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Abstract

Real-time applications such as computer and video games, virtual reality and scientific simulation require render-

ing of complex models for realism. Graphics rendering engines include multiresolution modelling techniques to

accelerate the visualization process. The Discrete Level of Detail framework (DLoD) is usually the most popular

while the Continuous Level of Detail framework (CLoD) is still not as widely used by software developers. In this

paper, we first discuss the benefits and drawbacks of both frameworks. Then, we present a model based on coding a

discrete number of levels of detail (LoDs), with more LoDs coded than is usual in DLoD, and with an incremental

representation, which is often used in CLoD. This model obtains a performance similar to DLoD by providing

optimized LoDs for efficient visualization, while the popping effect is imperceptible. We present specific proposals

for each of the three main stages involved in multiresolution processing: geometry simplification, construction of

the incremental representation and retrieval of either uniform or view-dependent LoDs.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Multiresolution modelling has been a matter of growing in-
terest in the last decade. One of its main goals is to accelerate
the visualization process [LRC∗03]. Multiresolution mod-
elling allows for adjusting the level of detail (LoD) of the
scene so maintaining a constant frame rate and assuring in-
teractivity to the final user. Nowadays, real-time applications
such as computer and video games, virtual reality or scien-
tific simulation are among the most demanding and tightly
optimized graphics applications. As these applications re-
quire rendering of complex models for realism, graphics
rendering engines include multiresolution modelling tech-
niques, which have become widely used.

The multiresolution modelling techniques presented in the
literature are classified under two main frameworks for man-
aging level of detail: Discrete LoD (DLoD) and Continuous
LoD (CLoD). DLoD is the most widely used. This frame-

work manages a small number of independent levels of de-
tail (LoDs), where each approximation or LoD represents
the original object using a different number of faces. CLoD
is introduced as an alternative which provides a wide range
(virtually a continuous range [PS97]) of different approxi-
mations, such that the LoD can be adapted to the application
requirements with a high degree of accuracy. CLoD has been
extended to provide view-dependent LoDs, which is some-
times considered as a third framework [LRC∗03].

In order to introduce our proposal we first compare DLoD
and CLoD to understand their benefits and drawbacks. We
have arranged a series of processing stages (figure 1):

Off-line process

• Simplification. The object is processed using a simplifica-
tion tool. In case of DLoD, this process gives the LoDs
separately. In case of CLoD, this process gives the se-
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Figure 1: Order of operations.

quence of removals necessary to construct a multiresolu-
tion representation that provides a wide range of LoDs.

• Construction.

DLoD. This stage consists of only processing each LoD
for maximum efficiency in the rendering process by
using features depending on the particular hardware
targeted, i.e. triangle strips. After completion, standard
file formats can be used to store data for each LoD.
Consequently, LoDs can be easily used in a wide range
of graphic engines.

CLoD. First, a process constructs the multiresolution
representation according to the CLoD model to be
used. Second, data is processed to take advantage of
hardware rendering features. After completion, data is
stored in a proper file format, which is generally non
standard.

At run-time

• Load.

DLoD. LoDs are stored in main memory through com-
monly used data structures and they are easily com-
piled into hardware command streams as static buffer
objects.

CLoD. This framework requires special data structures to
arrange data in such a way that LoDs can be retrieved
as efficient as possible. These structures differ depend-
ing on the particular CLoD model. As in DLoD, data
are compiled into hardware command streams.

• LoD Selection. An algorithm selects the most appropriate
level of detail to display. This stage is analogous for both
frameworks.

• LoD Recovery.

DLoD. As the LoD has been optimized in the off-line
process and compiled for efficient rendering in the
load stage, no more process is required. However,
view-dependent LoDs cannot be retrieved.

CLoD. An algorithm traverses the data structures to re-
cover either uniform or view-dependent LoDs. In order
to use the current hardware capabilities an optimiza-
tion process must be done, thus incurring in an over-
load, which is even higher in case of view-dependent
LoDs.

• Rendering.

DLoD. This framework displays more or less detail than
actually required, and presents visual discontinuities
when changing between LoDs, known as the popping
effect. However, data is provided to GPU highly opti-
mized and maximum performance is obtained.

CLoD. This framework displays the level of detail just
required. Popping effect is not perceptible by the user
as the difference between consecutive LoDs is very
small. However, maximum performance is hard to
achieve because LoD optimization is computed at run-
time and it is not as good as off-line optimization.

We can conclude that DLoD presents drawbacks as the
popping effect and the impossibility of providing view de-
pendent LoDs, and CLoD requires a higher effort in almost
every stage and does not reach the performance of DLoD.
Furthermore, as graphics hardware evolve, changes or ad-
vent of new features require minor changes in DLoD, but
major changes, even redesign, in CLoD.

In this paper, we aim to obtain a performance similar to
DLoD by providing optimized LoDs for efficient rendering,
while the popping effect is imperceptible. We present an im-
proved DLoD (iDLoD) based on the following features: (1)
to increase the number of LoDs, such that it depends on the
fame rate of the application (which is a constant) and it is
independent on the complexity of the object; (2) to encode
LoDs using an incremental representation to reduce the stor-
age cost, so that consecutive LoDs share a high number of
faces; and (3) the difference between two consecutive LoDs
is forced to be a surface patch (see figure 2), so that it can be
optimized off-line for rendering.

Consequently, a LoD is a reduced set of surface patches,
each of which is optimized off-line. At the load stage, data
are compiled into static hardware command streams. The
complexity of the algorithm for LoD recovery depends on
the number of LoDs, which is a constant instead of depend-
ing on the size of the object. The provided LoDs fit the re-
quired level of detail better than DLoD, thus avoiding the
popping effect. Furthermore, in spite of the low granularity,
iDLoD can provide view-dependent LoDs.

c© The Eurographics Association 2010.



J. Ribelles, A. López & O. Belmonte / An Improved DLoD Model Through an Incremental Representation

Figure 2: The left image shows in red the surface patch (61

triangles) selected for simplification at the current LoD. The

right image shows the LoD, which is generated by substitut-

ing the red triangles by a simplified surface (24 triangles).

There is a difference of 37 triangles between these two con-

secutive LoDs.

2. Previous work

The original DLoD was presented by Clark in 1976 [Cla76].
This technique began to be used with the main aim of in-
creasing the performance of the graphic system and this was
accomplished in applications such as walkthroughs in virtual
environments. Recent work has addressed the problem of the
popping effect performing smooth transitions between them
by means of geo-morphing or blending [SG03, BGB∗05].
Numerous methods for CLoD have been presented in the
last years. For an overview on the various schemes proposed
see [Gar99] [RLB∗02].

El-Sana et al. [ESAV99] presented the Skip Strips model,
which maintains a data structure to store the strips that
avoids the need to calculate them in real-time. The MTS
model [BRR∗04] uses triangle strips as both the storage and
the visualization primitive. It consists of a set of multireso-
lution strips, each of which represents a triangle strip and all
its levels of detail. LodStrips model [RCRG06] is entirely
based on optimized hardware primitives, triangle strips, and
deals with the apparition of degenerate triangles by applying
pre-calculated filters.

Ji et al. [JWLL05] suggest a method to select and display
several LoDs by using the GPU. In particular, they encode
the geometry in a quadtree based on a LoD atlas texture.
Masking Strips [RCG∗09] uses a cache-aware stripification
technique to diminish bus traffic and also to apply LoD up-
date routines which remove all the unnecessary degenerate
triangles.

Many of the GPU-based continuous models are aimed at
view-dependent rendering of massive models. Researchers
have recently proposed methods for moving the granular-
ity of the representation from triangles to triangle patches
in order to offer view-dependent capabilities for rendering
out-of-core models [CGG∗04, SM05]. With a similar objec-
tive but with a further GPU exploitation, the GoLD method
[BGB∗05] introduces a hierarchy of geometric patches for
very detailed meshes with high resolution textures. Recently,
Hu et al. [HSH09] presented a fully-GPU implementation of
Progressive Meshes [Hop97].

3. Heuristic determination of the number of LoDs

In the context of real-time applications, an object that is far
away from the viewer will be represented by the lowest level
of detail. As the distance decreases the level of detail in-
creases. Despite thousands of LoDs are available, the appli-
cation usually requires one LoD per frame at most. Let us
consider a frame rate of 50 images per second. If a distant
object gets very near of the viewer one second later, for in-
stance, only 50 LoDs would be displayed. In case the distant
object gets slowly near to the viewer, ten seconds later for
example, the application would require 500 LoDs at most
when using the same frame rate. However, we can suspect in
these cases that the user is not focusing his attention on this
object. This perceptual factor is often used to extend the life
of a LoD over a number of frames [LRC∗03]. In case the
application decides to maintain the LoD during 5 frames,
only 100 LoDs would be displayed, just two times the frame
rate. In case of maintaining the LoD during only 2 frames,
250 LoDs would be enough, just 5 times the frame rate. In
any case, the amount of displayed LoDs is very far from the
granularity that CLoD provides.

Therefore, we propose the number of LoDs to be a mul-
tiple of the frame rate. Experiments have been carried out
using a factor of 2, and three different frame rates: 25, 50
and 70 images per second. Thus each object stores 50, 100
and 140 different LoDs.

4. Simplification

A simplification process converts a polygonal surface into
another surface with a smaller number of polygons. As in
our multiresolution model we need a sequence of simplified
surface patches, methods based on vertex clustering or merg-
ing regions are well suited [Gar99]. However, we used the
method proposed by Garland and Heckbert [GH97], which
is based on edge collapse, plus a merging process to form
surface patches. There is a public domain implementation of
the simplification method of Garland and Heckbert so-called
Qslim [Gar04], and we use it due to its speed and the quality
of the generated meshes.

Our proposal is based on regions that are created and
merged until they reach a given simplification error, E. For
each edge collapse in the sequence provided by Qslim, a new
region is created and checked to be merged with any of the
previously created regions. Each region is assigned a simpli-
fication error, which is the sum of the simplification errors
of all the edge collapses grouped for that region. When the
simplification error of a region reaches E, the region is not
further considered for merging.

Let us consider an edge collapse as the removal and cre-
ation of triangles in the polygonal surface. For example, the
collapse of the edge between triangles a and j in figure 3(a)
and 3(b) would remove triangles {a,b,c,d, i, j} and would
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Figure 3: Creating and merging regions. First, a region Ri is created, (a) T d
i = {a,b,c,d, i, j}, (b) T c

i = {k, l,m,n}. Second, a

new region R j is created, (c) T d
j = {e, f ,g,h,m,n}, (d) T c

j = {o, p,q,r}. As I = {T c
i ∩T d

j } = {m,n}, then Rk = merge(Ri,R j),

(e) T d
k = {T d

i ∪T d
j }− I = {a,b,c,d,e, f ,g,h, i, j}, (f) T c

k = {T c
i ∪T c

j }− I = {k, l,o, p,q,r}.

create triangles {k, l,m,n}. For each edge collapse, we de-
fine a region, Ri, as the tuple {T d

i ,T c
i } where T d

i is the set
of removed triangles (figure 3(a)) and T c

i is the set of cre-
ated triangles (figure 3(b)). Once the new region is created,
we check the previously created regions to find those regions
suitable to be merged with it. So, given two regions, Ri and
R j, where region Ri was previously created and R j is a new
region, we define the check function as:

I = check(Ri, R j) = {T c
i ∩T d

j }

If I 6= ∅ then Ri and R j are merged. That is, in case there
are some triangles created by region Ri that are deleted by
region R j, then both regions must be merged. In the example
of figure 3, first region Ri was created (figures 3(a), 3(b)),
then a new region R j is created from the collapse of edge
between faces n and h (figures 3(c), 3(d)). As the intersection
between T c

i and T d
j is {m,n}, both regions must be merged.

We define the merge function as follows:

Rk = merge(Ri,R j) = {{T d
i ∪T d

j }− I,{T c
i ∪T c

j }− I}

Figures 3(e) and 3(f) show the new T d
k and T c

k sets of re-
gion Rk as a result of the merge function. And the simpli-
fication error of the resulting region is the sum of the sim-
plification errors of both regions. When a region reaches E,
it is not further considered for the merging process. These
completed regions are stored in a result list so that, at the
end of the process, the list contains the sequence of regions
in the completion order. Finally, for each region Ri in the
result list, a LoD of the multiresolution representation is es-
tablished, that is, Mi − T d

i + T c
i = Mi−1. Figure 4 outlines

the data structures and the algorithm used for this process.

5. Construction

One of the characteristics that a multiresolution model for
real-time applications should fulfil is efficient information
processing [RLB∗02]. That is, if the multiresolution rep-
resentation stores n different LoDs, then the information
should be organized in such a way that, during execution,
when any of the n LoDs is requested, the retrieval algorithm
should extract data as fast as possible.

class Region {

vector<int> DeletedFaces

vector<int> CreatedFaces

double error

}

list <Region> result

list <Region> temp

for each edge collapse e {

construct new region R(e)

for each region Ri in temp {

if (check(Ri, R)6= ∅) {

R= merge (Ri, R)

R.error = R.error + Ri.error

temp.remove(Ri)

}

}

if (R.error > E)

result.push_back(R)

else

temp.push_back(R)

}

Figure 4: Algorithm for creating regions. The result list

finally contains the sequence of regions in order of creation.

Let M = Mn be the original mesh. Let {Rn,Rn−1, . . . ,R1},
where Ri = {T d

i ,T c
i }, the regions obtained in the simplifica-

tion process. We construct each LoD as follows:

Mn −T
d

n +T
c

n = Mn−1

. . .

M1 −T
d

1 +T
c

1 = M0

Instead of storing every LoD independently, an incremen-
tal representation stores faces that compose the lower de-
tailed LoD, T0, plus the sequence of updates that allow to
construct every LoD, which in our scheme are determined
by the regions obtained in the simplification process.

Mr = {{T
d

n ,T c
n },{T

d
n−1,T

c
n−1}, . . . ,{T

d
1 ,T c

1 },T0} (1)
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This representation would store many faces twice because
a face created at T c

i most probably is deleted in some T d
j with

i > j, but it can also remain until the lower detailed LoD (it
belongs to T0). Therefore, we can rewrite Mr as a sequence
of removed faces plus T0, that is:

Mr = {T
d

n ,T d
n−1, . . . ,T

d
1 ,T0} (2)

Each face is assigned a label which identifies the LoD
where the face appears for the first time in the sequence
{Mn,T

c
n , . . . ,T c

1 }. Faces that belong to Mn are assigned the
label n, those that belong to T c

n are assigned the label n−1,
and so on, until those that belong to T c

1 , which are assigned
the label zero. Consequently, each set T d

i probably contains
triangles with different labels. Then, faces in each set T d

i are
clustered depending on their label, so that the label is as-
signed to each cluster. Therefore, each set T d

i is composed
of a set of labelled clusters, T d

il
. For a required LoD, Mi, a

T d
jl

, with i ≥ j, belongs to Mi only when l ≥ i. Finally, in
order to take advantage of graphics hardware features, each
labelled cluster is processed to obtain triangle strips.

The basic data structure (figure 5) is composed of two vec-
tors: one contains the vertices, and the other contains the sets
of deleted faces plus T0 (equation 2), that is, one set per LoD.
Each set consists of an ordered vector of clusters. The num-
ber of clusters in each set T d

i depends on the number of la-
bels in the set. Each cluster is composed of its label l plus
the set T d

il
previously stripified. To speed up the recovery

process, the clusters are stored in decreasing order of l.

class Vertex {float x, y, z}

class TriangleStrip {vector <uint> indices}

class Cluster {

vector<TriangleStrip> triangleStrips

int label

}

class Set {vector<Cluster> clusters}

class Mr {

vector<Vertex> vertices

vector<Set> sets

}

Figure 5: Basic data structure to represent Mr.

6. Uniform LoD recovery

The algorithm to retrieve a given LoD is very simple. Let
Mi, n ≥ i ≥ 0, the required LoD to be rendered. As sets T d

j ,
with n ≥ j > i, are the sets of previously deleted faces, none
of these faces belongs to Mi. So, the algorithm traverses the
data structure starting from T d

i until T0. Then, for each set
T d

j , i ≥ j ≥ 0, the clusters, T d
jl

, such that l ≥ i, belong to Mi.
Let us remark that the algorithm does not need to check ev-
ery triangle, only the label of each cluster. Also the ordering
of clusters allows to speed up the process. The algorithm is
shown in figure 6.

int First= sets.length()-i-1

int Last= sets.length()

for (j= First; j< Last; j++) {

int nClusters= sets[j].clusters.length()

int k= 0

while ((k< nClusters) and

(sets[j].clusters[k].label ≥ i)) {

Draw(sets[j].clusters[k])

k= k +1

}

}

Figure 6: Algorithm to render a uniform LoD Mi, n ≥ i ≥ 0.
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Figure 7: Number of clusters per set T d
i , 0 ≤ i ≤ 140.

In order to analyze the efficiency of this algorithm, we
must analyze the number of clusters per set, the total number
of clusters in Mr, and the total number of clusters that form a
given LoD, Mi. First, let us analyze how many clusters, T d

il
,

are there for each set T d
i . Let Li be the number of clusters

in the set T d
i . Theoretically, the upper bound of Li is n +

1− i. The experimental measurements (figure 7) show that
Li does not depend on the size of the object as expected.
The variation of Li is very similar for all the objects and, in
all cases, the values of Li are much less than the theoretical
upper bound.

Second, the sum of every Li is bounded by n2/2 + n/2.
Consequently, the maximum theoretical number of stored
clusters is independent of the size of the object. Experimen-
tal results show that the total number of clusters is around
10n for the tested objects (see table 1).

Third, let us analyze how many clusters form one LoD,
Mi. The theoretical upper bound of the number of clusters
that form Mi is i∗ (n+1− i), where n ≥ i ≥ 0. As n depends
on the desired frame rate, this amount is independent of the
size of the object. Figure 8 shows the number of clusters per
LoD of several objects, and the theoretical upper bound. The
theoretical and experimental values coincide approximately
in Mn and M0, but they are very different for the rest of LoDs.
We can also observe that, on average, the maximum number
of clusters that form a LoD is around 5n, which is very far
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Figure 8: Number of clusters for each Mi, 0 ≤ i ≤ 140.

from the theoretical curve. Although the maximum differ-
ences between the objects are located around intermediate
LoDs, they are almost insignificant, specially if we take into
account, for example, that the dragon model has near 2 times
the number of polygons of the armadillo model.

drawCluster (int i, vector<int> Labels) {

int nClusters= sets[i].clusters.length()

for (j= 0; j< nClusters; j++)

if (sets[i].clusters[j].label /∈ Labels)

Draw(sets[i].clusters[j])

}

checkDependence (int i, vector<int> Labels) {

int nClusters= sets[i].clusters.length()

int k= 0

while ((k< nClusters) and

(sets[i].clusters[j].label /∈ Labels))

k= k + 1

return (k< nClusters)

}

main () {

vector<int> Labels= ∅
int First= 0

int Last= sets.length()

for (i= First; i< Last; i++) {

bool pDetail= preserveDetail(i)

bool dependence= checkDependence(i,Labels)

if ((pDetail is True) or

(dependence is True)) {

drawCluster(i,Labels)

Labels.pushback(n-1-i)

}

}

}

Figure 9: Algorithm to render a view-dependent LoD.

7. View-Dependent LoD recovery

The aim is to represent an object with several levels of de-
tail coexisting along the surface. The decision about which

areas of the surface should be visualized in high or low de-
tail depends exclusively on the criterion or set of critera re-
quired by the application, for example, local illumination,
view frustum, silhouette and so on [Hop97].

The algorithm to retrieve a view-dependent LoD evalu-
ates each set T d

i in order to decide whether its faces must be
preserved or removed in the required LoD, by using a func-
tion that evaluates the criterion defined by the application.
Therefore, the algorithm traverses the whole data structure
starting from T d

n until T0 (see equation 2). Let us note that,
although this might seem a drawback, the vector length is
independent of the object complexity, and the experimen-
tal results show it is around 10n. If the evaluation function
finds that some face in T d

i must be preserved, all faces in
T d

i are preserved. That is, the simplification coded by T d
i is

not performed. Therefore, none of the faces in T c
i can belong

to the required LoD, because these faces are created only if
the simplification coded by T d

i is performed. Then, if one
set T d

j , j 6= i, contains any of the faces in T c
i , the simplifi-

cation coded by T d
j can not be performed, as it depends on

the simplification coded by T d
i . Consequently, faces in T d

j

not belonging to T c
i are preserved too. Actually, only sets

T d
j with i > j can suffer this dependence and, in case the de-

pendence ocurrs, T d
j also generates new dependences with

subsequent sets. As faces in T d
j have been clustered and la-

belled, and each label indicates the LoD of creation, none of
the faces in cluster T d

jl
with l 6= i−1 belong to T c

i , only faces

in T d
ji−1

do. Therefore, for checking dependence between T d
i

and T d
j , i > j, it is enough to check if any of the labels in

T d
j is equal to i− 1. The algorithm is shown in figure 9. In

summary, each set T d
i , n ≥ i ≥ 0, is preserved in any of these

cases:

• The evaluation function decides to preserve detail.
• There exists a dependence: there is one set T d

k , k > i, that
was preserved and there is a cluster T d

il
, such that l = k−1.

This process uses the same data structure shown in figure
5. However, the algorithm uses a vector of labels to store
those which produce dependencies in the recovered LoD.
The length of this vector is n + 1 in the worst case, where
n is a constant multiple of the frame rate. The algorithm tra-
verses the sets vector entirely. As the length of this vector is
small (50, 100 and 140 in our experiments), the traversal is
done very fast. Probably, the most expensive operation in the
algorithm is the evaluation function for preserving detail. So,
the interest of the algorithm depends on whether this cost is
lower than the cost in rendering the most detailed LoD using
the algorithm shown in figure 6.

8. Results

The experiments were carried out on a personal computer
with Linux operating system, Pentium D CPU and NVIDIA
GeForce 7600-GT GPU. The model was coded in C++ and
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Geometry. Mn Mr , 140 LoDs Mr , 100 LoDs Mr , 50 LoDs
#Vertices #Triangles #Indices #Strips #Indices #Strips #Indices #Strips

Armadillo 172,974 345,944 1,021,755 1,330 1,010,339 951 975,797 436
Dragon 359,173 715,933 2,069,974 1.577 2,053,243 1,171 2,005,531 535

Table 1: Three iDLoD representations of Armadillo and Dragon objects, with 140 LoDs, 100 LoDs and 50 LoDs respectively.

M100 M75 M50 M25 M0

#Vertices #Indices #Vertices #Indices #Vertices #Indices #Vertices #Indices #Vertices #Indices
Armadillo 172,974 549,196 129,956 421,305 86,939 285,610 43,921 145,241 904 3,042
Dragon 359,173 1,030,325 270,463 841,201 181,770 580,827 93,072 301,434 3,710 11,250

Table 2: DLoD representations of Armadillo and Dragon objects with 5 LoDs, each one reducing the geometry in 25%.

the OpenGL graphics library was used. In our experiments
we enabled one light source and the size of the viewport is
1024x768 pixels. For each vertex we send its coordinates
and its normal, and we scale the object to the bigger size in-
side of the frustum. We used the GL_TIME_ELAPSED ex-
tension, which provides a query mechanism to determine the
amount of time used for completing a set of GL tasks with-
out stalling the rendering pipeline. We used the NvTriStrip

library for vertex cache aware stripification of geometry. Ex-
periments show that better performance is obtained when tri-
angle strips are stitched together using degenerate triangles.
Therefore, triangle strips have been stiched in the off-line
process for both DLoD and iDLoD.

Table 1 shows the characteristics of the polygonal models
used in the experiments as well as the number of strip in-
dices. The number of clusters in Mr is equal to the number
of strips since they are stiched for each cluster. The experi-
ments carried out aim to obtain the performance of the pro-
posed model, iDLoD, and even more important, to compare
with the performance of a DLoD that consists of 5 LoDs,
denoted as reference LoDs, each one reducing the geome-
try in 25%. Table 2 show the characterisitcs of the DLoD
constructed for each object.

We used two different implementations of the iDLoD
model. First, a unique multiresolution representation with
the n LoDs, denoted as iDLoD. Second, a sequence of four
multiresolution representations, denoted as iDLoD-b, such
that each one provides LoDs between two consecutive refer-
ence LoDs. Therefore, each multiresolution representation
in the iDLoD-b model provides a quarter of the n LoDs.
Figure 10 shows the results of the three considered mod-
els with two different objects. All of the plots show simi-
lar behaviour. As expected, the DLoD produces the high-
est frame rate. The iDLoD almost reaches DLoD perfor-
mance: the models with 50 LoDs approach DLoD perfor-
mance more than the ones with 140 LoDs. The performance
of the iDLoD-b implementation goes through the reference
values of DLoDs. This is because this implementation pro-
vides LoDs formed by a quarter of the clusters at most,

which produces the increment of performance respect to the
iDLoD implementation.

9. Conclusions

Since J. Clark presented it in 1976, DLoD has been the mul-
tiresolution framework mostly used. During the last years,
many well-known works have been proposed as an alterna-
tive. Mainly, the efforts have been directed to improve CLoD
and View-Dependent techniques. However, in the field of
real time applications, software developers still prefer the
DLoD framework. In this paper we have presented a model
based on coding a discrete number of levels of detail, with
more LoDs coded than is usual in DLoD, and with an in-
cremental representation, which is often used in CLoD. The
difference between two consecutive LoDs is forced to be a
surface patch so that it can be optimized off-line for ren-
dering. Experimental results show that this model obtains a
performance similar to DLoD by providing optimized LoDs
for efficient visualization, while the popping effect is imper-
ceptible. In addition, view-dependent LoDs can be retrieved
in spìte of the low granularity.
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