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Abstract

We consider a FIFO multiplexer fed by flows that are individually constrained by arrival curves, and look for the best
possible arrival curve for every output flow. This problem arises in scenarios where aggregate multiplexing is performed, such
as differentiated services or front ends to optical switches. We obtain an exact result for a fluid model and for piecewise linear
concave arrival curves, which are common in practice and correspond to combinations of leaky buckets.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider a FIFO multiplexer fed by flows that are individually constrained by arrival curves. This
scenario arises in scenarios where aggregate multiplexing is performed such as: Internet differentiated
serviceg2,4,8,13] or front ends to optical switchgs8]. Multiplexing several flows into a FIFO scheduler
causes an increase in the burstiness of every flow. Capturing this effect is important in order to properly
dimension buffers in complex scenarios where multiplexers are interconnected. However, it is not easy
to capture the burstiness increase due to FIFO multiplexing, and this does not appear to be done in a
general setting. Partial results indicate that, on one hand, in some cases, FIFO multiplexing may lead
to instability, even when the maximum utilization is less thgii,12]. On the other hand, under some
strict conditions on source rate or on multiplexing architecture, one can find explicit delay and burstiness
bounds for a FIFO ATM networ|9,10,16]

Our problem is to quantify the worst case burstiness increase due to FIFO multiplexing. More precisely,
given the set of arrival curve constraints for the input flows, we would like to find arrival curve constraints
that apply to the output flows, and that are as tight as possible. In this paper, we present a first step in
this direction. We consider piecewise linear concave arrival curves, which are common in practice and
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correspond to combinations of leaky buckets. We take a fluid approach, and leave packetization effects
for further study; these effects are likely to impact our results by one maximum packét 4izg We

find a worst case bound when the FIFO node is a constant rate server. We illustrate our bound numerically
and by simulation.

We compare our bound to previous ones. A method based on a service curve approach, was proposed |
[10] and further developed i 7], Chapter 6. If the arrival curve constraints are defined by a single leaky
bucket, these bounds coincide with ours. Furthermore, in the general case where we have for example
both peak rate and sustainable rate limitations, we show that the method of service curves could also b
used to provide tight bounds for FIFO multiplexing, in general.

The paper is organized as followSection 2gives our assumption and notatid@ection 3gives our
main result. InSection 4we give some simulation results that confirm our resi8ection 5compares
our result with the state of the art. The proof of our main result relies on a number of technical lemmas,
which are given in thé\ppendix A

2. FIFO aggregate scheduling: model and notation

In this section we describe our model and assumption. We conkftiers, served as one aggregate in
a constant rate server, with rake Aggregation of all flows is done in a FIFO manner. Calir) the input
function, which is defined as the number of bits observed oniflatheinputbetween 0 and Similarly,
let B;(r) be the output function. We assume tHatr) is left-continuous, which does not appear to be a
loss of generality. In this framework, the input—output characterization of our system is as follows. Let
A(t) = Zi’:l A; (1) be the aggregate input function; the aggregate output funstipn= Zle B:(t)is
given by[6]

B(t) = 0inf A(s) + R( — s).
<s<t
For any timer, definev () by
v(t) = sufs suchthak < randA(s) < B(?)}. D

The timew(z) is interpreted as the minimum ofand the arrival time of the first bit leaving afterThen
the input—output characterization for alis:

Bi(t) = A;(v(1)). (2)
We assume that input flowis constrained by an arrival curgg, in other wordg11]
forallr, ssuchthat <r: A;@)— A;(s5) <a;(t — ), 3

and our problem is, for a given set of arrival curee&), to find the best possible arrival curves for the
output functionsB; (¢), under the constraints thg. (3)is satisfied.

Without loss of generality, we can focus on flow= 1 and consider the set of all flows i as one
aggregate flow. Thus we can limit ourselves to the dase2 and find an arrival curve for the output of
flow 1.

In this paper, we focus on the case where the arrival cuevege concave piecewise linear, which
correspond to constraints imposed by combination of leaky buckeBrojposition 2we focus on the
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casew;(x) = min{pix, b1 + rix}. This corresponds to the variable bit rate case, or T-SPEC, used by
the IETF[5,17] (we neglect the MTU, consistent with our fluid model assumptipp)s the peak rate,

r1 the sustainable rate (we assume that> r;) andb; is the burst tolerance, or burstiness, of flow 1.
We also assume thab(x) is concave and piecewise linear, which is consistent with the fact that, flow 2
represents the aggregate of all flows other than 1.

We fix the collection of parameteys, r1, b1 and the functiorw,(x) and callscenarioany arbitrary
collection of functions(A;(¢))1<;<; that are wide-sense increasing and non-negative, and that satisfy
Eqg. (3) The corresponding output functioBs(z) are given byEq. (2) For convenience, when necessary,
we use a super-index to identify a scenario. For example, for scenaBid(r) is the output function of
flow i andv? (¢) is the minimum of and the arrival time of the first bit leaving after

Let I" be the set of all scenarios. Our problem is now to find the best possible arrivalegimefor
the output flowB(¢), in other words, we should have, for any scenaria I":

forallz, ssuchthat <7: B} (t) — B (s) <aj( —s), (4)

ande} should be as small as possible.
Call Breq := sup,.o[a1(x) + a2(x) — RY the worst case buffer required for a loss-free operation. We
assume the finiteness condition

Breq < OQ. (5)

Otherwise, it can easily be seen that our problem has no finite solution.

3. Arrival curvefor the output flow

The following theorem gives the solution to our problem.

Theorem 1. Consider a FIFO system serving two flowsth the assumptions iSectior2. Define
aj (x) = Min{RX a1 (x + a1(x))},
wherea; (x) is the maximum value for a from the set of cougles- 0, b > 0) that solveEq. (6}
a1(b+a+x)—ay(a+x)+axb) — R(a+b)=0. (6)
Then
(1) of is an arrival curve for the output flow1();
(2) itis the best arrival curve that can be found under these assumptions

The theorem requires the solution of a one-dimensional maximization problem, in orderde(find
We give later in this section an algorithm ($@®@position 2to perform this wher; has the fornw (x) =
min{p.x, by + rix}. It can easily be generalized to the case wheris concave, piecewise linear.

Proof. First, note that the finiteness conditi(®) implies that for any non-negative, b) satisfying(6)
we haverz < Breg/ R, Which in turn implies that; (x) is well defined and is unique.

Second, consider some arbitrary but fixed time intervat][ To simplify the writing, we use the
notations? = v#(s). Define
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As(s, 1) as the set of scenarigse I such thatd? (1) — A (sf) = a1(t — sP),

s1 the minimum value of? among all scenarios in4(s, 1),

Wi (s, t) as the set of scenarios fhe A4(s, t) such thavpg e Wi(s, t) (s* = s1),

®4(s, t) as the set of scenarigse A1(s, t) such that in time intervak[?, s#) (wheres”? denotes the
start of the busy periddwvhich last, at least, until?) flow 1 injectsa(t — s"%) — a1 (t — s?) bits and
flow 2 injectsao(s? — s'#) bits.

Part (1). It follows fromLemma A.3that the number of bits output by flow 1 in ] is upper bounded
by a1 (t — s1). We now show that := s — s1 is equal taz; (x) defined in the theorem. This will establish
statement (1).

FromLemma A.7 we know thats is the minimum value of# among all scenarios i#1(s, t). Now
for any scenarig@ € @4(s, t), the buffer occupancy at timé¢ (denotedy) is:

o1(t — s"P) —a1(t — sP) + ao(s? — 5"%) — R(s? —5"P) = q.
Furthermore, sincef, s] is a busy period theg = (s — s#)R. Thus, we have that:
a1(b+a+x)—ar(a+x)+oaxb) —Rb=aR with b=s? —s* anda =5 — s,

which shows thawu satisfiesEq. (6) for someb > 0. ConverselyLemma A.8shows that for any
non-negative(a, b) satisfyingEq. (6), there is some scenarip € @1(s, t) such thath = s# — 5’7
anda = s — s#. Thus the minimum; of all s# iss — a1(r — s).

Part (2). Follows immediately fromhemma A.4 O

Proposition 2. In the casexi(x) = min{pyx, b1 + r1x}, a1(x) defined inTheoreml can be computed
with the following algorithm

Step 1 Define extract(V) as the function thatfor a given set of intervals V returns the lower and
upper values of each intervéihcluding +o0) and the angular points a# (i.e., the points wherer,
changes the value of its linearjtthat lie within V.

Step 2 Solvew,(b) + p1b = (x1 — x)R wherex,; = b1/(p1 — r1) andb > 0is the unknown
e Case where there is no solutiomolveas(b) = (x1 — x)R + (R — r1)b whereb > 0 is the

unknown

o Case where there is no solutiovi; = extrac{]0, o)), Vo = @ and Vs = @.

o Casewherethereis one solutjaienoted vV, =extrac{[0, v]), V> = #andVz = extraci[v, o0]).

o Case where there is more than one solutittis cannot happen

e Case where there is one solutiaienoted vsolveas(b) = (x1 — x)R + (R — ri)b whereb > Qs

the unknown

o Case where there is no solutiovi; = ¢, V, = extrac{[0, v]) and V3 = extrac{[v, c0]).

o Case where there is one solutiatenotedv’: V; = extrac{[v’, o0]), V> = extrac(]0, v]) and
V3 = extrac(Jv, v']).

o Case where there are two solutiorenotedv” the minimum value and” the maximum one
V1 = extrac{[v”, v"']), Vo> = extrac{[0, v]) and V3 = extrac{[v, v"], [v", c0]).

o Case where there are more than two solutidhgs cannot happen

L A busy periods a period where the server buffer is non-empty.
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e Case where there is more than one solutittris cannot happen
Step 3 Define the following functions
o f1(b) = (a2(b) + (r1 — R)b)/R;
o f2(b) = (c2(b) + (pr — R)b)/R;
o f3(b) = (a2(b) + (r1 — R)b + (p1 — r1)(x1 — x)) /(R + p1 — r1);
wherea; (x) is the maximum value gf (b) for all b € V; (withi =1, 2, 3).

495

Proof. With some algebra, it can be shown thatx + a + b) — a1(x +a) = r1(b — x”) + p1x”, where

x” = max0, min{b, x; — (x + a)}} andxy = b1/(p1 — r1).
Substituting this result ikEq. (6)we have:

max{az(b) + (r1 — R)b, minfaa(b) + (p1 — R)b, az(b) + (r1 — R)b + (p1 — r1)(x1 — (x + a))}}

Now, by doing some algebra d&q. (7) we have:
i a2(b) + (r1 — R)b I then“Z(b) + (r1 — R)b’
R R
: b b b — R)b
a= IfM—I-xfxl, thenaZ( )+ (P ) , (8)
R R
alge?2®) + (1= R)b + (p1 — r)(x1 — x)
R+p1—n '

Note that, sincex; is fixed, only one of the situationsg. (8) will occur (and consequently only one

solution is possible).

In order to obtain which values &f makea maximum we will take into account that the three func-
tions inEq. (8) are piecewise linear. Therefore, they take their maximum value at their angular points
(which are in fact the same as (b)) or at the points that bound the domain bof each function.
Consequently, to find; (x) we only need to check the value @fat those points and take the maximum

one.

The domain orb where each one of the three abovementioned functions must be used can be obtained
by considering the points where the straight liinge— x) R intersects withw, (b) + p1b (which is a concave
increasing function) and where the straight ling— x) R + (R — r1)b intersects withw, (b) (which is also
a concave increasing functiorijig. 1(a) and (b) provide two graphical representations of the solutions

in Step 2.

O

Fig. 2a) and (b) provide two numerical applications that show the worst case arfitait the output
of flow 1 predicted byrheorem 1

4. Simulation results

In this section we perform a simulation study of the model describe8eiction 2 The simula-
tions have been performed by means of a discrete event program that simulates the system at bit

level.
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Fig. 1. Representation of the solutions in Step Riiaposition 2(a) Case where there is no solutiondgtb) + p1b = (x1—x)R

for b > 0. k and k' represent two values of the liner; — x)R + (R — r1)b which correspond to the case where
az(b) # (x1 — x)R + (R — rp)b for all b anda(b) = (x1 — x)R + (R — r1)b for one value ofb. (b) Case where there
is one solution fow,(b) + p1b = (x1 — x)R for b > 0.k, k' andk” represent three values of the lite — x)R + (R — r1)b
which correspond to the case whe#gb) # (x; — x)R + (R — r1)b for all b, a2(b) = (x1 — x)R + (R — r1)b for one value of

b anday(b) = (x1 — x)R + (R — r1)b for two values of.

In the first simulation, each input flow is conformed by a two-leaky bucket shaper that constraints them
to match the arrival curve defined by equatigiix) = min{p,x, b; + r;x}, Vi € I. Note that, instead of
considering only two flows where flow 2 is an aggregate flow, we model them independently. Injected
bits are served in FIFO order at a ra&te

An extensive simulation has been performed by considering many different scenarios and measuring,
for each time interval, the number of bits belonging to each flow observed at the output. The arrival of
packets to the traffic shaper has been implemented by means of a normal distribution with arehn
standard deviatiop; .
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Fig. 2. Examples that show the worst case arijaior the output of flow 1 predicted byheorem 1(a) Input flow 1 has arrival
curvea; (x) = min{10x, 15+ 3x} and input flow 2 has arrival curve(x) = min{8x, 10+ 3x}. The server rate is 7. (b) Input
flow 1 has arrival curver; (x) = min{11x, 10+ x} and input flow 2 (which is the aggregate of three flows) has arrival curve

az(x) = min{1lx, 10+ x} + min{11lx, 20+ x} + min{11x, 30+ x}. The server rate is 10.

Fig. 3shows the same numerical application thaRiim 2(a). It can be readily seen that all results are
bounded by our theoretical result. Furthermore, we found that such a theoretical result is also reached,
which is consistent with the fact that our bound is a worst case bound.

In a second experimenfig. 4), we analyze how the sustainable rate of flow 2 affeg¢ts). As it was
expected due to our theoretical result, the increment in the sustainable ratio of flow 2 increases the value

of o (x).

60

#Bits

Time ()

Fig. 3. Worst case arrival curvg for the output of flow 1, predicted bjheorem 1and arrival curver;* for the output of flow
1 obtained by simulation. The server rate isef(x) = min{10x, 15+ 3x} anda,(x) = min{8x, 10+ 3x}. The curvesBi(x)
show the number of bits observed at the output for three different scetigigs y).
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Fig. 4. Worst case arrival curves for the output of flow 1, predictedlsyorem Iwhen varying the sustainable rate of flow 2.
The server rate is 1@, (x) = min{10x, 15+ 3x} andw,(x) = min{8x, 10+ jx} for j € {1, 2, 5, 6}. oqj (x) represents the arrival
curves for the output flow 1 whawp(x) = min{8x, 10+ jx}.

5. Previouswork

The state of art for aggregate multiplexing in general is surprisingly poor and so is the work done to
obtain output arrival curves for FIFO multiplexing. The only sources that we are aware of is a result by
Cruz in[10], which is reported and further elaborated in the book by Le Boudec and Thifan

The main result that relates to our work can be summarized as follows. Take the same setting as in this
paper, but assume the peak rate of flow 1 is infinite, in other watds) = r1t + b;. Otherwise, there is
no special assumption . It is shown in[17], Chapter 6, that an arrival curve for the output of flow 1
is given by

a*(x) = min{RX b1 + rymax o) + (1 = Rju +rixg. 9)
1 Yu>0

R

It can easily be shown, after some easy but tedious algebr& ¢h49) coincides with the same bound
that we find in this paper. It is shown [d7] that (9) is the best bound that can be found under the
assumption that the peak rate of flow 1 is infinite, which is consistent with our result. Note that in
the simple case where all flows (not only flow 1) are constrained by a single leaky bEgké®) gives

the formula (wherexx(¢) = rot + by):

. b
a;*(x) = min {Rx b1 + rlEZ + rlx} , (10)

which is interesting by its simplicity.

The method, introduced by Cruz ji0], first finds a family of service curve®, indexed by a real
valued parametet, and applies traditional network calculus results to derive an arrival curve for each
value of6. Eg. (9)is then obtained as by minimizing over

If we remove the assumption that the peak rate of flow 1 is infinite, by using Theorem 6[47] e
can derive an arrival curve that can be expressed as:

o1 (x) = min{Rx min{b] + pix, b1* + rix}}, (11)

with b} = pimaxy,=o((e2(u) + (p1 — R)u)/R) andbi* = by + rimaxy,so((e2(u) + (r1 — R)u)/R).
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#DBits

Time (z)

Fig. 5. Worst case arrival curvg for the output of flow 1, predicted bheorem land arrival curver;* for the output of flow
1 predicted byEq. (11) The server rate is 1%;(x) = min{10x, 10+ 2x} anda,(x) = min{50x, 1 + 1Qx}.

This bound, contrary to the previous cases, is not tigigt. 5provides a numerical example. However,
there is the following relationship.

Proposition 3. Letaj(x) be the output of flov, predicted byrheoreml ande}*(x) the output of flow
1 predicted byEq. (11) If x is large enough thea} (x) = of*(x).

Proof. First of all, note that both} andb}* in Eq. (11)are constants. Singgx grows quickly than-yx
then, forx large enough); + p1x will be bigger tharb;* + r1x. Therefore, in this case we have that

a1 (x) = min{RX b7* + rix}.

On the other hand, if is large enough then we have thiai,(b) + (r1 — R)b)/R) +x > x; forall b > 0.
By using the Eq. (8) iProposition 2we know that;(x) = maxXyso((@2(b) + (r1 — R)b)/R).
Substituting this value imheorem 1we have that:

o] (x) =min {Rx o (x 4 max(dz(b) + (rp — R)b))}

vb>0 R

<062(b)+(r1—R)b>
R

=min {Rx b1+r1U;a(>)< +r1x} = MiN{RX b7* + rix} = o] (x). O

This last result does not imply that network calculus cannot give the worst case bound. Indeed, in accor-
dance with Proposition 6.4.2 [d7] we can derive an arrival curve that can be expressed as:

ay*(x) =min {Rx min <T§)X(a1(x +u) - ﬁé(u)))}

=min {Rx rgnlg (meg((al(x +u) +ax(u —0) — Ru)) } .

Let us conjecture that the valuestoéindu that solve the previous equation @re= s —s1 andu = s — .
Then

o*(x) = min{RX a1(x + 5 — 57) + a2(s1 — 57) — R(s — s7)}. (12)
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After some algebra, it can be readily seen thgt (12)coincides with the same bound we find in this
paper. This shows that the network calculus could be used to give a worst case bound.

6. Conclusions

In this paper we have analyzed the impact of FIFO multiplexing in the case where the arrival curve
constraints for the input flows are concave piecewise linear functions (which are common in practice and
correspond to combinations of leaky buckets). We found a worst case bound when the FIFO node is a
constant rate server. Furthermore, we also provide a numerical algorithm to compute such a worst case
bound in the case wheug corresponds to the variable bit rate case (or T-SPEC) used by the IETF.

Comparing our bound to previous ones (based on a service curve apptéath), we found that
if the arrival curve constraints are defined by a single leaky bucket, these bounds coincide with ours.
Furthermore, in the general case, we show that network calculus could also be used to give the worst cas
bound.

Our results have some potential applications. In particular, they may be relevant for the Expedited
Forwarding Service (EH)LL4], a service which has been developed indlifferentiated Services Working
Group of IETH3]. The goal of the EF is to provide to an aggregate of flows some hard delay guarantees by
means of ensuring that, at each hop, the aggregate requiring EF treatment receives service rate exceedil
the total bandwidth requirements of all flows in the aggregate at this hop.

Some issues require further study. In this work, we used a fluid approach and, even though we know that
packetization effects are likely to impact our results by one maximum packdsizd, understanding
these effects appears to be an important issue.

Appendix A. Proof of lemmas

The following lemma shows that, for any non-greedy scengfiar flow 1 in time interval §#, ¢], there
is another greedy scenarjofor flow 1 in time interval §, ¢] (with s* > s#) that injects more flow 1
bits than scenarig in time interval #, ¢].

LemmaA.l. Letg be ascenarioin” suchthatintimeintervals?, ¢], flowlinjectsk < a1(t—s?) bits.
Thenthere is a scenarig (withs” > s#) such thatin time interval[s”, ¢], flowlinjectsK = a1(t —s?)
bits.

Proof.

(1) CaseK < a1(r — s): take a scenarig such that:

(a) Flow 2 does not inject any bit.

(b) Flow 1 injectsx;(t — s) bits in time interval §, ] and no bit in the rest of intervals.

In such a scenarig’” = s and the number of flow 1 injected bits in time intervdl [¢] is a1 (t —s7).

(2) CaseK > «;(t — s): take a scenarig (seeFig. 6) such that:

(a) Flow 2 behaves as in scenagio

(b) Flow 1 behaves as in scenagantil time instant immediately beforé .

(c) Flow 1 injects no bits after time instant
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Fig. 6. Scenarigr for Lemma A.1showing the amount of flow 1 bits injected in different time intervals.

(d) Ir:sf <r <s(AJ@t) — Al (r) = a1(t —r) = K).
e)yVm:r<m<t (A}{(m) — A{(r) = a1(m —r)).

In such a scenario, it can be readily seen that:

e s is located at the first flow 1 bit injected aftet. That is, it is located at time instant
e The number of flow 1 bits injected in time interval'[ t] is a1(t —r). Ass?” = r thenay(r — s7).

Therefore, we have that, in time interval' [ ¢], flow 1 injectsK = a4 (¢t — s7) bits, which proves

the lemma.
However, it is also necessary to prove thas a valid scenario in accordance with the constraint

curve for the arrival function. That is, it must be proved the following holds
VYa,b:a <b (A}(b)— Al(a) < ai(b —a)).

(a) Caseb < sf: immediate, sincet} (b) — A} (a) = AP (b) — A} (a) < a1 (b — a).
(b) Cases? <b <t:
(i) Caser < a:immediate.
(i) Caser > a.
By contradiction. Assume that} (b) — A} (a) > a1(b — a). Thatis,a1(b —r) +d >
a1(b — a), whered is the number of flow 1 bits injected in time interval f).
As oy is concave we have thavl > 0: a1 (b —r + 1) +d > a1(b — a + 1). If we take
Il=t—bthena1(t —r) +d > a1(t — a).
By construction ofy, we have that} (1) — A} (a) = a1(t —r) +d > aa(t — a).
However, by construction of we also have that (r) — A (a) = AL (1) — AP(a) <
a1(t — a). We reach a contradiction.
(c) Case < b:
(i) Casea > t:immediate sincel} (b)) — Al (a) = 0 < a1(b — a).
(i) Casea < t:immediate sincet} (b) — A (a) = A} (1) — A} (@) < o1(t —a) < a1(b—a).O

Now, we state the next lemma which shows that the number of flow 1 bits injected for any sg&nario
in time interval [#, t] must be, at mosty1(r — s1).

2 Note that, if f is concave, then the incremefity + 1) — f(x + 1) is wide-sense decreasing witfwherex < y and! > 0),
thusf(x) +d > f(y) impliesVl > 0: f(x +1) +d > f(y +1).
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LemmaA.2. For any time intervals, ¢], we have tha¥g € I" (A% (1) — A% (s) < as(t — s1)).

Proof. By contradiction. Assume there is a scenarisuch that, for some time interval, ], A{(t) —
A’l/(sy) > aq(t — 51).

o Cases” > s1:sinceAl (1) — A (s”) < an(t —s¥) anday(r —s7) < a1(t —s1) thenA] (1) — A] (s¥) <
a1(t — s1). We reach a contradiction.
o Cases < s¥ < s1:
o CaseA](r) — A](s¥) = aa(t — s7): this implies thatA} (r) — A} (s?) < a1(r — s1). We reach a
contradiction.
o Cased] (1)—Aj(s”) < a1(t—s”):fromLemmaA.lthereis ascenaripsuchthat} (1) — A} (s7) <
AL(1) — A2(s?) = a1(t — 5?), beings? > s7.
However, this implies thaA‘f(t) — Aql’(s"’) < a1(t — s1) and consequently} (r) — A} (s7) <
a1(t — s1). We reach a contradiction.
e Cases” = s: sinceA; (1) — A{(sf)_ <oyt —s) andaa(r — s) < a1(t — s1) thenA (1) — A](s7) <
a1(t — s1). We reach a contradiction. O

From the previous lemma, we can derive the following lemma. Roughly speaking it states that
(t —s) =min{R(t — s), a1(t — s1)} is a valid arrival curve for the functioB;.

LemmaA.3. Forany time intervals, 1], we have tha¥8 € I" (B (t) — BY (s) < min{R(t —s), A} (1) —
AL(sP)) < min{R(t — 5), a1t — s1)}).

Proof. Immediate. On the first hand, given a time intervak], the FIFO buffer cannot transmit at a rate
higher thanR (i.e., R(r — s)). Furthermore, the FIFO server cannot transmit, in time intesva],[more
that what is injected in time intervatf, ¢], which, as shown ilemma A.2 is at mostry(r — s1). O

Now, we prove that the abovementioned arrival curve is optimal in the sense that, for each flow and
time interval, there is a scenario for which the formula in Definition 4 is exactly an equality.

LemmaA.4. For any time intervals, ¢], we have thaBig € Wi (s, 1) (B (t) — BL (s) = min{R(t — s),
ay(t —s1)}).

Proof. Take some scenarip € ¥ (s, t). Now, take another scenartbsuch that:

(1) Flow 2 behaves as in scenagiauntil time instant immediately beforg and then stops injecting.
(2) Flow 1 behaves as in scenagiauntil time instant immediately beforg.

(3) Flow 1 injects no bits after time instant

(4) Vm: sy < m <1 (A (m) — Af(s1) = a1(m — 51)).

First, we prove thag is a valid scenario in accordance with the constraint curve for the arrival function.
That is, we will prove that the following holds:

Va,b:a<b (AL(b) — Al (a) < as(b — a)).
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(1) Caseb < s1: immediate, since\? (b) — A? (@) = A} (b) — A} (@) < a1(b —a).
(2) Casesy <b <t
(a) Case; < a: immediate (by condition 4).
(b) Casesy > a.
By contradiction. Assume that! (b)— A (a) > ay(b—a). Thatisai(b—s1)+d > az(b—a),
whered is the number of flow 1 bits injected in time interval [s1).
Asay is concave we have thet > 0: a1 (b —s1+1)+d > a1(b—a+1). Ifwetakel =t —b
thenay1(t — s1) +d > a1(t — a).
By construction of8, we have that\? (1) — A% (a) = a1 (r — 51) +d > s (t — a).
However, by construction of we also have thmf(t)—Af(a) =AY (t)—Al(a) < a1(t—a).
We reach a contradiction.
(3) Case < b:
(a) Casa: > t: immediate sincet” (b) — A% (a) = 0 < a1 (b — a).
(b) Case: < r:immediate sincet’ (b) — AL (a) = AL (1) — A% (@) < a1(t — a) < a1(b — a).

Therefore, we have thgt € Wi(s, t) and that it behaves in a greedy fashion in time intervalz].
Consequently, the buffer content at time instagt (s, ] will be ¢ (r) = max{0, a1(r —s1) — R(r — s)}.
Thus, we have that:

e CaseR(r — s) < a1(t — s1): at time instant, we have thag (r) > 0. This means that not all injected
packets have been transmitted and since FIFO is work conservingrifnen s) flow 1 bits have be
transmitted.

o CaseR(r —s) > a1(t — s1): SinceR(t — s) > a1(t — s1) then, at time instart, we have thag (1) = 0.
This means that all bits injected in time interval,[t] have been transmitted at time Namely,
a(t — s51). O

LemmaA.b. ¥i(s, 1) C D1(s, t).

Proof. By contradiction. Consider a scenafioe Wy(s, t) such that in time intervak[”, s;) either flow
linjectsK < ai1(t —s'7) — ay(t — s1) bits or flow 2 injectsK’ < aa(sy — s') bits (or both things).
Clearlyy ¢ ®@4(s, 1).

Now, take a scenari@ such that:

(1) Flows 1 and 2 start injecting bits after at tinfe.

(2) Flow 1 injects no bits after time instant

(3) Flow 2 injects no bits after time instant

(4) Vm: s <m <t (AL(t) — AP(m) = aa(r — m)).

(B) Vm: s <m < s (Ag(m) — Ag(s”’) =az(m — s')).

Clearly, 8 is a valid scenario in accordance with the constraint curve for the arrival function.

Now, we can see that the number of bits injected in time intes/él {;) is bigger ing than iny.
Namely, in is a1(t — s”) — a1(t — s1) + ao(s1 — s’7) and iny is K + K'. Consequently? < s;.

As (by Condition 4\Vm: s < m <t (A}(r) — AL (m) = a1(t — m)), we reach a contradiction just
takingm = s”. 0
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LemmaA.6. For each scenari@ € ®1(s, t), there is another scenarip € ®(s, t) withs” = s’# and
s? = s such that in time intervdls”, ¢] flow 1 injectsay (¢t — s7) bits.

Proof. Take a scenarig such that:

(1) Flow 2 behaves as in scenafio

(2) Flow 1 starts injecting bits at time instasif.

(3) Flow 1 injects no bits after time instant

(4) Flow 1 injectsu1(t — s"%) — a1(t — sP) bits in time interval |2, s#) in a greedy fashion.
(5) Vm:s# <m <t (AL (t) — AL (m) = ar(t — m)).

It can be readily seen thatis a valid scenario in accordance with the constraint curve for the arrival
function. Indeed, regarding flow 2 scenagidoehaves as in scenario Regarding flow 1, we will prove
that the following holds:

Va,b:a <b (A}ll(b) — A{(a) <wa1(b—a)).

(1) Caseb < s#: immediate.

(2) Case’ < b < t:letcbethefirsttimeinstantintime intervalf, s#) where flow 1 stops injecting bits.
Remember that flow 1 in such ainterval injects a given number of bits (narpely: s"?) — a1 (t —s?))
in a greedy fashion.

(a) Case < a:immediate.

(b) Casec > a: by contradiction. Assume that} (b)) — A} (@) > a1(b — a). By construction of
y we have thatd} (r) — A} (s") = aa(a — s'%) + a1(t — b) + AL (b) — AY(a) > au(a —
s) + a1(t — b) + a1(b — a) > a1(t — s"?). However, by construction gf we also know that
Al (1) — A](s"P) = a1 (t — s’%). We reach a contradiction.

(3) Case < b:
(@) Caser > t: immediate sincet] (b) — A} (@) = 0 < a1 (b — a).
(b) Caserz < t:immediate sincel] (b) — A} (a) = A} (t) — A (a) < a1(t — a) < a1(b — a).

Because of the definition (see Condition 4), the number of flow 1 bits injected in time intesv&l f1]
(for all s’ < m < sP))in y is greater or equal than if. Therefore, {#, s#) is also a busy period in
scenarig/. Now, since the number of flow 1 injected bits itf[ s#) is the same in both scenarios (namely,
itis a1(t — s"%) — a1(t — s#)), we have that” = s# ands”” = s’.

Furthermore, ad} (s?) — A} (s"%) = a1(t —sP) — a1 (t —sP) and A} (t) — A (s"P) = a1 (t — 5s') then
Al (1) — A} (sP) = a1(t — sP). This ends the proof. O

LemmaA.7. s1is the minimum value o among all scenarios ib4(s, 1).
Proof. By contradiction. Assume that the minimum value6fimong all scenarios it (s, t), denoted
s, IS NOts1.

e Cases; < s1: by Lemma A.§ we can obtain a scenarjoe @4(s, ¢) such that, in time intervaky, 7]
flow 1 injectsay(r — s2). Thusy € A4(s, t). Consequently; is not the minimum value of® among
all scenarios iM4(s, ¢) and (by definition of;) we reach a contradiction.
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e Cases, > s1:. byLemma A.5 ¥4 (s, t) € @1(s, t). We reach a contradiction. O

Lemma A.8. For any non-negativéa, b) satisfyingEg. (6) there is some scenarip € @;(s, t) such
thatb = s# — s’ anda = s — s”.

Proof. For a given time intervals], 7], take a scenarig such that:

(1) Flows 1 and 2 start injecting bits at time instant (a + b).

(2) Flows 1 and 2 stop injecting bits at time instant a.

(3) Flow 1 injectsx1(b +a+x) —a1(a +x) bitsin time interval f — (a + b), s — a) in a greedy fashion.
(4) Flow 2 injectsx,(b) bits in time interval § — (a + b), s — a) in a greedy fashion.

(5) (a, b) satisfyEq. (6)

Clearly 8 is a valid scenario in accordance with the constraint curve for the arrival function. We must
prove thatz = s — s# andb = s# — s/,
Since in time intervaly — (a + b), s — a) both flow 1 and 2 are greedy and singgb + a + x) —
a1(a + x) + az(b) — Rb= Ra> 0 then time intervald — (a + b), s — a) is a busy period. Furthermore,
the buffer occupancy at time— a will be Ra Consequently, by timeall those bits will be transmitted.
This shows that? = s — a ands”® = s — (a + b) = s# — b, which proves the lemma. O
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