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Abstract. Multiresolution modelling of polygonal surface meshes has
been presented as a solution for the interactive visualisation of scenes
formed by hundreds of thousands of polygons. On the other hand, it has
been shown that representing surfaces using sets of triangle strips or fans
greatly reduces visualisation time and provides an important memory
savings. In this paper we present a new method to model polygonal
surface meshes. Like the previously explained Multiresolution Ordered
Meshes (MOM), this method permits the efficient management of an
ample range of approximations of the given model. Furthermore, this
method utilises the triangle fan as its basic representation primitive.
Experiments realised with data sets of varying complexity demonstrate
reduced storage space requirements, while retaining the advantages of
MOMs.

1 Introduction

One of the principle objectives of multiresolution modelling [1] is to permit in-
teractive visualisation of surfaces formed by thousands of polygons. Given a
mesh, M , a multiresolution model defines how to store and retrieve n differ-
ent approximations or levels of detail (LOD), M0, M1, ...., Mn−1, in an efficient
manner.

Several mechanisms have been developed to accelerate the process of visual-
ising polygonal models. For example, strips and fans of triangles (see figure 1)
appear as drawing primitives in some graphics libraries, such as OpenGL. This
type of primitives allow for rapid visualisation. To draw a fan of n triangles, for
example, it is only necessary to pass n+2 vertices, instead of 3n, to the graphics
processor. This not only reduces computation time due to a reduction in vertices,
but also an important memory savings.

Obtaining the optimal set of strips or fans for a given surface is a process
realised off-line when working with static models. However, when working with
a multiresolution model, the surface connectivity changes with changes in level
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Fig. 1. Example of a strip and a fan of triangles. On the left, a strip defined by
v0, v1, v2, v3, v4, v5 and on the right, a fan defined by v0, v1, v2, v3, v4, v5, v6, v1
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Fig. 2. Visualisation process of a LOD in VDPM

of detail, probably with each frame, therefore requiring the dynamic generation
of the strips or fans.

This article presents a new multiresolution scheme permitting the recuper-
ation of a level of detail, directly as a set of triangle fans. It is based on the
Multiresolution Ordered Meshes (MOM) model presented earlier [2]. The new
scheme, called MOM-Fan, defines a new data structure and a new traversal al-
gorithm which optimises the triangle fans for visualisation at the LOD required.

Notation. The geometry of a triangulated model, M , is denoted as a tupla
{V ,F}, where V is a set of N positions vi = (xi, yi, zi) ∈ R3, 1 ≤ i ≤ N , and F
is a set of triples {j, k, l}, j, k, l ∈ V , specifying positions of triangles faces.

2 Previous Work

Hoppe [3] presents a multiresoution model, VDPM, based on a hierarchical struc-
ture of vertices built from a sequence of contractions of edges. The level of detail
is determined from a series of criteria based on the view frustum, surface ori-
entation, etc. Changes in these conditions trigger changes in the required LOD,
and it is proposed that triangle strips be generated using a greedy algorithm
once the component triangles are determined for that LOD (figure 2).

El-Sana et al. [4] presents a data structure, Skip-Strips, that maintains trian-
gle strips even though the LOD may change. A Skip-Strip is built at run time,
from the multiresolution model. At the same time the triangle strips from the
original model are obtained. Each time the level of detail changes, the Skip-Strip
structure is updated based on the required LOD, which permits the update of
the strips and their subsequent visualisation (figure 3). As the strips are gen-
erally quite short, it has been proposed that they be concatenated previous to
visualisation.

The proposal in this article simplifies the LOD visualisation scheme. The
multiresolution model itself is encoded using triangle fans, and therefore it is



Multiresolution Modelling Using Triangle Fans 433

Skip-Strips Strips

JoinBuild

Generate Triangle Strips

Model

Multiresolution

Mesh LOD

Update Update

Skip-Strips Strips

Update Display

LOD

Fig. 3. Visualisation process of a LOD in Skip-Strips

Mesh LOD

Update Display

LOD

Multiresolution Model

with Triangle Fans

Fig. 4. Visualisation process of a LOD using MOM-Fan

necessary to make some adjustments to each fan according to the LOD (fig-
ure 4). Figure 9 illustrates three LODs of a MOM-Fan object, where the trian-
gles composing each fan have been coloured alike and the boundaries have been
highlighted.

Other multiresolution models exist which do not make use of either triangle
fans or strips; see [1] for a recent survey of these.

2.1 Review of Multiresolution Ordered Meshes

Multitresolution Ordered Meshes was presented with the idea of improving the
interactive visualisation of complex polygonal surfaces. Later, it was extended to
exploit frame-to-frame coherence [5]. This permitted the acceleration of LOD re-
covery, while not affecting visualisation time. Finally, in [6] MOM was compared
against Progressive Meshes [7].

Let M and M r be the original and multiresolution meshes, respectively. M r

explicitly stores the vertices Vr, and the faces Fr, utilised to represent any
resolution:

M r = {Vr,Fr} (1)

To build M r with n levels of detail, we apply n−1 iterations of a simplification
method. Each simplification Si, 0 ≤ i < n−1, produces a new level of detail Mi+1

and may be represented by the tuple Si = {Vi, Fi, V
′
i , F ′

i} where Vi and Fi are
the sets of vertices and faces which are eliminated from Mi, and V ′

i and F ′
i are

the sets of vertices and faces which are added to Mi to gerenerate, finally, Mi+1.
Therefore, we may express the resulting object, Mi+1, as:

Mi+1 = (Mi − {Vi, Fi}) ∪ {V ′
i , F ′

i}, 0 ≤ i < n − 1 (2)
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Given that M r stores all vertices and faces that can be used at any set level of
detail, M r can be defined as:

M r =
n−1⋃

i=0

Mi, n ≥ 1 (3)

From the equations 1 - 3, we derive that M r can be expressed as the initial
mesh, M = M0, plus all vertices and faces generated in each iteration of the
simplification process:

Vr = V0 ∪ V ′
0 ∪ V ′

1 ∪ ... ∪ V ′
n−2 = V0 ∪

n−2⋃

i=0

V ′
i (4)

Fr = F0 ∪ F ′
0 ∪ F ′

1 ∪ ... ∪ F ′
n−2 = F0 ∪

n−2⋃

i=0

F ′
i (5)

or also, as the mesh corresponding to the worst level of detail, Mn−1, plus the
vertices and faces eliminated in each iteration of the simplification process:

Vr = V0 ∪ V1 ∪ ... ∪ Vn−2 ∪ Vn−1 =
n−2⋃

i=0

Vi ∪ Vn−1 (6)

Fr = F0 ∪ F1 ∪ ... ∪ Fn−2 ∪ Fn−1 =
n−2⋃

i=0

Fi ∪ Fn−1 (7)

The basic idea of MOM is based on the expressions of the two previous
equations. That is, store in ordered form the sequences of vertices and faces
eliminated, Vi and Fi, 0 ≤ i < n − 2, plus the vertices and faces corresponding
to the worst level of detail Mn−1 = {Vn−1,Fn−1}. Each stored face is identified
by a value representing its position in the face sequence ordered according to
equation 5 above. MOM-Fan is based on the same idea, the difference being
that here we store and manipulate triangle fans instead of isolated triangles. In
section 3 we show how to store the fans in the data structure, and in section 4
how to recover those fans which form a given level of detail.

3 Data Structure

The data structure presented here is based on a list of lists similar to that
described in [2]. The fundamental difference is the list which stores vertex se-
quences, which substitutes the anterior list of faces. In figure 5 the data structure
of the model is shown. The data structure is formed of three lists:

– Vertex list (vertexList field). Stores the vertices of the mesh in an ordered
fashion according to their elimination in the simplification process. Each
represents the initial vertex of a fan and consists of its co-ordinates (coord
field) and a pointer to the second vertex in the fan (secondFanV ertex field).
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struct Vertex

float coord[3];

int secondFanVertex;

end struct

struct FanVertex

int id;

struct Vertex *v;

end struct

struct ControlLod

int deletedVertices;

int generatedFaces;

end struct

struct MOM-Fan

int nVertices, nFanVertices, nLods;

struct Vertex vertexList[];

struct FanVertex fanVertexList[];

struct ControlLod controlLodList[];

end struct

Fig. 5. MOM-Fan Data Structure

– Fan list (fanV ertexList field). Stores the fans as vertex sequences (except
the initial vertex, already stored in the vertex list). For each fan we store
the vertices of the triangles which disappear when the common vertex is
eliminated. Each stored vertex consists of a pointer to the vertex in the
vertex list (v field) and an identifier (id field). The identifier references the
face of the fan represented by that vertex. The fans are also ordered according
to their elimination in the simplification process.

– Control List (controlLodList field). For each LOD, this list stores the infor-
mation necessary to recover the data pertaining to that LOD.

3.1 Construction Process

The process of constructing the model is divided into 2 steps. The first involves
the tasks which must be repeated during each iteration of the simplification. The
second includes a group of operations which finish building the multiresolution
model M r. To simplify the explanation let us assume that each simplification
realised eliminates only one vertex. In figure 6 we show the mesh to be utilised in
explaining the construction, initialisation, the result of the first stage -eliminating
vertices v4 and v1- and the result of the second stage.

Initialisation. Before beginning this process it is necessary to initialise M r

with M0, as it is the first level of detail. For this it is necessary to update
controlLodList with data from the mesh M0, filling in the fields deletedVertices=
0 and generatedFaces= |F0|. The vertex list and fan list are empty.

First stage. For each iteration in the simplification process the following
tasks are realised:

1. Store in fanV ertexList the vertices which form the fan, except for the vertex
eliminated (common vertex).

2. Store in vertexList the eliminated vertex and place the pointer at the first
of the remaining vertices of the fan.

3. Update controlLodList with the deleted vertices and the total number of
generated faces.
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Second stage. To complete the data structure:

1. Add the mesh containing the worst LOD, as a set of fans, in the same manner
as in the first stage. The vertices that do not have an assigned fan are put
at the end of the list.

2. Update the pointers of the fan vertices so that they point to the vertices in
the new vertex list.

With this step we conclude the construction of the data structure, which we can
generalise as being the elimination of more than one vertex in the simplification
process similar to that in [2].

3.2 Storage Cost

Assuming that the cost of storing a real, an integer and a pointer is one word,
and that we store three lists, one for each data type in the model (see figure 5),
the total storage cost will be 4|Vr| + 2|Fr

a | + 2n words, being |Fr
a | the size of

fanVertexList. The order of |Vr| (see eq. 4) in the worst case is quadratic with
regard to |V0|. The best case appears when we use a simplification method based
on vertex decimation [8], where |Vr| = |V0| and may reach |Vr| = 2|V0| in the
case of simplification methods based on elimination of edges [9].

With regard to |Fr
a |, in the worst case, the cost also is of quadratic order with

respect to |F0|. If we use a simplification method based on vertex decimation
and we assume that the number of faces around a given vertex to be an average
of 6 and that |Vi| ≈ |Fi|/2, 0 ≤ i < n−1, we have |Fr

a | ≈ 3.5|F0|. With a method
based on elimination of edges, |Fr

a | ≈ 5.5|F0|.
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for each vertex v from DV and while there exist triangles to paint
InterruptionFan <- true {force the a.1 case}
for each vertex vi of the fan associated with v, from the first to the penultimate

if fanVertexList[vi].id < GF then {case a) paint vi}
if InterruptionFan then
paint(v) {case a.1) paint the initial vertex}
InterruptionFan <- false {do not repeat case a.1)}

end if
paint(vi)

NF <- NF-1

else {case b) do not visualise vi}
if no InterruptionFan then
paint(vi) {paint vi to close triangle}
InterruptionFan <- true {force case a.1)}

end if
end if

end for
if no InterruptionFan then

paint(vi) {last vertex vi from the list, to close fan}
end if

end for

Fig. 7. Visualisation algorithm

4 Algorithm for Visualising a LOD

The visualisation algorithm of a LOD, which is shown in figure 7, requires the
initial calculation of the number of triangles to visualise at that LOD. Afterward,
it traverses the data structure recovering the triangle fans pertaining to the
required LOD.

Given a LOD k in the control list we store the number of vertices not per-
taining to k, DV , and the number of generated faces, GF . Based on these data
it is trivial to obtain the number of faces, NF , which pertain to k:

DV= controlLodList[k].deletedVertices;

GF= controlLodList[k].generatedFaces;

NF= GF-(vertexList[DV].secondVertexFan- DV)

Using the example in figure 6, suppose we wish to visualise the best LOD
(M0). The fans to be generated, ordered by the appearance of vertices in the
data structrure, are: (v4 v1 v3 v5 v6 v8 v7 v1) which correspond to the faces (f2
f3 f4 f8 f7 f6); (v1 v2 v0 v3) and (v1 v7 v2), which correspond to the faces (f0
f1) and (f5), respectively. The first vertex of the fan always corresponds to the
eliminated vertex. The remaining vertices are stored in fanVertexList, and are
associated with the eliminated vertex. For each fan only the t first vertices of
t+1 vertices composing it are processed, because each of them represents one of
the t faces represented whereas the last vertex serves only to complete the fan.

However, it may occur that some vertices do not pertain to the required LOD.
In the example, because f10 and f9, implicitly associated to v1, should not be
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visualised, there is a jump from vertex v3 to v7. To resolve these jumps without
splitting fans, it is necessary to introduce the vertex v1 between v3 and v7,
thus producing two degenerate triangles. While the first fan is resolved without
degenerate triangles (v4 v1 v3 v5 v6 v8 v7 v1), the second fan (v1 v2 v0 v3 v1 v7
v2) includes two of them, (v1 v3 v1) and (v1 v1 v7). Upon processing each of the
vertices two things may occur: a) the vertex identifier indicates that the triangle
should be painted, or b) the vertex identifier indicates that the triangle should
not be painted. When the second case occurs, this signifies an interruption in
the fan, and if this continues further along it is necessary to insert the initial
vertex. Therefore, the first time that case a) is encountered after an interruption
the insertion should be realised (case a.1 in the algorithm).

The computational cost of the algorithm to extract LOD k depends on the
total number of vertices not eliminated, which is at most |Vr| − k, and the total
number of vertices of the associated fans, which is at most |Fr

a | − 2k. |Vr| and
|Fr

a | are, in the worst case, of quadratic order with respect to |V0| and |F0|,
respectively, but this case differs substantially from the normal case. With the
method of simplification by elimination of vertices the cost is O(8|Vk|) and with
a method based on edge elimination, O(13|Vk|).

5 Results

The experiments were realised utilising a Silicon Graphics RealityEngine 2, with
a MIPS R10000 at 194 MHz and 256 Mb RAM. Coding of the model was in C++
and utilised OpenGL as its graphics library. The simplification method used to
construct the multiresolution representations is that proposed by Garland and
Heckbert [9] based on contraction of edges. The meshes come from the Stanford
University Computer Graphics Laboratory (http://www-graphics.stanford.edu/
data/3Dscanrep/) and Cyberware (http://www.cyberware.com/models/).

In table 1 we summarise the characteristics and storage costs of the objects
used in the experiments. For each of them we indicate the number of vertices
and faces of the original model, and its storage cost assuming a structure based
on a vertex list and a triangle list [10]. Also it is assumed that a word (integer,
real, or pointer) carries a set cost of 4 bytes. With regard to the multiresolution
ordered mesh (MOM) representation, we indicate the number of levels of detail,
the number of faces and the total storage cost. Regarding the new representa-
tion proposed in this article, we indicate the number of fanVertex and the total
storage cost. It can be observed that the number of fan vertices stored in the
new representation is higher than that of the faces in the MOM representation.
However, given that the cost to store a fan vertex is less than for a face, the
storage cost of the new list provides a memory savings of about 20% over the
face list. The repercussion of this is that the total storage cost is reduced by
an important amount, approximately 15%, due to the fact that the list which is
reduced is the ”heaviest” list in the model (compare the number of faces with
the number of vertices and LODs).
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Table 1. Characteristics and storage costs

Original MOM MOM-Fan
Vertices Faces MB Lods Faces MB Fan V. MB

Cow 2,905 5,804 0.100 2,803 14,982 0.237 17,852 0.202
Sphere 15,315 30,624 0.526 15,264 83,486 1.306 98,793 1.104
Bunny 34,835 69,451 1.193 33,990 182,192 2.876 216,759 2.445
Phone 83,045 165,963 2.850 81,668 441,181 6.940 523,844 5.887
Isis 187,871 375,736 6.450 187,370 993,559 15.667 1,181,373 13.309
Buda 543,653 1,085,636 18.646 543,106 2,754,083 43.957 3,297,593 37.598

In figures 8(a) and 8(d) the behavior of the new representation is shown,
using the Bunny and Buda models (some views of them are shown in figures 10
and 11). On the X-axis the level of detail is represented, where 0 is the poorest
and 1 the best. On the Y-axis we show the time spent (in seconds) for the
model to recover the data pertaining to a given LOD and to visualise them. The
behavior is similar to that obtained with the earlier MOM scheme and one can
observe the linear response with respect to the number of triangles of the LOD
visualised. The improvement gained by the use of triangle fans is diminished
somewhat by the slight increase in data recovery time due to a more complex
algorithm, the short length of fans (an average of 3.3 triangles per fan), the
degenerate triangles, and the overhead caused by executing, for each fan, the
instructions glBegin and glEnd in the OpenGL implementation. In figures 8(b)
and 8(e) we show the number of non-degenerate triangles and the number of
degenerates (around 23% of the total triangles) sent to the graphic subsystem
per LOD. In figure 8(c) and 8(f) we show the number of vertices sent per LOD
in the MOM representation, and those sent in the new representation (about
40% fewer).

6 Conclusions and Future Work

In this article we present a new multiresolution scheme which permits the storage
and visualisation of the distinct levels of detail as triangle fans. The objective is
double: to reduce the visualisation time and also the space (storage) cost.

The experimental results show a reduction of about 15% in storage cost with
respect to the previous MOM representation, upon which the new approximation
is based. However, the behavior of the new model regarding its visualisation
time, is similar to its ancestor. A short average fan length, the high percentage
of degenerate triangles, and the necessity to adjust the fans to the required LOD
in real-time contribute to produce overall results which do not suppose a global
improvement in visualisation time.

This work will proceed from this moment on, toward the utilisation of triangle
strips which, in principle, will permit a higher average number of triangles per
strip than has been obtained using fans. In this manner we expect the storage
cost to be further improved, as well as visualisation times.
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Fig. 8. Results: a), b) and c) Bunny model; d), e) and f) Buda model
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Fig. 10. Four levels of detail of the Bunny model visualised using fans
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Fig. 11. Two levels of detail of the Buda model visualised using fans
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