last, at least, untilsβ) flow 1 injectsα1(t − s ′β) − α1(t − sβ) bits and
flow 2 injectsα2(s

β − s ′β) bits.

Part (1). It follows fromLemma A.3that the number of bits output by flow 1 in [s, t ] is upper bounded
by α1(t − s1). We now show thata := s − s1 is equal toa1(x) defined in the theorem. This will establish
statement (1).

FromLemma A.7, we know thats1 is the minimum value ofsβ among all scenarios inΦ1(s, t). Now
for any scenarioβ ∈ Φ1(s, t), the buffer occupancy at timesβ (denotedq) is:

α1(t − s ′β) − α1(t − sβ) + α2(s
β − s ′β) − R(sβ − s ′β) = q.

Furthermore, since [sβ, s] is a busy period thenq = (s − sβ)R. Thus, we have that:

α1(b + a + x) − α1(a + x) + α2(b) − Rb= aR with b = sβ − s ′β and a = s − sβ,

which shows thata satisfiesEq. (6) for someb ≥ 0. Conversely,Lemma A.8shows that for any
non-negative(a, b) satisfyingEq. (6), there is some scenarioβ ∈ Φ1(s, t) such thatb = sβ − s ′β

anda = s − sβ . Thus the minimums1 of all sβ is s − a1(t − s).
Part (2). Follows immediately fromLemma A.4. �

Proposition 2. In the caseα1(x) = min{p1x, b1 + r1x}, a1(x) defined inTheorem1 can be computed
with the following algorithm:

Step 1: Define extract(V ) as the function that, for a given set of intervals V returns the lower and
upper values of each interval(including+∞) and the angular points ofα2 (i.e., the points whereα2

changes the value of its linearity) that lie within V.
Step 2: Solveα2(b) + p1b = (x1 − x)R wherex1 = b1/(p1 − r1) andb ≥ 0 is the unknown.
• Case where there is no solution: solveα2(b) = (x1 − x)R + (R − r1)b whereb > 0 is the

unknown.
◦ Case where there is no solution: V1 = extract([0,∞]), V2 = ∅ andV3 = ∅.
◦ Case where there is one solution,denoted v:V1=extract([0, v]),V2 = ∅andV3 = extract([v,∞]).
◦ Case where there is more than one solution: this cannot happen.

• Case where there is one solution, denoted v: solveα2(b) = (x1 − x)R + (R − r1)b whereb ≥ 0 is
the unknown.
◦ Case where there is no solution: V1 = ∅, V2 = extract([0, v]) andV3 = extract([v,∞]).
◦ Case where there is one solution, denotedv′: V1 = extract([v′,∞]), V2 = extract([0, v]) and

V3 = extract([v, v′]).
◦ Case where there are two solutions, denotedv′′ the minimum value andv′′′ the maximum one:

V1 = extract([v′′, v′′′]), V2 = extract([0, v]) andV3 = extract([v, v′′], [v′′′,∞]).
◦ Case where there are more than two solutions: this cannot happen.

1 A busy periodis a period where the server buffer is non-empty.
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• Case where there is more than one solution: this cannot happen.
Step 3: Define the following functions:
• f1(b) = (α2(b) + (r1 − R)b)/R;
• f2(b) = (α2(b) + (p1 − R)b)/R;
• f3(b) = (α2(b) + (r1 − R)b + (p1 − r1)(x1 − x))/(R + p1 − r1);
wherea1(x) is the maximum value offi(b) for all b ∈ Vi (with i = 1,2,3).

Proof. With some algebra, it can be shown thatα1(x + a + b)− α1(x + a) = r1(b − x ′′)+p1x
′′, where

x ′′ = max{0,min{b, x1 − (x + a)}} andx1 = b1/(p1 − r1).
Substituting this result inEq. (6)we have:

max{α2(b) + (r1 − R)b,min{α2(b) + (p1 − R)b, α2(b) + (r1 − R)b + (p1 − r1)(x1 − (x + a))}}
= aR. (7)

Now, by doing some algebra onEq. (7), we have:

a =




if
α2(b) + (r1 − R)b

R
+ x ≥ x1, then

α2(b) + (r1 − R)b

R
,

if
α2(b) + p1b

R
+ x ≤ x1, then

α2(b) + (p1 − R)b

R
,

else
α2(b) + (r1 − R)b + (p1 − r1)(x1 − x)

R + p1 − r1
.

(8)

Note that, sincex1 is fixed, only one of the situationsEq. (8) will occur (and consequently only one
solution is possible).

In order to obtain which values ofb makea maximum we will take into account that the three func-
tions in Eq. (8)are piecewise linear. Therefore, they take their maximum value at their angular points
(which are in fact the same as inα2(b)) or at the points that bound the domain onb of each function.
Consequently, to finda1(x) we only need to check the value ofa at those points and take the maximum
one.

The domain onb where each one of the three abovementioned functions must be used can be obtained
by considering the points where the straight line(x1−x)R intersects withα2(b)+p1b (which is a concave
increasing function) and where the straight line(x1−x)R+(R−r1)b intersects withα2(b) (which is also
a concave increasing function).Fig. 1(a) and (b) provide two graphical representations of the solutions
in Step 2. �

Fig. 2(a) and (b) provide two numerical applications that show the worst case arrivalα∗
1 for the output

of flow 1 predicted byTheorem 1.

4. Simulation results

In this section we perform a simulation study of the model described inSection 2. The simula-
tions have been performed by means of a discrete event program that simulates the system at bit
level.
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Fig. 1. Representation of the solutions in Step 2 inProposition 2. (a) Case where there is no solution forα2(b)+p1b = (x1−x)R

for b ≥ 0. k and k′ represent two values of the line(x1 − x)R + (R − r1)b which correspond to the case where
α2(b) �= (x1 − x)R + (R − r1)b for all b andα2(b) = (x1 − x)R + (R − r1)b for one value ofb. (b) Case where there
is one solution forα2(b) + p1b = (x1 − x)R for b ≥ 0. k, k′ andk′′ represent three values of the line(x1 − x)R + (R − r1)b

which correspond to the case whereα2(b) �= (x1 − x)R + (R − r1)b for all b, α2(b) = (x1 − x)R + (R − r1)b for one value of
b andα2(b) = (x1 − x)R + (R − r1)b for two values ofb.

In the first simulation, each input flow is conformed by a two-leaky bucket shaper that constraints them
to match the arrival curve defined by equationαi(x) = min{pix, bi + rix}, ∀i ∈ I . Note that, instead of
considering only two flows where flow 2 is an aggregate flow, we model them independently. Injected
bits are served in FIFO order at a rateR.

An extensive simulation has been performed by considering many different scenarios and measuring,
for each time interval, the number of bits belonging to each flow observed at the output. The arrival of
packets to the traffic shaper has been implemented by means of a normal distribution with meanri and
standard deviationpi .
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Fig. 2. Examples that show the worst case arrivalα∗
1 for the output of flow 1 predicted byTheorem 1. (a) Input flow 1 has arrival

curveα1(x) = min{10x,15+ 3x} and input flow 2 has arrival curveα2(x) = min{8x,10+ 3x}. The server rate is 7. (b) Input
flow 1 has arrival curveα1(x) = min{11x,10+ x} and input flow 2 (which is the aggregate of three flows) has arrival curve
α2(x) = min{11x,10+ x} + min{11x,20+ x} + min{11x,30+ x}. The server rate is 10.

Fig. 3shows the same numerical application than inFig. 2(a). It can be readily seen that all results are
bounded by our theoretical result. Furthermore, we found that such a theoretical result is also reached,
which is consistent with the fact that our bound is a worst case bound.

In a second experiment (Fig. 4), we analyze how the sustainable rate of flow 2 affectsα∗
1(x). As it was

expected due to our theoretical result, the increment in the sustainable ratio of flow 2 increases the value
of α∗

1(x).

Fig. 3. Worst case arrival curveα∗
1 for the output of flow 1, predicted byTheorem 1, and arrival curveα∗∗

1 for the output of flow
1 obtained by simulation. The server rate is 7,α1(x) = min{10x,15+ 3x} andα2(x) = min{8x,10+ 3x}. The curvesBi

1(x)

show the number of bits observed at the output for three different scenarios(ψ, φ, γ ).
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Fig. 4. Worst case arrival curves for the output of flow 1, predicted byTheorem 1when varying the sustainable rate of flow 2.
The server rate is 10,α1(x) = min{10x,15+3x} andα2(x) = min{8x,10+ jx} for j ∈ {1,2,5,6}. α∗

1j
(x) represents the arrival

curves for the output flow 1 whenα2(x) = min{8x,10+ jx}.

5. Previous work

The state of art for aggregate multiplexing in general is surprisingly poor and so is the work done to
obtain output arrival curves for FIFO multiplexing. The only sources that we are aware of is a result by
Cruz in[10], which is reported and further elaborated in the book by Le Boudec and Thiran[17].

The main result that relates to our work can be summarized as follows. Take the same setting as in this
paper, but assume the peak rate of flow 1 is infinite, in other words,α1(t) = r1t + b1. Otherwise, there is
no special assumption inα2. It is shown in[17], Chapter 6, that an arrival curve for the output of flow 1
is given by

α∗∗
1 (x) = min

{
Rx, b1 + r1max

∀u≥0

(
α2(u) + (r1 − R)u

R

)
+ r1x

}
. (9)

It can easily be shown, after some easy but tedious algebra, thatEq. (9)coincides with the same bound
that we find in this paper. It is shown in[17] that (9) is the best bound that can be found under the
assumption that the peak rate of flow 1 is infinite, which is consistent with our result. Note that in
the simple case where all flows (not only flow 1) are constrained by a single leaky bucket,Eq. (9)gives
the formula (whereα2(t) = r2t + b2):

α∗∗
1 (x) = min

{
Rx, b1 + r1

b2

R
+ r1x

}
, (10)

which is interesting by its simplicity.
The method, introduced by Cruz in[10], first finds a family of service curvesβθ , indexed by a real

valued parameterθ , and applies traditional network calculus results to derive an arrival curve for each
value ofθ . Eq. (9)is then obtained as by minimizing overθ .

If we remove the assumption that the peak rate of flow 1 is infinite, by using Theorem 6.4.1 in[17] we
can derive an arrival curve that can be expressed as:

α∗∗
1 (x) = min{Rx,min{b∗

1 + p1x, b
∗∗
1 + r1x}}, (11)

with b∗
1 = p1max∀u≥0((α2(u) + (p1 − R)u)/R) andb∗∗

1 = b1 + r1max∀u≥0((α2(u) + (r1 − R)u)/R).
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Fig. 5. Worst case arrival curveα∗
1 for the output of flow 1, predicted byTheorem 1and arrival curveα∗∗

1 for the output of flow
1 predicted byEq. (11). The server rate is 15,α1(x) = min{10x,10+ 2x} andα2(x) = min{50x,1 + 10x}.

This bound, contrary to the previous cases, is not tight.Fig. 5provides a numerical example. However,
there is the following relationship.

Proposition 3. Letα∗
1(x) be the output of flow1, predicted byTheorem1 andα∗∗

1 (x) the output of flow
1 predicted byEq. (11). If x is large enough thenα∗

1(x) = α∗∗
1 (x).

Proof. First of all, note that bothb∗
1 andb∗∗

1 in Eq. (11)are constants. Sincep1x grows quickly thanr1x

then, forx large enough,b∗
1 + p1x will be bigger thanb∗∗

1 + r1x. Therefore, in this case we have that

α∗∗
1 (x) = min{Rx, b∗∗

1 + r1x}.
On the other hand, ifx is large enough then we have that((α2(b)+ (r1 −R)b)/R)+x ≥ x1 for all b ≥ 0.
By using the Eq. (8) inProposition 2, we know thata1(x) = max∀b≥0((α2(b) + (r1 − R)b)/R).

Substituting this value inTheorem 1, we have that:

α∗
1(x)= min

{
Rx, α1

(
x + max

∀b≥0

(
α2(b) + (r1 − R)b

R

))}

= min

{
Rx, b1+r1max

∀b≥0

(
α2(b)+(r1−R)b

R

)
+r1x

}
= min{Rx, b∗∗

1 + r1x} = α∗∗
1 (x). �

This last result does not imply that network calculus cannot give the worst case bound. Indeed, in accor-
dance with Proposition 6.4.2 in[17] we can derive an arrival curve that can be expressed as:

α∗∗
1 (x)= min

{
Rx,min

θ≥0

(
max
u≥0

(α1(x + u) − β1
θ (u))

)}

= min

{
Rx,min

θ≥0

(
max
u≥0

(α1(x + u) + α2(u − θ) − Ru)

)}
.

Let us conjecture that the values ofθ andu that solve the previous equation areθ = s− s1 andu = s− s ′
1.

Then

α∗∗
1 (x) = min{Rx, α1(x + s − s ′

1) + α2(s1 − s ′
1) − R(s − s ′

1)}. (12)
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After some algebra, it can be readily seen thatEq. (12)coincides with the same bound we find in this
paper. This shows that the network calculus could be used to give a worst case bound.

6. Conclusions

In this paper we have analyzed the impact of FIFO multiplexing in the case where the arrival curve
constraints for the input flows are concave piecewise linear functions (which are common in practice and
correspond to combinations of leaky buckets). We found a worst case bound when the FIFO node is a
constant rate server. Furthermore, we also provide a numerical algorithm to compute such a worst case
bound in the case whereα1 corresponds to the variable bit rate case (or T-SPEC) used by the IETF.

Comparing our bound to previous ones (based on a service curve approach[10,17]), we found that
if the arrival curve constraints are defined by a single leaky bucket, these bounds coincide with ours.
Furthermore, in the general case, we show that network calculus could also be used to give the worst case
bound.

Our results have some potential applications. In particular, they may be relevant for the Expedited
Forwarding Service (EF)[14], a service which has been developed in theDifferentiated Services Working
Group of IETF[3]. The goal of the EF is to provide to an aggregate of flows some hard delay guarantees by
means of ensuring that, at each hop, the aggregate requiring EF treatment receives service rate exceeding
the total bandwidth requirements of all flows in the aggregate at this hop.

Some issues require further study. In this work, we used a fluid approach and, even though we know that
packetization effects are likely to impact our results by one maximum packet size[7,15], understanding
these effects appears to be an important issue.

Appendix A. Proof of lemmas

The following lemma shows that, for any non-greedy scenarioβ for flow 1 in time interval [sβ, t ], there
is another greedy scenarioγ for flow 1 in time interval [sγ , t ] (with sγ > sβ) that injects more flow 1
bits than scenarioβ in time interval [sβ, t ].

Lemma A.1. Letβ be a scenario inΓ such that, in time interval[sβ, t ], flow1 injectsK < α1(t−sβ) bits.
Then, there is a scenarioγ (with sγ > sβ) such that, in time interval[sγ , t ], flow1 injectsK = α1(t −sγ )

bits.

Proof.

(1) CaseK ≤ α1(t − s): take a scenarioγ such that:
(a) Flow 2 does not inject any bit.
(b) Flow 1 injectsα1(t − s) bits in time interval [s, t ] and no bit in the rest of intervals.

In such a scenariosγ = s and the number of flow 1 injected bits in time interval [sγ , t ] is α1(t−sγ ).
(2) CaseK > α1(t − s): take a scenarioγ (seeFig. 6) such that:

(a) Flow 2 behaves as in scenarioβ.
(b) Flow 1 behaves as in scenarioβ until time instant immediately beforesβ .
(c) Flow 1 injects no bits after time instantt .
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Fig. 6. Scenarioγ for Lemma A.1showing the amount of flow 1 bits injected in different time intervals.

(d) ∃r : sβ < r < s (Aγ

1 (t) − A
γ

1 (r) = α1(t − r) = K).
(e) ∀m : r ≤ m ≤ t (Aγ

1 (m) − A
γ

1 (r) = α1(m − r)).

In such a scenario, it can be readily seen that:

• sγ is located at the first flow 1 bit injected aftersβ . That is, it is located at time instantr.
• The number of flow 1 bits injected in time interval [sγ , t ] is α1(t − r). As sγ = r thenα1(t − sγ ).

Therefore, we have that, in time interval [sγ , t ], flow 1 injectsK = α1(t − sγ ) bits, which proves
the lemma.

However, it is also necessary to prove thatγ is a valid scenario in accordance with the constraint
curve for the arrival function. That is, it must be proved the following holds

∀a, b : a ≤ b (A
γ

1 (b) − A
γ

1 (a) ≤ α1(b − a)).

(a) Caseb < sβ : immediate, sinceAγ

1 (b) − A
γ

1 (a) = A
β

1(b) − A
β

1(a) ≤ α1(b − a).
(b) Casesβ ≤ b ≤ t :

(i) Caser ≤ a: immediate.
(ii) Caser > a.

By contradiction. Assume thatAγ

1 (b) − A
γ

1 (a) > α1(b − a). That is,α1(b − r) + d >

α1(b − a), whered is the number of flow 1 bits injected in time interval [a, r).
As α1 is concave,2 we have that∀l ≥ 0: α1(b − r + l) + d > α1(b − a + l). If we take

l = t − b thenα1(t − r) + d > α1(t − a).
By construction ofγ , we have thatAγ

1 (t) − A
γ

1 (a) = α1(t − r) + d > α1(t − a).
However, by construction ofγ we also have thatAγ

1 (t) − A
γ

1 (a) = A
β

1(t) − A
β

1(a) ≤
α1(t − a). We reach a contradiction.

(c) Caset < b:
(i) Casea > t : immediate sinceAγ

1 (b) − A
γ

1 (a) = 0 ≤ α1(b − a).
(ii) Casea ≤ t : immediate sinceAγ

1 (b)−A
γ

1 (a) = A
γ

1 (t)−A
γ

1 (a) ≤ α1(t − a) ≤ α1(b− a).�

Now, we state the next lemma which shows that the number of flow 1 bits injected for any scenarioβ

in time interval [sβ, t ] must be, at most,α1(t − s1).

2 Note that, iff is concave, then the incrementf (y + l)− f (x + l) is wide-sense decreasing withl (wherex < y andl > 0),
thusf (x) + d > f (y) implies∀l ≥ 0: f (x + l) + d > f (y + l).
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Lemma A.2. For any time interval[s, t ], we have that∀β ∈ Γ (Aβ

1(t) − A
β

1(s
β) ≤ α1(t − s1)).

Proof. By contradiction. Assume there is a scenarioγ , such that, for some time interval [s, t ], Aγ

1 (t) −
A

γ

1 (s
γ ) > α1(t − s1).

• Casesγ ≥ s1: sinceAγ

1 (t)−A
γ

1 (s
γ ) ≤ α1(t − sγ ) andα1(t − sγ ) ≤ α1(t − s1) thenAγ

1 (t)−A
γ

1 (s
γ ) ≤

α1(t − s1). We reach a contradiction.
• Cases < sγ < s1:

◦ CaseAγ

1 (t) − A
γ

1 (s
γ ) = α1(t − sγ ): this implies thatAγ

1 (t) − A
γ

1 (s
γ ) ≤ α1(t − s1). We reach a

contradiction.
◦ CaseAγ

1 (t)−A
γ

1 (s
γ ) < α1(t−sγ ): fromLemma A.1, there is a scenarioφ such thatAγ

1 (t)−A
γ

1 (s
γ ) ≤

A
φ

1(t) − A
φ

1(s
φ) = α1(t − sφ), beingsφ > sγ .

However, this implies thatAφ

1(t) − A
φ

1(s
φ) ≤ α1(t − s1) and consequentlyAγ

1 (t) − A
γ

1 (s
γ ) ≤

α1(t − s1). We reach a contradiction.
• Casesγ = s: sinceAγ

1 (t) − A
γ

1 (s
γ ) ≤ α1(t − s) andα1(t − s) ≤ α1(t − s1) thenAγ

1 (t) − A
γ

1 (s
γ ) ≤

α1(t − s1). We reach a contradiction. �

From the previous lemma, we can derive the following lemma. Roughly speaking it states thatα∗
1

(t − s) = min{R(t − s), α1(t − s1)} is a valid arrival curve for the functionB1.

Lemma A.3. For any time interval[s, t ], we have that∀β ∈ Γ (Bβ

1 (t)−B
β

1 (s) ≤ min{R(t−s), A
β

1(t)−
A

β

1(s
β)} ≤ min{R(t − s), α1(t − s1)}).

Proof. Immediate. On the first hand, given a time interval [s, t ], the FIFO buffer cannot transmit at a rate
higher thanR (i.e.,R(t − s)). Furthermore, the FIFO server cannot transmit, in time interval [s, t ], more
that what is injected in time interval [sβ, t ], which, as shown inLemma A.2, is at mostα1(t − s1). �

Now, we prove that the abovementioned arrival curve is optimal in the sense that, for each flow and
time interval, there is a scenario for which the formula in Definition 4 is exactly an equality.

Lemma A.4. For any time interval[s, t ], we have that∃β ∈ Ψ1(s, t) (Bβ

1 (t) − B
β

1 (s) = min{R(t − s),

α1(t − s1)}).

Proof. Take some scenarioγ ∈ Ψ1(s, t). Now, take another scenarioβ such that:

(1) Flow 2 behaves as in scenarioγ until time instant immediately befores1 and then stops injecting.
(2) Flow 1 behaves as in scenarioγ until time instant immediately befores1.
(3) Flow 1 injects no bits after time instantt .
(4) ∀m: s1 ≤ m ≤ t (Aβ

1(m) − A
β

1(s1) = α1(m − s1)).

First, we prove thatβ is a valid scenario in accordance with the constraint curve for the arrival function.
That is, we will prove that the following holds:

∀a, b : a ≤ b (A
β

1(b) − A
β

1(a) ≤ α1(b − a)).
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(1) Caseb < s1: immediate, sinceAβ

1(b) − A
β

1(a) = A
γ

1 (b) − A
γ

1 (a) ≤ α1(b − a).
(2) Cases1 ≤ b ≤ t :

(a) Cases1 ≤ a: immediate (by condition 4).
(b) Cases1 > a.

By contradiction. Assume thatAβ

1(b)−A
β

1(a) > α1(b−a). That is,α1(b−s1)+d > α1(b−a),
whered is the number of flow 1 bits injected in time interval [a, s1).

Asα1 is concave we have that∀l ≥ 0:α1(b− s1 + l)+d > α1(b−a+ l). If we takel = t −b

thenα1(t − s1) + d > α1(t − a).
By construction ofβ, we have thatAβ

1(t) − A
β

1(a) = α1(t − s1) + d > α1(t − a).
However, by construction ofγ we also have thatAβ

1(t)−A
β

1(a) = A
γ

1 (t)−A
γ

1 (a) ≤ α1(t−a).
We reach a contradiction.

(3) Caset < b:
(a) Casea > t : immediate sinceAβ

1(b) − A
β

1(a) = 0 ≤ α1(b − a).
(b) Casea ≤ t : immediate sinceAβ

1(b) − A
β

1(a) = A
β

1(t) − A
β

1(a) ≤ α1(t − a) ≤ α1(b − a).

Therefore, we have thatβ ∈ Ψ1(s, t) and that it behaves in a greedy fashion in time interval [s1, t ].
Consequently, the buffer content at time instantr ∈ (s, t ] will be q(r) = max{0, α1(r − s1)−R(r − s)}.

Thus, we have that:

• CaseR(t − s) < α1(t − s1): at time instantt , we have thatq(t) > 0. This means that not all injected
packets have been transmitted and since FIFO is work conserving thenR(t − s) flow 1 bits have be
transmitted.

• CaseR(t − s) ≥ α1(t − s1): sinceR(t − s) ≥ α1(t − s1) then, at time instantt , we have thatq(t) = 0.
This means that all bits injected in time interval [s1, t ] have been transmitted at timet . Namely,
α1(t − s1). �

Lemma A.5. Ψ1(s, t) ⊆ Φ1(s, t).

Proof. By contradiction. Consider a scenarioγ ∈ Ψ1(s, t) such that in time interval [s ′γ , s1) either flow
1 injectsK < α1(t − s ′γ ) − α1(t − s1) bits or flow 2 injectsK ′ < α2(s1 − s ′γ ) bits (or both things).
Clearlyγ /∈ Φ1(s, t).

Now, take a scenarioβ such that:

(1) Flows 1 and 2 start injecting bits after at times ′γ .
(2) Flow 1 injects no bits after time instantt .
(3) Flow 2 injects no bits after time instants1.
(4) ∀m: s ′γ ≤ m ≤ t (Aβ

1(t) − A
β

1(m) = α1(t − m)).
(5) ∀m: s ′γ ≤ m ≤ s1 (Aβ

2(m) − A
β

2(s
′γ ) = α2(m − s ′γ )).

Clearly,β is a valid scenario in accordance with the constraint curve for the arrival function.
Now, we can see that the number of bits injected in time interval [s ′γ , s1) is bigger inβ than inγ .

Namely, inβ is α1(t − s ′γ ) − α1(t − s1) + α2(s1 − s ′γ ) and inγ is K + K ′. Consequentlysβ < s1.
As (by Condition 4)∀m: s ′γ ≤ m ≤ t (Aβ

1(t) − A
β

1(m) = α1(t − m)), we reach a contradiction just
takingm = sβ . �
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Lemma A.6. For each scenarioβ ∈ Φ1(s, t), there is another scenarioγ ∈ Φ1(s, t) with s ′γ = s ′β and
sγ = sβ such that in time interval[sγ , t ] flow1 injectsα1(t − sγ ) bits.

Proof. Take a scenarioγ such that:

(1) Flow 2 behaves as in scenarioβ.
(2) Flow 1 starts injecting bits at time instants ′β .
(3) Flow 1 injects no bits after time instantt .
(4) Flow 1 injectsα1(t − s ′β) − α1(t − sβ) bits in time interval [s ′β, sβ) in a greedy fashion.
(5) ∀m: sβ ≤ m ≤ t (Aγ

1 (t) − A
γ

1 (m) = α1(t − m)).

It can be readily seen thatγ is a valid scenario in accordance with the constraint curve for the arrival
function. Indeed, regarding flow 2 scenarioγ behaves as in scenarioβ. Regarding flow 1, we will prove
that the following holds:

∀a, b : a ≤ b (A
γ

1 (b) − A
γ

1 (a) ≤ α1(b − a)).

(1) Caseb < sβ : immediate.
(2) Casesβ ≤ b ≤ t : letc be the first time instant in time interval [s ′β, sβ)where flow 1 stops injecting bits.

Remember that flow 1 in such a interval injects a given number of bits (namelyα1(t−s ′β)−α1(t−sβ))
in a greedy fashion.
(a) Casec ≤ a: immediate.
(b) Casec > a: by contradiction. Assume thatAγ

1 (b) − A
γ

1 (a) > α1(b − a). By construction of
γ we have thatAγ

1 (t) − A
γ

1 (s
′β) = α1(a − s ′β) + α1(t − b) + A

γ

1 (b) − A
γ

1 (a) > α1(a −
s ′β) + α1(t − b) + α1(b − a) > α1(t − s ′β). However, by construction ofγ we also know that
A

γ

1 (t) − A
γ

1 (s
′β) = α1(t − s ′β). We reach a contradiction.

(3) Caset < b:
(a) Casea > t : immediate sinceAγ

1 (b) − A
γ

1 (a) = 0 ≤ α1(b − a).
(b) Casea ≤ t : immediate sinceAγ

1 (b) − A
γ

1 (a) = A
γ

1 (t) − A
γ

1 (a) ≤ α1(t − a) ≤ α1(b − a).

Because of theγ definition (see Condition 4), the number of flow 1 bits injected in time interval [s ′β,m]
(for all s ′β ≤ m < sβ)) in γ is greater or equal than inβ. Therefore, [s ′β, sβ) is also a busy period in
scenarioγ . Now, since the number of flow 1 injected bits in [s ′β, sβ) is the same in both scenarios (namely,
it is α1(t − s ′β) − α1(t − sβ)), we have thatsγ = sβ ands ′γ = s ′β .

Furthermore, asAγ

1 (s
β)−A

γ

1 (s
′β) = α1(t − s ′β)−α1(t − sβ) andAγ

1 (t)−A
γ

1 (s
′β) = α1(t − s ′β) then

A
γ

1 (t) − A
γ

1 (s
β) = α1(t − sβ). This ends the proof. �

Lemma A.7. s1 is the minimum value ofsβ among all scenarios inΦ1(s, t).

Proof. By contradiction. Assume that the minimum value ofsβ among all scenarios inΦ1(s, t), denoted
s2, is nots1.

• Cases2 < s1: by Lemma A.6, we can obtain a scenarioγ ∈ Φ1(s, t) such that, in time interval [s2, t ]
flow 1 injectsα1(t − s2). Thusγ ∈ Λ1(s, t). Consequently,s1 is not the minimum value ofsβ among
all scenarios inΛ1(s, t) and (by definition ofs1) we reach a contradiction.
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• Cases2 > s1: by Lemma A.5, Ψ1(s, t) ⊆ Φ1(s, t). We reach a contradiction. �

Lemma A.8. For any non-negative(a, b) satisfyingEq. (6), there is some scenarioβ ∈ Φ1(s, t) such
thatb = sβ − s ′β anda = s − sβ .

Proof. For a given time interval [s, t ], take a scenarioβ such that:

(1) Flows 1 and 2 start injecting bits at time instants − (a + b).
(2) Flows 1 and 2 stop injecting bits at time instants − a.
(3) Flow 1 injectsα1(b+a+x)−α1(a+x) bits in time interval [s− (a+b), s−a) in a greedy fashion.
(4) Flow 2 injectsα2(b) bits in time interval [s − (a + b), s − a) in a greedy fashion.
(5) (a, b) satisfyEq. (6).

Clearlyβ is a valid scenario in accordance with the constraint curve for the arrival function. We must
prove thata = s − sβ andb = sβ − s ′β .

Since in time interval [s − (a + b), s − a) both flow 1 and 2 are greedy and sinceα1(b + a + x) −
α1(a + x)+ α2(b)− Rb= Ra> 0 then time interval [s − (a + b), s − a) is a busy period. Furthermore,
the buffer occupancy at times − a will be Ra. Consequently, by times all those bits will be transmitted.

This shows thatsβ = s − a ands ′β = s − (a + b) = sβ − b, which proves the lemma. �

References

[1] M. Andrews, Instability of fifo in session-oriented networks, in: Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2000), January 2000.

[2] J.C.R. Bennett, K. Benson, A. Charny, W.F. Courtney, J.-Y. Le Boudec, Delay jitter bounds and packet scale rate guarantee
for expedited forwarding, in: Proceedings of the Infocom, April 2001.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for differentiated services, RFC 2475, IETF,
December 1998.

[4] R. Boorstyn, A. Burchard, J. Liebeherr, C. Oottamakorn, Statistical service assurances for traffic scheduling algorithms,
IEEE J. Selected Areas Commun. 18 (12) (2000) 2651–2664 (special issue on Internet QoS).

[5] B. Braden, D. Clark, S. Shenker, Integrated services in the Internet architecture: an overview, RFC 1633, IETF, June 1994.
[6] C.S. Chang, On deterministic traffic regulation and service guarantee: a systematic approach by filtering, IEEE Trans.

Inform. Theory 44 (1998) 1096–1107.
[7] C.S. Chang, Performance Guarantees in Communication Networks, Springer, New York, 2000.
[8] A. Charny, J.-Y. Le Boudec, Delay bounds in a network with aggregate scheduling, in: Proceedings of the First International

Workshop on Quality of Future Internet Services, Berlin, Germany, September 2000.
[9] I. Chlamtac, A. Faragó, H. Zhang, A. Fumagalli, A deterministic approach to the end-to-end analysis of packet flows in

connection oriented networks, IEEE/ACM Trans. Netw. 4 (6) (1998) 422–431.
[10] R.L. Cruz, Sced+: efficient management of quality of service guarantees, in: Proceedings of the IEEE Infocom’98, San

Francisco, March 1998.
[11] R.L. Cruz, Quality of service guarantees in virtual circuit switched networks, IEEE J. Selected Areas Commun. 13 (6)

(1995) 1048–1056.
[12] B. Hajek, Large bursts do not cause instability, IEEE Trans. Auto. Control 45 (2000) 116–118.
[13] S.D. Patek, J. Liebeherr, A. Burchard, A calculus for end-to-end statistical service guarantees, Technical Report CS-2001-19,

Department of Computer Science, University of Virginia, August 2001.
[14] V. Jacobson, K. Nichols, K. Poduri, An expedited forwarding phb, RFC 2598, IETF, June 1999.
[15] J.-Y. Le Boudec, Some properties of variable length packet shapers, in: Proceedings of the ACM Sigmetrics/Performance’01,

2001.



506 V. Cholvi et al. / Performance Evaluation 49 (2002) 491–506

[16] J.-Y. Le Boudec, G. Hebuterne, Comment on a deterministic approach to the end-to-end analysis of packet flows in connection
oriented network, IEEE/ACM Trans. Netw. 8 (1) (2000).

[17] J.-Y. Le Boudec, P. Thiran, Network Calculus, Lecture Notes in Computer Science, Vol. 2050, Springer, Berlin, July 2001
(available online athttp://icawww.epfl.ch).

[18] L. Thylén, G. Karlsson, O. Nilsson, Switching technologies for future guided wave optical networks: potentials and
limitations of photonics and electronics, IEEE Commun. Mag. 34 (2) (1996) 106–113.

Vicent Cholvi graduated from the University of Valencia (Spain) and received his doctorate in 1994 from
the Polytechnic University of Valencia (Spain). In 1995, he joined the Jaume I University in Castelló where
he is currently an associate professor. He is in charge of the Distributed Systems Group and his interests
are in distributed and communication systems.

Juan Echagüe received the B.S. and M.S. degrees, both in Computer Sciences, from the Polytechnic
University of Valencia. He is currently a Ph.D. student at the Distributed Systems Group at the Jaume
I University (Spain). His current interests are related to provide with quality of service to broadband
networks.

Jean-Yves Le Boudec graduated from Ecole Normale Superieure de Saint-Cloud, Paris, received his
doctorate in 1984 from the University of Rennes, France. In 1987 he joined Bell Northern Research,
Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department.
In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises
Network Department. In 1994 he became professor at EPFL, where he is now full professor. His interests
are in the architecture and performance of communication systems.

http://icawww.epfl.ch

	Worst case burstiness increase due to FIFO multiplexing
	Introduction
	FIFO aggregate scheduling: model and notation
	Arrival curve for the output flow
	Simulation results
	Previous work
	Conclusions
	Proof of lemmas
	References


