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Introduction

These notes have been written as accompanying material for a mini-

course to be given in the workshop Topological Groups: Introduction to

Dynamical Systems ( Seminario Internacional Complutense).

The main objective of the course has been to put together several di-

rections of research that despite being very close are often introduced and

treated separately.

The minicourse consists of 3 lectures of 1 hour each. Clearly enough,

most of the material contained in these notes will not be covered in detail,

this partly accounts for the irregular level of detail in them. The concept

of semigroup compactification is introduced practically from scratch and

then we turn to examining the resulting object from several points of view,

mostly trying to shed light on the relationship between a group and its

compactification.

All our work is directed to the compactifications generated by four

algebras of functions: left uniformly continuous functions, weakly almost

periodic functions, Fourier-Stieltjes algebra and almost periodic functions.

Other algebras such as the algebra of distal functions or measure algebras are

not even mentioned. Also we have not considered semigroup compactifica-

tions of semigroups even if some portions of what we do here make complete

sense (and may be related to important problems) for semigroups. On the

other hand, the groups to which our results are addressed are very diverse.

At some points we are interested in locally compact nonAbelian groups (as

is the case for interpolation sets), at others we point to Banach-Lie groups

and other classes of Abelian groups (as for instance in the study of unitary

and reflexive representability), while for some other matters discrete Abelian

groups already provide questions we cannot answer and have centered our

attention (the case of cancellability).

Other elections for both the questions to be treated and the compact-

ifications to be used could have been done, but I have chosen those more

closely related to my own work and/or taste in an attempt to reach the
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6 INTRODUCTION

minimum level of competence due for the task. We do not have for in-

stance treated other important questions such as semigroup compactifica-

tions of large groups and the relation of semigroup compactifications with

dynamical systems through enveloping semigroups. Both of these subjects

have nonetheless survey papers ([Pes99] and [Pes07a] for the former and

[Gla07] for the latter) that provide a considerable insight and make unnec-

essary further elaboration here.

I have tried to give proper credit to all results that do appear in these

notes, hopefully very few will have passed unnoticed. Most of the results

have proofs, even if many are only sketches. A good number of these proofs

(and some results) have been slightly reworked to fit in the discourse, many

others are only sketched and a few have been completely modified. Here

I also hope that the number of errors has been kept in a minimum. Un-

fortunately I have only been able to finish these notes in the eve of the

workshop. This means that a proper proofreading has not been performed

as it is mandatory in a written text (this also accounts in part –see the

first paragraph of this introduction– for the irregular level of detail in these

notes).

Acknowledgements: I owe gratitude to several people without whom

this course would have been impossible to ensamble.

First of all I want to thank Elena Mart́ın-Peinador who invited and

encouraged me to give this course. Her efforts in organizing these work-

shops help to keep together our topological groups community and are truly

appreciated.

I would like to thank Salvador Hernández for helping me out in some

questions related to uniformities. He is also the author or coauthor of many

of the results in chapter 3 that have their roots in my doctoral dissertation,

written under his guidance, hence the acknowledgement goes almost without

saying.

Mahmoud Filali has taught me most of what I know concerning the alge-

braic structure of the weakly almost periodic compactification, the material

of chapter 4 is modeled on a joint work in progress started in September

2007 that will hopefully be finished in the near future.

I also want to thank Stefano Ferri for discussing and sharing with me

his ideas around several issues related to section 2.

Finally I would like to thank M. Megrelishvili for his developing parts

of this subject. Even if we have had no contact recently, he has been very

helpful in reading, rigourously and constructively, some of my works on the
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subject (mainly [Gal09] and [FG]). It will also be noticed, as I did whilst

writing, that at some points I am actually (in general unconsciously but

some times with direct references) taking up his point of view– and that

maybe it should have been him who writes them.
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Algebras of functions and Compactifications

1. Some distinguished algebras

These notes are devoted to study the compactifications defined by the

sets of functions defined on a topological group G that are introduced in

this section. They are all subsets of CB(G) the algebra of all continuous,

bounded functions on G. These algebras are all related to the topological

behaviour of translations within these sets, we will use in this regard the

symbols Lg and Rg to denote, respectively the left- and right-translation

operators

Lg(f)(x) = f(gx) Rg(f)(x) = f(gx) for f : G→ C and x, g ∈ G.

Definition 1.1. Let G denote a topological group. We introduce here

the sets of complex-valued functions that will be our object of attention

throughout these notes.

• LUC(G)LUC(G)LUC(G): The set of all left-uniformly continuous functions on G,

i.e., the set of all functions f : G → C such that for every ε > 0

there is a neighbourhood V of the identity of G such that

|f(vg)− f(g)| < ε for all v ∈ V and g ∈ G.

• WAP(G)WAP(G)WAP(G): The algebra of all weakly almost periodic functions on

G.

WAP(G) =

{
f : G→ C : f is continuous and the set {Lgf : g ∈ G}

is weakly relatively compact in CB(G)

}
• B(G)B(G)B(G): The uniform closure of the Fourier-Stieltjes algebra B(G),

B(G) = B(G)
‖·‖∞

. The Fourier-Stieltjes algebra is the linear span

(in CG) of the set of continuous positive-definite functions, where

a function φ : G→ C is said to be positive-definite provided∑
1≤i,j≤n

αiαjf(x−1
i xj) ≥ 0,

for any α1, . . . , αn ∈ C and x1, . . . , xn ∈ G.

9



10 1. ALGEBRAS OF FUNCTIONS AND COMPACTIFICATIONS

• AP(G)AP(G)AP(G): The algebra of all almost periodic functions on G.

AP(G) =

{
f : G→ C : f is continuous and the set {Rgf : g ∈ G}

is norm relatively compact in CB(G)

}
It is well-known that weakly almost periodic functions on locally com-

pact groups are uniformly continuous (see for instance [DR71, Theorem2.5]).

However, the usual proofs of this fact rely strongly on Haar measure and do

not apply to nonlocally compact groups. We see here how to prove this in

general, this is based on the following well-known lemma.

Lemma 1.2. Let φ ∈ CB(G), and consider the map Tφ : G → CB(G)

defined as Tφ(g) = Lg(φ). Then:

(1) φ ∈ LUC(G) if and only if Tφ is norm-continuous.

(2) If φ ∈WAP(G), then Tφ is weakly continuous.

Proof. Statement (1) follows directly from the definitions.

Now suppose φ ∈WAP(G) and suppose (gi)i∈I is a net in G converging

to g ∈ G. Let (gj)j∈J be a subnet of (gi)i∈I . Since φ is weakly almost

periodic, some subnet of Lgjφ must converge to some S : CB(G)→ C in the

weak topology. Abusing the notation we keep the name (Lgjφ)j∈J for this

subnet. This in particular means that for any x ∈ G,

lim
j∈J

φ(gjx) = S(x).

But since φ is continuous and limj∈J gj = g we conclude that S(x) = φ(gx),

and this for all x ∈ G. Hence S = Tφ(g). Having proved that every sub-

net of (Tφ(gi))i∈I has a subnet weakly convergent to Tφ(g), we have that

limi∈I Tφ(gi) = Tφ(g) weakly, and hence that Tφ is weakly continuous. �

Lemma 1.3. If φ ∈WAP(G), then both {Rgf : g ∈ G} and {Lgf : g ∈ G}
are weakly relatively compact in CB(G).

Proof. �

Corollary 1.4. The inclusion WAP(G) ⊂ LUC(G) ∩ RUC(G) holds

for every topological group G.

Proof. That WAP(G) ⊂ LUC(G) follows directly from Lemma 1.2.

For the inclusion WAP(G) ⊂ RUC(G), it is necessary to define Sφ : G →
CB(G) as Sφ(g) = Rg(φ). The proof of Lemma 1.2 can then be repeated

with Sφ, using Lemma 1.3 instead of Tφ and the result follows. �
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2. Groups of isometries

One common feature of the sets defined in 1.1 is that they all can be

realized as algebras of matrix coefficients of representations. Before estab-

lishing this fact, we recall here the basic terminology concerning Banach

representations.

If B is a Banach space, Is(B) will denote the group of all linear isometries

of B, with composition of isometries as group operation. We will always

assume that Is(B) carries the so-called strong operator topology (SOT), that

is, the topology of pointwise convergence on B. With this operation and

topology, Is(B) becomes a topological group. Another useful topology on

the space of operators on B is the weak operator topology that is the weak

topology generated by the collection of functions φξ,ξ∗(T ) = ξ∗(Tξ) when

ξ runs over B and ξ∗ runs over the conjugate Banach space B∗. If B = H
is a Hilbert space, both (weak operator and strong operator) topologies

coincide when restricted to Is(H). The extension to reflexive spaces of this

well-known fact is due to Megrelishvili [Meg01b].

A continuous representation of a topological group G by isometries of

a Banach space B is a continuous group homomorphism π : G → Is(B) of

G into the topological group Is(B) of all linear isometries of B. By a co-

representation we will refer to a group co-homomorphism (i.e. such that

f(xy) = f(y)f(x)).

Definition 1.5. Let π : G → Is(B) denote a representation (or a co-

representation) of the group G by linear isometries of the Banach space B.

If ξ ∈ B and η∗ ∈ B∗, the conjugate space of B, the function φπ,ξ,η∗ : G→ C
given by

φπ,ξ,η∗(g) = η∗ (π(g)ξ ) ,

is called the matrix coefficient of π given by ξ and η∗.

We will make strong use of two representations (together with its subrep-

resentations and deformations), the so-called left-regular and right regular

representations LG : G → Is(`∞(G)) and RG : G → Is(`∞(G)) defined on

the Banach space `∞(G) of bounded functions on G with the sup-norm,

LG(g)(f) = Lgf RG(g)(f) = Rgf

Exercise 1. (1) Show that LG and RG are, respectively, a co-

representation and a representation of G.
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(2) Show that LG defines a continuous co-representation on Is(LUC(G))

and that all matrix coefficients of this co-representation are left-

uniformly continuous (conjugating neighbourhoods, i.e. doing x−1Ux

will be necessary at some point). This last assertion is true for all

continuous co-representations.

(3) Show that, in general, RG does not define a continuous represen-

tation of G on Is(LUC(G)).

(4) Show that RG defines a continuous representation on Is(LUC(G)∩
RUC(G) ).

(5) Show that a matrix coefficient φπ,ξ,ξ∗ of a representation π : G →
Is(R) on a reflexive Banach R space is always weakly almost peri-

odic (use that for fixed ξ∗ the map ξ 7→ φπ,ξ,ξ∗ defined on the unit

ball of R is continuous). Show as well that φπ,ξ,ξ∗ ∈ AP(G) if R is

finite dimensional.

(6) Let π : G → Is(H) = U(H) be a representation on a Hilbert space

H. Show that every diagonal matrix coefficient φπ,ξ,ξ is positive def-

inite (recall that a Hilbert space H is in duality with itself through

the inner product). Show that any coefficient φπ,ξ,η is a linear com-

bination of positive-definite functions.

We now show that the sets of functions of subsection 1 are all composed

of matrix coefficients (or limits thereof). For LUC(G) this goes back to Tele-

man [Tel57], in the case of B(G) and AP(G) this is the GNS-construction of

Gelfand-Naimark-Segal; both cases can be regarded as classical and part of

folklore. The case of WAP(G), due to Megrelishvili [Meg03], is more recent

and appeals to deep results on factorization of Banach space operators. In

the context of compact semitopological semigroups, these results were first

applied by Shtern [Sht94]. See also [GMe08] for a more complete list of

function algebras whose elements are representable as matrix coefficients.

Proposition 1.6. Let G be a topological group and let f : G → C be a

function. Then

(1) f ∈ RUC(G) if and only if f is a matrix coefficient of some repre-

sentation π : G→ Is(B) of G on a Banach space B.

(2) f ∈ LUC(G) if and only if f is a matrix coefficient of some co-

representation π : G→ Is(B) of G on a Banach space B.

(3) f ∈WAP(G) if and only if f is a matrix coefficient of some repre-

sentation π : G→ Is(R) of G on a reflexive Banach space R.
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(4) f ∈ WAP(G) if and only if f is a matrix coefficient of some co-

representation π : G→ Is(R) of G on a reflexive Banach space R.

(5) f is positive-definite if and only if f = φπ,ξ,ξ for some represen-

tation π : G → Is(H) of G on a Hilbert space H and some ξ ∈ H.

Also, f ∈ B(G) if and only if only if f = φπ,ξ,η for some represen-

tation π : G→ Is(H) of G on a Hilbert space H and some ξ, η ∈ H
(recall that we can identify H∗ with H itself).

(6) f ∈ AP(G) if and only if f is the uniform limit of coefficients of

representations πk : G→ Is(Hk) of G on finite-dimensional Hilbert

spaces Hk.

Proof. One direction of all statements is contained in exercise 1, we

prove the other direction.

(1) Let B := sp {Rxf : x ∈ G}RUC(G)
, then RG defines a representa-

tion on Is(B). Consider δ1G ∈ B∗ defined by δ1G(f) = f(1G). Obviously

φRG,f,δ1G = f .

(2) is proved exactly as (1) replacing RUC by LUC and RG by LG.

(3) This is more delicate. A crucial ingredient is the factorization the-

orem due to Davis, Figiel, Johnson and Pelczynski [DFJP74]: If K ⊂ E

is a weakly compact subset of a Banach space E, then the there is a reflex-

ive Banach space R and a linear one-to-one operator T : R → E such that

K ⊂ T (BR).

If f ∈ WAP(G), since f ∈ RUC(G) as well (Corollary 1.4), we can

consider the Banach space B and the representation π : G→ Is(B) obtained

in (1). Since {Rxf : x ∈ G} is a weakly compact subset of B, there is a

reflexive Banach space R and a linear one-to-one operator T : R → B such

that {Rxf : x ∈ G} ⊂ T (BR). If, for each x ∈ G, vx ∈ BR denotes the

element with T (vx) = Rxf , then a representation πR : G→ Is(R) is defined

by

πR(g)(vx) = vxg.

Notice that πR is nothing but the restriction of π to T (R). Clearly φπR,ve,δe◦T =

f .

(4) is proved exactly as (3).

(5) This is the classical GNS (Gelfand-Naimark-Segal) construction. If

φ is a positive-definite function we can define an inner product on c00(G)

(the vector space of all finitely supported sequences in `∞(G)) by means of

the formula:

〈 ξ, η 〉φ =
∑
g,h∈G

ξ(g)η(h)φ(gh−1).



14 1. ALGEBRAS OF FUNCTIONS AND COMPACTIFICATIONS

The quotient c00(G)/Nφ with Nφ = {ξ ∈ c00(G) : 〈 ξ, ξ 〉φ = 0} becomes a

pre-Hilbert space, and RG defines a unitary representation on the completion

H of c00(G)/Nφ. The map φ is easily seen to be a diagonal matrix coefficient

of this representation.

If φ ∈ B(G), then φ is a linear combination of positive-definite functions

φπ1,ξ1 , . . . , φπk,ξk , and we can recover φ as a matrix coefficient of the direct

sum π1 ⊕ · · · ⊕ πk.
(6) is best proven by appealing to semigroup compactifications. We

therefore postpone the proof of this fact (see page 22). �

One of the consequences of Proposition 1.6 is to identify the relative

sizes of the algebras introduced in subsection 1.

Corollary 1.7. If G is a topological group,

RUC(G) ∩ LUC(G) ⊃WAP(G) ⊃ B(G) ⊃ AP(G).

We record here a useful property of weakly almost periodic functions

that can be found in almost any reference dealing with these functions, see,

for instance, Theorem 4.2.3 of [BJM89] for a proof.

Theorem 1.8 (Grothendieck’s double limit criterion). Let f : G→ C be

a continuous function. Then f ∈WAP(G) if and only if

lim
i

lim
j
f(gihj) = lim

j
lim
i
f(gihj)

whenever (gi) and (hj) are sequences such that all limits exist.

Remark 1.9. If U and V are nonprincipal ultrafilters on N, Grothendieck’s

double limit criterion can be restated to say: φ ∈WAP(G) if and only if

lim
n,U

lim
m,V

f(gnhm) = lim
m,V

lim
n,U

f(gnhm)

whenever (gn) and (hm) are sequences in G.

Examples 1.10. We now give some examples of functions belonging to

the above algebra with focus on the case G = Z.

(1) Continuous characters (homomorphisms into the unit circle T ) are

typical examples of elements of AP(G) for every topological group

G. In the case of G = Z these are exhausted by the functions

χt0 : Z→ T , t0 ∈ T , given by χt0(n) = eit0n. Also Fourier-Stieltjes

transforms of discrete measures are almost periodic. AP(G) is ac-

tually the closed linear span of all characters when G is a locally

compact Abelian group.
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(2) A universal source of examples is given by the inclusion C0(G) ⊂
B(G) in case G is locally compact. This is true because all such

functions can be approximated by convolutions of compactly sup-

ported functions, and these convolutions are in B(G) see [?], in

particular its Proposition 3.7.

(3) The typical (and universal by Bochner’s theorem, see [Rud90,

Theorem 1.4.3]) example of an element in B(G) \ AP(G) is the

Fourier-Stieltjes transform of a continuous measure. For G = Z, an

especially simple one is δ0, the characteristic function of the identity

element. B(G) is not uniformly closed and among the nontrivial

functions in B(G) \B(G), we can quote characteristic functions of

some interpolation sets, e.g. Sidon sets. Section 3 will be devoted

to them, we will see there that characteristic functions of so-called

Sidon sets are in B(Z), while they cannot be in B(Z) unless they

are finite see [DR71, Section 5.5]).

(4) The question of whether B(G) and WAP(G) are distinct was open

for some time. The first examples of functions in WAP(Z) \ B(Z)

were constructed by Rudin [Rud59]. The usual examples are

characteristic functions of certain interpolation sets. We refer,

for the time being to Section 4.3 of [DR71] where it is proved

that B(G) 6= WAP(G) for all locally compact Abelian groups, see

[Cho82] and [May97] for extensions to the noncommutative case.

(5) It is rather easy to find LUC functions that are not WAP, the

characteristic function of N is an example. It has been proved

in [MPU01] that for every topological group that is not totally

bounded, WAP(G) 6= LUC(G).

With the aid of the preceding examples it is easy to deduce that all four

algebras are distinct when G is locally compact Abelian and noncompact.

If we go beyond this case the picture gets more involved:

Examples 1.11.

(1) For compact groups all four algebras coalesce.

(2) For noncommutative groups the situation is more complicated.

If G is for instance a noncompact simple Lie group with finite

center (such as SL(2,R)), then AP(G) = C (constant functions)

and WAP(G) = B(G) = C0(G)⊕ C [Rup84, Theorem 6.3].
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(3) It seems to be unknown whether noncommutative discrete groups

always have elements in B(G) \C0(G). Chou [Cho82] proved nev-

ertheless that B(G) 6= WAP(G) in this case. Chou papers [Cho82]

and [Cho90] are a must for a modern point of view on lacunarity

on noncommutative groups.

(4) When the group is not locally compact, most of the typical ex-

amples mentioned in Example 1.10 are not available. Continuous

characters of course are always almost periodic. Important exam-

ples of functions in B(G) are the functions e−‖·‖
α

defined on the

additive group of G = Lp(µ) when 1 ≤ p ≤ 2 and 0 < α < 1,

[Sch38], and Haagerup functions [Haa79] on free groups on two

generators F (a, b) that have the form e−λ|s|, λ ∈ R+ (if s ∈ F (a, b),

|s| denotes the length of the reduced word s).

3. The compactifications

We next list the properties of the algebras of section 1 that will lead us

to defining the compactifications.

Theorem 1.12. Let X denote any of the sets LUC(G), WAP(G), B(G)

or AP(G), then:

(1) X is a closed vector subspace of CB(G) ⊂ `∞(G), i.e., it consists of

bounded functions and is uniformly closed.

(2) X is a conjugation-closed subalgebra of CB(G).

(3) The constant function 1̄ is in X.

(4) X is translation invariant.

Exercise 2. Prove Theorem 1.12. This should consist of direct appli-

cations of the Definitions, Theorem 1.6 and general properties of represen-

tations.

The algebras LUC(G), WAP(G),B(G) and AP(G) are thus that kind of

commutative algebras to which Gelfand duality applies: commutative C∗-

algebras. If X is such an algebra the structure space or spectrum GX of X is

the space of all continuous linear functionals of X that are multiplicative, in

symbols, GX is defined as

GX = {T : X→ C : T ∈ X∗, T (f1f2) = T (f1) · T (f2), and T (1) = 1 ∀f1, f2 ∈ X} .

The space GX will be always equipped with the topology of pointwise con-

vergence on X, i.e., the weak∗-topology of X∗.
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Theorem 1.13 (Gelfand duality theorem, see Appendix D of [Rud90],

for instance). Let X be any of the algebras LUC(G), WAP(G), B(G) or

AP(G), then:

(1) GX is a compact Hausdorff space.

(2) Evaluations define a continuous semigroup homomorphism ε
X

: G→
GX with dense range (ε

X
(g)(f) = f(g)).

(3) Every f ∈ X admits a continuous extension f̄ : GX → C such that

f̄ ◦ ε
X

= f .

(4) There is an isometric isomorphism between the algebras X and

C(GX,C).

Definition 1.14. The spectra of the algebras LUC(G), WAP(G), B(G)

or AP(G) will be denoted respectively by GLUC, GWAP, GB and GAP and are

usually named as LUC-compactification, WAP-compactification, Eberlein-

compactification, and Bohr compactification

We have thus constructed four compact spaces related to the four alge-

bras of functions defined in Subsection 1. The chain of inclusions among

them presented in Corollary 1.7, clearly induces a chain of quotients:

Corollary 1.15. For any group G there is a family of quotient maps

that preserve the embeddings εX.

GLUC → GWAP → GB → GAP.

We will use the notation bX for the quotient bX : GX → GAP, we will not

need a special notation for the rest of the quotients.

These compact spaces are constructed with the hope of finding a conve-

nient playground where good topological properties (compactness) can be

used in conjunction with the algebraic, topological or analytic structures

present in the underlying group. If X is any of these algebras we only know

so far that there is a continuous map with dense range ε
X

: G→ GX. In or-

der to exploit the algebraic properties of G in conjunction with compactness

we need to introduce some algebraic structure on GX. In the best of the

worlds we would like to have that GX is (1) a compact topological group,

that (2) ε
X

is a group homomorphism and (3) that it is a homeomorphism

(so that we could translate all the structure of G to ε
X

(G)). We will soon see

that this hope is overly optimistic (in fact only totally bounded groups –i.e.

dense subgroups of compact groups– can have a compactification with all

3 properties). The rest of these notes will be devoted to understand which

portions of (1), (2) and (3) can be obtained.
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To begin with we try to move as much of the algebraic structure of G

as possible up to GX. First, we must define a binary operation on GX that

extends the operation of G. This will be possible because all four algebras

in section 1 are, in the terminology of [BJM89], m-left introverted.

Lemma 1.16. For any q ∈ GX and φ ∈ X, consider the maps Tq,φ, Sq,φ : G→
C given by

Tq,φ(g) = q(Lgφ)), Sq,φ(g) = q(Rgφ),

then:

(1) If φ ∈ LUC(G), Tq,φ ∈ LUC(G), for all q ∈ GLUC.

(2) If φ = φπ,ξ∗,ξ for some representation on a reflexive Banach space

E, then there is η ∈ E such that Tq,φ = φπ,η,ξ∗.

Proof. If X = LUC(G), see exercise 3.

To prove (3), take gi ∈ G, with q = limi gi. The unit ball BE is σ(E∗, E)-

compact and we can assume that limi π(gi)ξ = ξ0 ∈ B. Then Tq,φ = φπ,ξ0,ξ∗ .

The proof of (2) is very similar. �

Corollary 1.17. Let X be any of the algebras LUC(G), WAP(G), B(G)

or AP(G). Then Tq,φ ∈ X for all q ∈ GX and φ ∈ X. Sq,φ ∈ X, if X =

WAP(G), B(G) or AP(G).

Exercise 3.

• Show directly (without resorting to representations) that Tq,φ ∈
LUC(G) for any φ ∈ LUC(G).

• If φ = φπ,ξ∗,ξ for some representation on a Banach space E, then

there is η∗ ∈ E∗ such that Sq,φ = φπ,η∗,ξ.

• Observe that the previous item does not apply to Sq,φ when φ ∈
LUC(G) but φ /∈ RUC(G) as such a function cannot be obtained

as a matrix coefficient of any representation (albeit it is a matrix

coefficient of a co-representation) Then, find φ ∈ LUC(G) and q ∈
GLUC such that Sq,φ /∈ LUC(G).

• Show in a different way that both Tq,φ, Sq,φ ∈ WAP(G), provided

φ ∈WAP(G). Check for instance that:

{RxTq,φ : x ∈ G} ⊂ {Rxφ : x ∈ G}w and {LxSq,φ : x ∈ G} ⊂ {Lxφ : x ∈ G}w.

The same proof would work for AP(G).

Theorem 1.18 (Section 2.2 of [BJM89]). Let (G, ·) be a group and let

X be one of the algebras in subsection 1. There is then a unique binary

operation ∗ : GX → GX such that:
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(1) If p, q ∈ GX are such that p = limi εX(gi) and q = limj εX(hj), then:

p ∗ q = lim
i

(
lim
j
ε
X

(gi · hj)
)
.

(2) (GX, ∗) is a semigroup.

(3) The continuous map ε
X

: G→ GX given by Theorem 1.13 is a con-

tinuous semigroup homomorphism.

Proof. Fix q ∈ GX. For each φ ∈ X, we have by Theorem 1.17 that

the function Tq,φ(g) = q(Lgφ) is in X as well. Denote by Tq,φ its extension

to GX.

Define finally ρq : GX → GX as

ρq(p)(φ) = p (Tq,φ) .

Then φ◦ρq = Tq,φ for every φ ∈ X; since GX carries the topology of pointwise

convergence on X and Tq,φ is continuous, ρq is continuous.

The actual definition of ∗ is therefore,

p ∗ q = ρq(p).

By density, this operation must necessarily satisfy the properties of State-

ment (1). The rest of the Statements are more or less routine, see for instance

[HS98, Section 4.1]. �

Since the ∗ operation extends the · operation we will no longer use the

former notation and use the same symbol for the G and the GX operation.

We will often also drop the ε
X

and regard G as a subgroup of GX, but we

should beware that G is not a topological subgroup of GX, since εX is not

always a homeomorphism.

Exercise 4. Prove directly that limi εX(gi) = limk εX(hk) implies limi εX(gig0) =

limk εX(hkg0). With gi, hk, g0 ∈ G.

Try to prove that, conversely, limi εX(gi) = limk εX(hk) implies limi εX(g0gi) =

limk εX(g0hk).

We see here that right-continuity is easier to deal with than left conti-

nuity.

In Theorem 1.18 we have actually proved more than we stated:

Corollary 1.19. Let G be a topological group and let X be any of the

algebras defined in subsection 1.

(1) The map ρq : GX → GX, ρq(x) = xq is continuous for every q ∈ GX.

(GX, ·) is therefore a right topological semigroup.
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(2) The map λg : GX → GX, λg(x) = gx is continuous for every g ∈ G.

Proof. The first statement has been proved in Theorem 1.18.

For the second, let g0 ∈ G be fixed and choose φ ∈ X. Since X is trans-

lation invariant, Lg0φ ∈ X and hence extends to Lg0φ : GX → C. Consider

then the map λg0 : GX → GX given by

λg0(q)(φ) = q
(
Lg0φ

)
, for all q ∈ GX and φ ∈ X.

We deduce that λg0 is continuous exactly as we did with ρq. �

Corollary 1.20. The quotients of Corollary 1.15

GLUC → GWAP → GB → GAP

are all semigroup homomorphisms.

Example 1.21. Multiplication on ZLUC is not commutative. As a conse-

quence the left multiplication map λp : ZLUC → ZLUC (λp(q) = p · q) cannot

be continuous. Therefore ZLUC is not a semitopological semigroup.

Elements in ZLUC may not admit any inverse, so ZLUC is not a group

either.

Proof. The sets N∗ = clZLUC N \ N and (−N)∗ (analogous definition)

are disjoint left ideals of ZLUC: if x ∈ N∗ and y ∈ (−N)∗, then xy ∈ (−N)∗

while yx ∈ N∗.
This proves that ZLUC is not commutative. Since Z is commutative, λx

cannot be continuous, for otherwise:

xy = λx(y)
λx cont.

= lim
i
λx(yi) = lim

i
x+ yi

Z commutative
= lim

i
ρx(yi)

ρx cont.
= ρx(y) = yx,

where the net (yi)i, yi ∈ G, has been chosen so that limi yi = y.

�

Exercise 5. Show that N∗ and (−N)∗ are disjoint left ideals of ZLUC.

As we go down in the hierarchy of the algebras, their algebraic structure

improves.

Theorem 1.22. Let G be a topological group.

(1) GWAP and GB are semitopological semigroups (both λp and ρp are

continuous for all p ∈ GWAP and p ∈ GB).

(2) GWAP (and hence its quotients GB and GAP) is commutative if and

only if G is.

(3) GAP is even a topological group.



3. THE COMPACTIFICATIONS 21

(4) If G is locally compact but not compact, GWAP is not a topological

semigroup, nor a group.

Proof. To have (1) proved it will suffice to show that λq : GWAP →
GWAP is continuous for every q ∈ GWAP. The proof proceeds exactly as the

proof of continuity of ρq in Theorem 1.18, replacing Rq,φ by Sq,φ. The proof

for GB will be the same.

The proof of Statement (2) is left as an exercise.

To prove (3) we first prove that multiplication is jointly continuous in

GAP. Since GAP has the topology of pointwise convergence on AP(G) we

must show that for any φ ∈ AP(G), the map (p, q) 7→ φ(pq) is continuous.

Let (pi, qi)i be a net converging to (p, q) in GAP×GAP. Since φ ∈ AP(G), we

can assume that Rqiφ is a Cauchy net in the uniform topology. Using that

Rqiφ converges pointwise to Rqφ, we obtain that Rqiφ converges uniformly

to Rqφ. Take now i0 big enough so that

‖Rqiφ−Rqφ‖ ≤ ε for all i ≥ i0.

If we apply this inequality to the elements pi (i ≥ i0), the result is

|φ(piqi)− φ(piq)| ≤ ε, for all i ≥ i0.

And moving i so that pi → p and using separate continuity we finally see

that

|φ(piqi)− φ(pq)| ≤ 2ε, for all i ≥ i0.

This shows that limi φ(piqi) = φ(pq) and, hence, that multiplication on GAP

is jointly continuous. That GAP is a topological group follows from Exercise

6.

To prove (4) we first assume that G is discrete. As has been said before,

the characteristic functions δg are in B, this clearly implies that εB(G)(G)

and εWAP(G) are discrete and hence open in GWAP and GB ( if a compact

space has a dense and locally compact topological subspace, the latter must

be open) Let now p ∈ GB and suppose p has an inverse p−1. We choose a

net (gi) in G with limi gi = p−1. Then, since multiplication is separately

continuous limi(gip) = p−1p = 1G. Thus gip is a net converging to 1G and,

as G is open in GB we conclude that gip ∈ G, for some i. This forces p to

be in G and we conclude that the only elements of GB or GWAP that admit

an inverse are those of G.

The proof for locally compact groups is the same once one notices (this

is Theorem 2.1) that εWAP(G) and εB(G) are locally compact when G is
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locally compact. Exercise 6 finally shows that, not having group structure,

GWAP cannot be a topological semigroup. �

Exercise 6. Show that if S is a topological semigroup with identity

that contains a dense topological subgroup G, then S itself is a topological

group (i.e. every element s has an inverse s−1 and the map s 7→ s−1 is

continuous

Exercise 7. Prove that GWAP and GB are commutative if G is Abelian

(this is a simple application of Grothendieck’s double limit property Theo-

rem 1.8).

Identification of AP(G) with matrix coefficients of finite-dimensional

representations (Statement (4) of Theorem 1.6): Now that we know

that GAP is a compact topological group, we have at our reach all the ma-

chinery of the representation theory of compact groups and can finish the

proof of Theorem 1.6. We need specifically that every function (in particular

the extension f̄ of f ∈ AP(G) to GAP) on a compact group (such as GAP) can

be uniformly approximated by matrix coefficients of unitary representations

and that every unitary representation on a compact group is decomposable

as a (possibly infinite) direct sum of finite-dimensional representations (see

[Fol95, Chapter 5]).

4. Some realizations

The compactifications GLUC, GWAP and GAP admit several concrete re-

alizations that permit a better understanding of their properties.

We first note that they all are universal compactifications. We say that

a compactification (GP , εP) is universal with respect to a property P if the

following two conditions hold:

(1) GP has property P .

(2) If ε : G → K is a compactification of G (i.e., ε is a continuous

homomorphism and ε(G) is dense in K) and has property P , then

GP is an extension of K, i.e., there is a map εKP : GP → K making

the following diagram commutative:

G
εP //

σ   

GP

εKP
��
K
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Section 3.3 of [BJM89] gives conditions for the existence of universal com-

pactifications, the universality of LUC(G), WAP(G) and B(G) is proved in

Chapter 4 [loc. cit.].

Theorem 1.23. Let G be a topological group:

(1) GLUC is the universal right topological semigroup compactification

(is universal with respect to the property of being a right topological

semigroup).

(2) GWAP is the universal semitopological semigroup compactification.

(3) GAP is the universal topological (semi)group compactification.

Observe as well that when G is discrete GLUC is nothing but βG.

We do not have a description of GB as a universal compactification.

Even if GB is actually related to the universal representation of G, the word

universal has a different meaning here.

Denote by U(G) a set of unitary representations containing exactly

one representative of each equivalence class of unitary representations, the

universal representation πu of G is then defined as the direct sum πu =

⊕π∈U(G)π, it is a unitary representation on the huge Hilbert space Hu =

⊕π∈U(G)Hπ, where Hπ is the Hilbert space on which π acts.

Theorem 1.24. If G is a topological group, GB can be realized as:

GB ∼= πu(G)
WOT

.

Exercise 8. Prove Theorem 1.24. It will be necessary to observe that

the weak operator topology of Hu restricted to πu(G) is generated by func-

tions belonging to B(G).

We see in this way GB as a subsemigroup of the maximal von Neumann

algebra W ∗(G) of G. The maximal von Neumann algebra of G is defined as

W ∗(G) = sp(πu(G))
WOT

. When G is locally compact B(G) admits a norm

‖ · ‖∗ that makes (B(G), ‖ · ‖∗) into a Banach algebra, W ∗(G) can then be

realized as the conjugate Banach space of (B(G), ‖ · ‖∗).
One of the best behaved realizations is obtained for GAP when G is

Abelian.

Theorem 1.25. If G is an Abelian topological group, GAP (the Bohr

compactification of G) can be realized as the group of all characters of the

group Ĝ of all continuous characters of G. In symbols:

GAP ∼= Hom(Ĝ,T ),

where Hom(Ĝ,T ) carries the topology of pointwise convergence on Ĝ.
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Proof. We need to observe that Hom(Ĝ,T ) is a compact Abelian group

(it is a closed subgroup of T Ĝ) and that, by the Peter-Weyl theorem [Fol95,

Theorem 5.12], almost periodic functions are uniform limits of linear com-

binations of continuous characters.

The topological isomorphism, say Ψ: Hom(Ĝ,T ) → GAP, is given by

Ψ(h)(χ) = χ(h) for every χ ∈ (GAP)̂ = Ĝ. We leave as an exercise to check

that Ψ is a topological isomorphism. �

Exercise 9. Check that the map Φ in Theorem 1.25 is a topological

isomorphism. To check that it is onto, observe that elements of GAP can be

regarded as continuous homomorphisms of (GAP)̂ .
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Embedding topological groups into their

compactifications

In chapter 1 we have introduced several compactifications (GX, εX) of

topological groups G and found that they admit some traces of the algebraic

properties of G. In this Section 3 we study how much of the topological

structure of G is transferred by εX to GX. The question we will try to answer

is for which topological groups G and which algebras X it is true that the

embedding map ε
X

: G→ GX is a homeomorphism (onto its image).

1. Basic characterizations

We first present those answers that are more readily obtained.

Theorem 2.1. Let G be a topological group.

(1) εAP is a homeomorphism if and only if G is a totally bounded group.

(2) εWAP and εB are homeomorphisms for every locally compact group.

(3) εLUC is a homeomorphism for every topological group.

Proof (sketch). To prove (1) we only need to know that (a) a group

G is totally bounded if and only if it is (topologically isomorphic to) a

subgroup of some compact topological group and (b) that every continuous

function on a compact group is almost periodic.

The only ingredient needed to prove (2) is that locally compact groups

admit a two sided invariant measure m, their Haar measure, and that for

every compact, symmetric neighbourhood U of the identity 1G, the function

φ : G → C given by φ(g) = m(Ug−1 ∩ U) is in B. This can be checked

directly or by using the regular representation RG of G in the unitary group

of L2(G,m). In this latter case we see that φ is the matrix coefficient

φRG,1U ,1U , where 1U denotes the characteristic function of U . �

Exercise 10. Fill all the gaps left in the preceding proof. In particu-

lar, show that every function on a compact group is almost periodic, prove

directly that the function φ is positive-definite and prove (3).

25
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The embeddability conditions of Theorem 2.1 are better exploited if

rephrased in terms of the topology defined by the algebra X in question. We

first leave this concept completely fixed.

Definition 2.2. Let G be a topological group and let A be a collection

of continuous functions A ⊂ C(G,C). We say that A generates the topology

of G at 1G if for every neighbourhood U of 1G there is δU > 0 and a function

φU ∈ A such that

{x ∈ G : |φU (x)− φU (1G)| < δU} ⊂ U.

Lemma 2.3. Let G be a topological group and let A be a translation-

invariant C∗-subalgebra of CB(G,C) that contains the constant function

1G. The following statements are then equivalent.

(1) The topology of G is the initial topology defined by the elements of

A.

(2) The elements of A separate points and closed sets of G.

(3) The canonical map εA : G→ σ(A) is a homeomorphism.

(4) The family A generates the topology of G at 1G.

Proof. The equivalence between statements (1), (2) and (3) is very

well-known, see for instance [Eng77, 2.3.20].

We now prove that (2) implies (4) (this simple fact can be found in

several references see for instance [AMM85], [Usp04, Proposition 2.1] or

[FG, Lemma 2.3]). Choose for each neighbourhood U of 1G a function

φU ∈ A such that φU (1G) /∈ clG (φ(G \ Int(U))), where Int(U) denotes the

interior (in the topological sense) of U . Then

inf {|φU (x)− φU (1G)| : x ∈ G \ Int(U)} > 0.

It suffices to take then 0 < δU < {|φU (x)− φU (1G)| : x ∈ G \ Int(U)}.
To see that (4) implies (2), take a closed subset C ⊂ G and x ∈ G, x /∈ C.

There is then a neighbourhood U of 1G such that (xU) ∩ C = ∅. Consider

δU > 0 and φU as given by Statement (4) and take ψ = Lx−1φU − φU (1G).

Then ψ ∈ A and

|ψ(a)| > δ for all a ∈ C, while ψ(x) = 0.

�

In some special cases, for instance for positive definite functions, state-

ment (4) above can be easily adapted to work with a fixed δ < 1 valid for

every U , see [AMM85] or [Gal09, Lemma 2.1].
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1.1. Representability via positive definite and weakly almost

periodic functions. Lemma 2.3 has an immediate translation for the al-

gebras we are interested in. After Lemma 2.1 our attention in this regard

will be restricted to B(G) and WAP(G).

Theorem 2.4. Let G be a topological group. The following are equiva-

lent:

(1) The map εB : G→ GB is a homeomorphic embedding.

(2) The topology of G is generated by the functions in B.

(3) For every neighbourhood U of 1G there is a positive-definite function

φU : G→ [0,+∞) with φU (1G) = 1, such that{
x ∈ G : 1− φU (x) <

1

2

}
⊂ U.

(4) There is a Hilbert space H and a topological isomorphism (not nec-

essarily surjective) j : G→ U(H).

Theorem 2.5. Let G be a topological group. The following are equiva-

lent:

(1) The map εWAP : G→ GWAP is a homeomorphic embedding.

(2) The topology of G at 1G is generated by the family of all weakly

almost periodic functions.

(3) The topology of G at 1G is generated by the family of all positive

weakly almost periodic functions.

(4) G is topologically isomorphic to a subsemigroup of a compact semi-

topological semigroup.

(5) There is a reflexive Banach space R and a topological isomorphism

j : G→ Is(R).

Exercise 11. Use the results in the preceding chapter to prove theo-

rems 2.4 and 2.5. Some items of the following list of hints may be relevant:

(1) positive-definite functions do not constitute a translation-invariant al-

gebra, (2) if φ : G → C is positive definite then |φ(g)| ≤ φ(1G) ≥ 0 for all

g ∈ G, (3) if φ is positive-definite, so is |φ(·)|2, (4) if H is a Hilbert space and

ξ ∈ H, the function T 7→ e‖Tξ−ξ‖ is positive definite on Is(H) (see next exer-

cise) and (5) if a continuous function φ : G→ C factors through a compact

semitopological semigroup, then φ is weakly almost periodic, see [Sht94] or

[Meg03] to this respect.
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Exercise 12. Prove that (t1, . . . , tn) 7→ e−(|t1|2+···+|tn|2) is a positive

definite function on Rn. Show then that e−(|t1|+···|tn|) is positive definite as

well.

One way to do this is to prove first that (t1, . . . , tn) 7→ |t1|2 + · · ·+ |tn|2 is

negative definite and then use a Theorem of Schoenberg (see e.g. [BCR84,

Theorem 3.2.2]) to the effect that e−λψ is positive-definite whenever ψ is

positive definite and λ > 0. A function ψ : G → C is said to be negative

definite if given g1, . . . , gn ∈ G and complex numbers α1, . . . , αn ∈ C with∑
i αi = 0,

∑
1≤i,j≤n

αiαjψ(gig
−1
j ) ≤ 0.

Another approach for this exercise is by way of Bochner’s theorem (see

e.g. [Fol95, 4.18]): ifG is locally compact and abelian, a continuous function

φ : G → C is positive-definite, if and only if, there is a positive measure µ

on the character group Ĝ such that µ̂ = φ, where µ̂(t) =
∫
Ĝ
χ(t)dµ(χ) is the

Fourier-Stieltjes transform of µ.

The last statement in each of theorems 2.4 and 2.5 justifies the estab-

lished terminology that we introduce here.

Definitions 2.6. A topological group satisfying any (and, hence, all)

of the properties of Theorem 2.5 is said to be reflexively representable.

A topological group satisfying any (and, hence, all) of the properties of

Theorem 2.4 is said to be unitarily representable.

Exercise 13. Show that unitary representability (resp. reflexive repre-

sentability) is preserved by arbitrary products

In his seminal paper [Sch38], Schoenberg deduced from the facts in

exercise 12 that the topological vector spaces Lp(µ) with 0 ≤ p ≤ 2 are

unitarily representable. Here by Lp(µ) we denote the vector space of all

µ-measurable functions f : [0, 1] → C, where µ is Lebesgue measure. We

assume that, for p > 0, Lp(µ)-spaces come equipped with the metric

dp(f, g) =

(∫
|f(x)− g(x)|pdµ(x)

)1/p

,

while L0(µ) is assumed to carry the metric d0 inducing the topology of

convergence in measure:

d0(f, g) =

∫ (
1− e−|f(x)−g(x)|

)
dµ(x).

Theorem 2.7. [Sch38] The topological groups Lp(µ) are unitarily rep-

resentable for 0 < p ≤ 2.
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1.2. Representability via distances. Another, although not that

different, way of characterizing representability is through the existence of

invariant distances with properties that correspond to positive-definiteness

and weak almost periodicity.

The concept of reflexive representability for instance translates into the

distance language through stable distances and norms.

Definition 2.8. • A distance d defined on a set E is called sta-

ble if for each pair of bounded sequences {xn} and {ym} and of

ultrafilters A and B in N.

lim
n,A

lim
m,B

d(xn, ym) = lim
m,B

lim
n,A

d(xn, ym).

• A Banach space E is called stable if for each pair of bounded se-

quences {xn} and {ym} and of ultrafilters A and B in N.

lim
n,A

lim
m,B
‖xn + ym‖ = lim

m,B
lim
n,A
‖xn + ym‖.

Stable Banach spaces were introduced by Krivine and Maurey [KM81]

to single out a class of Banach spaces that always contain a copy of `p for

some p:

Theorem 2.9 (Krivine and Maurey [KM81]). The Banach spaces Lp(µ)

are all stable (and hence reflexively representable by Lemma 2.11). Moreover

every stable Banach space contains a copy of `p for some 1 ≤ p <∞.

The connection between stability of Banach spaces and reflexive rep-

resentability was first noticed by Chaatit [Cha96], see also Megrelishvili

[Meg00]. It has been recently shown that both concepts are essentially

equivalent ([?] and Theorem 2.11).

Since every nontrivial positive definite mapping satisfies the inequality

φ(1G) > 0 (recall that |φ(x)| ≤ φ(1G) ≥ 0 for every x ∈ G), positive definite

functions do not adapt well to define distances. The map φ(1G)−φ does play

that rôle, but it is no longer positive-definite. It is the concept of negative-

definite function introduced in Example 12 the one that really belongs here.

As can be easily checked the function φ(1G) − φ is negative-definite if and

only if φ is positive-definite.

Definition 2.10. A distance d defined on a set E is said to be negative-

definite when the kernel (x, y) 7→ d(x, y) is negative-definite, i.e., when given

g1, . . . , gn ∈ G and complex numbers α1, . . . , αn ∈ C with
∑

i αi = 0,∑
1≤i,j≤n

αiαjd(gi, gj) ≤ 0.
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Theorem 2.11 ([?]). A metrizable group G is reflexively representable

(resp. unitarily representable) if and only if its topology is generated by a

left-invariant stable (resp. negative-definite) distance.

Proof. One direction is easy, if the topology of G is generated by a

left-invariant stable distance d, we only have to observe that the topology

of G is generated by the function E : G→ C given by E(x) = e−d(x,1G) and

that this function is weakly almost periodic by Grothendieck’s criterion,

Theorem 1.8. The same argument works if the topology is generated by a

negative definite function using Schoenberg theorem mentioned in Example

12 and characterization 2.4.

The other direction is proved in [?, Theorem 3.3]. Assume G is reflex-

ively representable. Since the topology of G is generated by weakly almost

periodic functions it is easy to manufacture a function h(x, y) on G×G as

linear combination of weakly almost periodic function that is stable, left-

invariant and defining the topology of G. The main difficulty is that this

h(x, y) will not satisfy the triangle inequality. The remedy to this Finish

this!! �

The existence of a stable invariant distance is a rather remarkable fea-

ture. Raynaud [Ray83] observes that every Banach space admitting such

a metric must contain an isomorphic copy of `p with 1 ≤ p < ∞. Since

some reflexive Banach spaces do not contain such subspaces (e.g. Tsirelson’s

space), this immediately shows that reflexive Banach spaces may fail to be

reflexively representable. We will come back to this later.

Another interesting family of unitarily representable groups, that follows

from similar principles is made of isometry groups of metric spaces. We

quote here the following theorem of Uspenskĭı.

Theorem 2.12 (Theorem 3.1 of [Usp04]). Let (M,d) be a metric space.

Suppose that there exists a real valued positive-definite function p : R → R
with p(0) = 1, and such that (1) for every ε > 0 we have sup{p(x) : |x| ≥
ε} < 1, and (2) for every finite collection a1, . . . , an ∈M the symmetric real

n × n-matrix (p(d(ai, aj))) is positive. Then the topological group Is(M) of

all isometries of M is unitarily representable.
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2. Unitary and reflexive representability as uniform and coarse

properties

We will see here that reflexive and unitary representability have a lot

to see with the uniform and coarse structure of the group. We begin by

specifying the exact meaning of these terms.

Definition 2.13. LetG1 andG2 be two topological groups. An injective

mapping f : G1 → G2 is said to be a uniform embedding if both f and f−1

are uniformly continuous maps for the respective left-uniformities, i.e., if

for every neighbourhood U2 of 1G2 there is a neighbourhood U1 of 1G1 such

that xy−1 ∈ U1 implies f(x)f(y)−1 ∈ U2 and for every neighbourhood V1 of

1G1 there is a neighbourhood V2 of 1G2 such that f(x)f(y)−1 ∈ V2 implies

xy−1 ∈ V1.

Definition 2.14. Let (X1, d1) and (X2, d2) be metric spaces. A map

f : X1 → X2 is said to be a coarse embedding if there exist two nondecreasing

functions ϕ1 : [0,+∞)→ [0,+∞) and ϕ2 : [0,+∞)→ [0,+∞) such that:

(1) ϕ1 (d1(x, y)) ≤ d2 (f(x), f(y)) ≤ ϕ2 (d1(x, y)).

(2) lim
r→+∞

ϕ1(r) = +∞.

The problem of finding coarse embeddings of metric spaces in Hilbert

or other classes of Banach spaces has been stimulated by the connection,

pointed out by Gromov and proven by Yu [Yu00], between coarse embed-

dability of metric spaces in Hilbert space and the Coarse Baum-Connes and

Novikov conjectures.

We will see in the present section how the concepts of unitary and reflex-

ive representability seem to provide a natural setting whence uniform and

coarse embeddings may both be derived.

We begin with some simple samples of the impact of reflexive and unitary

representability in the uniform structure.

Since we pursue to clarify the relation between (unitary or reflexive) rep-

resentability and the uniform and coarse structure of topological groups, and

our definition of coarse embedding has been purely metric, it will be useful

to have the metric that generates the topology of Is(E) clearly identified.

This well-known construction is described in the following lemma.

Lemma 2.15. Let {ηn : n ∈ N} denote a dense subset of the unit ball

BE of a separable Banach space E. The strong operator topology of Is(E) is
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then generated by the left-invariant distance:

dSOT(T, S) =

(∑
n

1

2n
‖Tηn − Sηn‖2

) 1
2

.

Proof. Throughout this proof we will make use of the SOT-neighbourhoods

of the identity in Is(E), Uξ,ε, ξ ∈ B

Uξ,ε = {T ∈ Is(E) : ‖Tξ − ξ‖ < ε}.

Let UF,ε = ∩ni=1Uξi,ε with F = {ξ1, . . . , ξn} ⊂ E denote a basic neigh-

bourhood of the identity in Is(E). Choose, for each 1 ≤ i ≤ n, mi ∈ N
such that ‖ηmi − ξi‖ ≤ ε and set n0 = max{m1, . . . ,mn} A straightforward

computation shows that{
T ∈ Is(E) : dSOT(T, I) ≤ ε

2n0

}
⊂ UF,ε.

For the converse, take any ε > 0 and choose n such that
∑∞

k=n+1 2/2k <

ε2/2 and consider the neighbourhood of the identity in Is(E), U0 =
⋂n
k=1 Uηk,ε2/2.

It is clear then that

U0 ⊂ {T ∈ Is(E) : dSOT(T, I) ≤ ε} .

�

For the next Corollary we recall that for a given Banach space B, the Ba-

nach space `p(B) is defined as the vector space of all sequences (zn) with zn ∈

B for all n and
∑

n ‖zn‖p <∞ with the norm ‖(zn)n‖p =

(∑
n

‖zn‖p
)1/p

.

Corollary 2.16. [[Meg00]] Let E be a separable Banach space. There

is a (nonlinear) isometry between (Is(E), dSOT) and the Banach space `2(E).

Proof. Use Lemma 2.15, the isometry Φ: Is(E)→ `2(B) is given by:

Φ(T ) =

(
1

2n
T (ηn)

)
n

.

�

Corollary 2.17. Let E be a separable Banach space. The topological

group Is(E) embeds uniformly and coarsely in `2(E).

Proof. This is an immediate consequence of Corollary 2.16, for the

uniform embedding it is necessary to recall that both involved distances are

left-invariant. �
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Corollary 2.18. If a separable group G is reflexively representable,

then G embeds uniformly and coarsely in a reflexive Banach space.

Proof. This follows from Corollaries 2.16 (the coarse part) and 2.17 as

soon as one is aware of the duality of `p(E)-spaces: `p(E)∗ ∼= `p∗(E
∗), with

1/p+ 1/p∗ = 1, so that `2(R) is reflexive whenever R is. �

Corollary 2.19. If a separable group G is unitarily representable, then

G embeds uniformly and coarsely in `2.

The next subsection will be devoted to study the converses to all these

corollaries.

2.1. When uniform embedding implies representability. Here

we will strongly rely on averaging arguments that will be used to recover

the algebraic structure from the uniform one. These averaging processes will

be done through invariant means.

Definition 2.20. A topological group is called (left-)amenable when

LUC(G) admits a left invariant mean m, i.e., a continuous linear functional

m : LUC(G) → C with m(1G) = 1, ‖m‖ = 1 and m(Lgφ) = m(φ) for all

φ ∈ LUC(G) and all g ∈ G.

All Abelian topological groups are left-amenable (a consequence of Kaku-

tani fixed point property, see for instance Theorem C1 in the Appendix of

[BL00]), a typical example of nonamenable discrete group is the free group

on two generators. Among not necessarily Abelian amenable groups we can

quote solvable groups, locally finite groups and other nonlocally compact

groups such as the unitary group of a Hilbert space.

Definition 2.21. Let G1 and G2 be topological groups and let m be

a mean on LUC(G1). To every mapping f : G1 → G2 and every function

φ : G2 → C we associate a function φf,m : G1 → C, an averaged version of

φ◦f , as follows: first, we define, for each x ∈ G1, the function Φφ,x,f : G1 →
C, given by Φφ,x,f (g) = φ

(
f(xg)f(g)−1

)
, the function φf,m is then defined

by:

φf,m(x) = m(Φφ,x,f ).

Lemma 2.22. Let G1 and G2 be topological groups and let f : G1 → G2

be a uniform embedding. Let in addition m denote a mean on LUC(G1).

(1) If φ ∈ LUC(G2) then φf,m ∈ LUC(G1).
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(2) If the topology of G2 is generated at 1G2 (see definition 2.2) by a

collection of positive functions A ⊂ LUC(G), with φ(1G) = 0 for all

φ ∈ A, then the topology of G1 is generated at 1G1 by the collection

Af,m := {φf,m : φ ∈ A}.

Proof. We first check that φf,m is left-uniformly continuous. Take to

that end ε > 0. Since φ is uniformly continuous there will be a neighbour-

hood U2 of the identity in G2 such that ab−1 ∈ U2 implies |φ(a)−φ(b)| < ε.

The same argument for f provides a neighbourhood U1 of the identity in G1

such that xy−1 ∈ U1 implies f(x)f(y)−1 ∈ U2.

Let now x, y ∈ G1 be such that xy−1 ∈ U1. Then f(xg)f(yg)−1 ∈ U2 for

any g ∈ G1. This means that f(xg)f(g)−1
(
f(yg)f(g)−1

)−1 ∈ U2 and hence

that |Φφ,x,f (g)−Φφ,y,f (g)| < ε for every g ∈ G. Thus ‖Φφ,x,f −Φφ,y,f‖∞ ≤ ε
and, since ‖m‖ ≤ 1,

|φf,m(x)− φf,m(y)| = |m (Φφ,x,f − Φφ.y,f )|

≤ ‖Φφ,x,f − Φφ,y,f‖∞ < ε.

Statement 2 will be proved in a similar manner. Take some neighbour-

hood U1 of 1G1 . Since f is a uniform homeomorphism there is a neigh-

bourhood U2 of 1G2 such that x /∈ U1 implies f(xg)f(g)−1 /∈ U2 for every

g ∈ G1. Since the topology of G2 is generated by the functions in A, there

are φ ∈ A and ε > 0 such that {x ∈ G2 : φ(x) < ε} ⊂ U2. We deduce

therefore that x /∈ U1 implies φ(f(xg)f(g)−1) ≥ ε for every g ∈ G. Thus

Φφ,x,f (g) ≥ ε for every g ∈ G and we deduce that φf,m(x) ≥ ε. Having

proved that {x ∈ G1 : φf,m(x) < ε} ⊂ U1 with φ ∈ A, the proof is done. �

Lemma 2.23. Let G1 = (G1, d1) and G2 = (G2, d2) be two metrizable

groups equipped with left-invariant metrics d1 and d2 and let f : E1 → E2 be

a uniformly continuous coarse embedding. Assume in addition that (G1, d1)

satisfies the following condition:

(∗) there is a continuous map j : R→ Aut(G) such that d1(j(t)x, 1G1) ≥
t d1(x, 1G1)

If φ : G2 → C is defined as φ(x) = d2(x, 1G2) and m is a mean on LUC(G1),

then the topology of G1 at 1G1 is generated by the collection of functions

{φf,m ◦ j(t) : t ∈ R}.

Proof. Take some ε > 0. The definition of coarse embedding provides

two nondecreasing functions ϕ1 : [0,+∞) → [0,+∞) and ϕ2 : [0,+∞) →
[0,+∞) such that:

(1) ϕ1 (d1(x, y)) ≤ d2 (f(x), f(y)) ≤ ϕ2 (d1(x, y)).
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(2) lim
r→+∞

ϕ1(r) = +∞.

Suppose now that x ∈ G1 is such that d1(x, 1G1) ≥ ε.
To begin with we choose t0 ∈ R such that ϕ1(t0ε) > 1 (note that

limt→∞ ϕ1(t) = +∞).

Since ϕ1 is nondecreasing, we deduce from property 2.23 that ϕ1

(
d1(j(t0)x, 1G1)

)
≥

ϕ1(t0ε). Our choice of t0, then implies that ϕ1

(
d1(j(t0)x, 1G1)

)
≥ 1. Now

d1 is left-invariant, we thus have that ϕ1

(
d1

(
(j(t0)x)g, g

))
≥ 1 for ev-

ery g ∈ G1. It follows from inequality (1) and the invariance of d2 that

φ

(
f

(
(j(t0)x)g

)
)f(g)−1

)
≥ 1 for every g ∈ G. This immediately implies

that φf,m(j(t0)x) ≥ 1. Having proved that{
x ∈ G1 : (φf,m ◦ j(t0)) (x) < 1

}
⊂
{
x ∈ G1 : d1(x, 1G1) ≤ ε

}
,

and recalling that, by Lemma 2.22, φf,m is uniformly continuous, the proof

is done. �

Corollary 2.24. Let (E1, ‖ ·‖1) and (E2, ‖ ·‖2) be quasi-Banach spaces

and let f : E1 → E2 be a uniformly continuous coarse embedding. Let in

addition m denote a mean on LUC(E1). Then, defining φ : E2 → C as

φ(ξ) = ‖ξ‖2, the topology of E2 is generated at 1G2 by the collection of

functions {φf,m ◦ j(t) : t ∈ R}, where j(t) is defined by j(t)ξ = tξ for every

t ∈ R and ξ ∈ E1.

Proof. Apply Lemma 2.23 with j : R→ Aut(E1) defined by j(t)ξ = tξ

for every ξ ∈ E1. �

We now apply Lemmas 2.22 and 2.23 to see how unitary and reflexive

representability are related to the coarse and uniform structure of amenable

groups. Our first result comes essentially from [AMM85].

Theorem 2.25. Let G1 and G2 be topological groups with G1 left-amenable

and let f : G1 → G2 be a uniform embedding. If G2 is unitarily representable,

then G1 is unitarily representable.

Proof. First, choose an invariant mean m on LUC(G1).

By Theorem 2.4 the collection of positive functions

A = {1− φ : φ is a real-valued positive definite function on G2 with φ(1G2) = 1}

defines the topology of G2 at 1G2 .
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By Statement 2 of Lemma 2.22, applied to the collection A, the functions

{ψf,m : ψ ∈ A} define the topology of G1 at 1G1 . If ψ = 1− φ, then ψf,m =

1 − φf,m. Again by Theorem 2.4, it will suffice to see that φf,m is positive-

definite for every positive-definite function φ : G2 → C.

Suppose φ : G2 → C is positive-definite and let x1, . . . , xn ∈ G and

α1, . . . , αn ∈ C be given.

Observe that, by invariance of m,∑
i,j

αiαjφf,m(xix
−1
j ) =

∑
i,j

αiαjm
(
LxjΦxix

−1
j ,f

)
.(2.1)

Since LxjΦxix
−1
j ,f (g) = φ

(
f(xig)f(xjg)−1

)
we turn our attention to the

family f(x1g), . . . , f(xng). As φ is positive-definite we obtain that, for any

g ∈ G, ∑
i,j

αiαjφ
(
f(xig)f(xjg)−1

)
≥ 0,

whence m
(∑

i,j αiαjLxjΦxix
−1
j ,f

)
≥ 0. Thus, continuing in (2.1),

∑
i,j

αiαjφf,m(xix
−1
j ) = m

∑
i,j

αiαjLxjΦxix
−1
j ,f

 ≥ 0,

and φf,m is positive-definite. �

Corollary 2.26. Let G1 and G2 be uniformly homeomorphic topolog-

ical groups. G1 is unitarily representable if and only G2 is unitarily repre-

sentable.

The following lemma in conjunction with Theorem 2.25 yields a uniform

classification of unitary representability.

Corollary 2.27. Let G be an amenable topological group. Then G is

unitarily representable if and only if G embeds uniformly in `κ2 for some

cardinal κ.

Proof. If G is unitarily representable, there is a topological isomor-

phism of j : G → U(H). The Hilbert space H is isomorphic to a Hilbert

sum, ⊕κ`2. Since U(⊕κ`2) is topologically isomorphic to a subgroup of∏
κ U(`2), we conclude with Lemma 2.17 that G embeds uniformly in `κ2 .

If conversely G embeds in `κ2 we only have to apply Theorem 2.25. �

Concerning reflexive representability we can now improve Theorem 2.11.

This will also result in an extension of Raynaud’s results [Ray83] where it

is proved that a Banach space that admits a uniform embedding into a
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superstable Banach space (see [Ray83] for the definition) always admits an

invariant uniformly equivalent stable distance.

Corollary 2.28. An amenable topological group G1 admits an uni-

form embedding into a metrizable group (G2, d2), with d2 being a stable and

left-invariant metric, if and only if G1 admits an equivalent left-invariant

distance that is stable.

In virtue of Lemma 2.23, coarse properties can also be added to the

above consequences of unitary and reflexive representability. The coinci-

dence between uniform embeddability and coarse embeddability in Hilbert

space has been noted by Randrianarivony [Ran06]. We see here how an

isomorphic property as unitary representability can work as the right bridge

between both properties. We need the following lemma.

Lemma 2.29. Let (X, d) be a metric space. If (X, d) admits a coarse

embedding into a Hilbert space H, then (X, d) admits a uniformly continuous

coarse embedding into H.

Proof. The coarse embedding turns into a Lipschitz embedding (TRUE???)

when restricted to a 1-net in G. Since a Lipschitz map with values in Hilbert

spaces can always be extended to a Lipschitz map on a metric superspace,

it is easy to see that this restriction that is Lipschitz equivalent to a 1-net

in �

Corollary 2.30. Let G = (G, d) be a left-amen able metrizable group

with property (∗) of Lemma 2.23. The following statements are equivalent:

(1) G is unitarily representable.

(2) G embeds uniformly in a Hilbert space.

(3) G embeds coarsely in a Hilbert space

Proof. Properties (1) and (2) are equivalent by Corollary 2.27. Theo-

rem 2.17 shows that (1) implies (3) as well. Assume now (3). By Lemma

2.29 we can assume that E admits a uniformly continuous coarse embed-

ding into a Hilbert space. Lemma 2.23 proves next that the topology of G

is defined by the collection of functions

{ψf,m ◦ j(t) : ψ = 1− φ, positive definite function on G2, with φ ≥ 0 and φ(1G1) = 1, t ∈ R}

where j(t) is, for each t ∈ R, an automorphism of G. By Theorem 2.22 and

the proof of) Lemma 2.25 the functions ψf,m are all continuous and positive

definite and so will be their composition with j(t). It follows from Theorem

2.4 that G is unitarily representable. �
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3. Groups that are unitarily or reflexively representable: dual

groups of Banach spaces

We have thus far identified a number a topological groups that are uni-

tarily or reflexively representable such as locally compact groups or additive

groups of Lp(µ)-spaces. We now try to give a broader picture of these classes.

Some classes of groups that have an “approximately locally compact”

behaviour are also unitarily representable. The following theorem is proved

in [Ban01].

Theorem 2.31 (Banasczcyk [Ban01]). Nuclear groups are unitarily rep-

resentable

Theorem 2.32 is trivial for nuclear locally convex spaces, for they are

projective limits of Hilbert spaces. This proof would extend to general nu-

clear groups through the structure theorem of [Gal00] if quotients of Hilbert

spaces by weakly closed subgroups were unitarily representable. Since we do

not know whether this is true or not, we have to rely on the more technical

proof of [Ban01].

Question 1. Let E be a Hilbert space and let H be a weakly closed

subgroup of E, is E/H unitarily representable?

We now develop a mechanism to obtain other classes of Abelian unitarily

representable groups. It is based on results of Fonf, Johnson, Plichko and

Shevchyk concerning the factorization of compact operators into `p-sums of

finite dimensional Banach spaces. Some definitions are first required:

Definitions 2.32.

• A Banach is called and Lp space if the metric structure of its finite

dimensional spaces is “close” to that of `np (spaces of dimension n

with `p-norm), see [BL00, Appendix F]. Of course, Lp(µ) spaces

are Lp for every µ and C(K)-spaces are L∞.

• Johnson’s space R is defined as the `2-sum

R =

(∑
n

Mn

)
2

,

where (Mn)n is a family of finite-dimensional Banach spaces, dense

for the Banach-Mazur distance. Roughly speaking this means that

the family (Mn) contains approximately a copy of every finite-

dimensional spaces up to isometry, see [Joh71] for the actual defi-

nition.
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Theorem 2.33 (Theorem 2.1 and Remark 4.5 of [FJPS06]). Let E

denote a Banach space and let K be a compact subset of E.

(1) If E has the approximation property1, there is a 1-1 compact oper-

ator TK : R → E with K ⊂ T (BR).

(2) If E is an L∞-space, there is a collection (Cn) of finite dimensional

spaces with each Cn isometric to `
(k(n))
∞ and a 1-1 compact operator

TK : (
∑

nCn)0 → E with K ⊂ T (BE).

Proof. The proof of this theorem can be found in [FJPS06, Theorem

2.1]. We provide a proof of Statement (2) for the particular case in which

E admits a monotone basis (en)n such that the spaces En = sp(e1, . . . , en)

are isometrically isomorphic to `n∞. Recall that a sequence (en)n is said

to be a monotone basis when every x ∈ E can be uniquely represented as

x =
∑∞

n=1 αnxn with αn ∈ C in such a way that the partial sum projections

Pn : E → sp(e1, . . . , en) all have norm ‖P‖ ≤ 1. C(K) spaces with K

compact and metric all have a monotone basis with En = sp(e1, . . . , en)

isometrically isomorphic to `n∞.

Since compact subsets of Banach spaces are contained in closed convex

hulls of null-sequences, we can assume for simplicity that K itself is a null-

sequence K = {zn : n < ω}.
Define En := sp(e1, . . . , en). The partial sum projection will be denoted

by Pn : E → En. For each n, put zn =
∑

k αn,kek. The sum being con-

vergent, it will be possible to find for every n and M , an index kM,n such

that ∥∥∥∥∥
∞∑
k=r

αn,kek

∥∥∥∥∥ ≤ 1

22M
for all r ≥ kM,n.

Since, on the other hand, zn → 0, there is nM with ‖zn‖ ≤ 2−2M for every

n ≥ nM . Choosing kj = max{kj,n : n < nj} (we set k0 = 1), we obtain that

(3.1)

∥∥∥∥∥∥
kj+1∑

k=kj+1

αn,kek

∥∥∥∥∥∥ ≤ 1

22j
for every n ≥ 1 and j ≥ 1.

1A Banach space E is said to have the approximation property if there is a sequence

of operators Tn : E → E with finite dimensional range such that limn ‖x − Tnx‖ = 0 for

every x ∈ E. All classical Banach spaces have the approximation property.
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We now define M0 = Ek1 , Mn = Ekn+1 for n ≥ 1 and F =

 ∞∑
j=0

Mj


0

.

The operator TK : F → E is then defined as

TK
(

(yj)j
)

=
∞∑
j=0

1

2j
yj .

Since the norms ‖yj‖E (= ‖yj‖Mj ) are bounded, it is clear that the above

sum is absolutely convergent in E.

To see that TK is compact we take ε > 0 and check that TK(F1) can be

covered by finitely many translates of the ball of radius 2ε centered at the

origin.

Choose j0 such that
∑

j>j0
1
2j
≤ ε.

Since Mj0 is finite dimensional, it is possible to find a1, . . . , aN ∈ Mj0

such that

v ∈Mj0 , ‖v‖ ≤ 2 =⇒ there is 1 ≤ k ≤ N with ‖v − ak‖ ≤ ε.

Now, let v := (vj)j ∈ F1, i.e., such that ‖vj‖E ≤ 1 for every j. Since∑
j≤j0

1
2j
vj ∈Mj0 and ‖

∑
j≤j0

1
2j
vj‖ ≤

∑
j≤j0

1
2j
≤ 2, there must be some k

with ‖
∑

j≤j0
1
2j
vj − ak‖ ≤ ε. We obtain finally that

‖TK(v)− ak‖ =

∥∥∥∥∥∥
∑
j

1

2j
vj − ak

∥∥∥∥∥∥ ≤∥∥∥∥∥∥
∑
j≤j0

1

2j
vj − ak

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j>j0

1

2j
vj

∥∥∥∥∥∥ ≤ 2ε.

To see that K ⊂ TK(F1), we consider an arbitrary zn ∈ K. Choosing

wj = 2j
kj+1∑

k=kj+1

αn,kek, for j ≥ 0,

we have by (3.1) that

‖wj‖Mj
≤ 1

2j
, for every j ≥ 1.

This means both that (wj)j ∈
(∑

jMj

)
0

= F and that ‖(wj)j‖∞ =

supj≥0 ‖wj‖Mj ≤ 1. Since zn = TK ((wj)j) we have that K ⊂ TK (F1)

and the proof is done. �
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Remark 2.34. The paper [FJPS06] contains a much stronger conclu-

sion than Statement 2 in Theorem 2.34. Actually for any given L∞ space

Y there is a compact operator TK : Y → E with K ⊂ T (BY ).

Theorem 2.34 has a strong impact in the unitary and reflexive repre-

sentability of duals of Banach spaces with the compact-open topology. Since

this topology is the natural one in the duality theory of topological groups

we use the term dual group for these sapces.

Definition 2.35. If B is a Banach space, we will use the symbol B̂ and

the term dual group of B to refer to the additive group of the dual space

B∗ (the vector space of all continuous linear functionals) equipped with the

topology of convergence on compact subsets of B.

Remark 2.36. It is a well known fact that the dual group of B is topo-

logically isomorphic to the character group of the additive group of B, see

for instance [Ban91, Proposition 2.3].

Theorem 2.37 (Theorem 2 in [FG] and Theorem 3 of [Gal09]). Let B

denote a Banach space and let B̂ denote its dual group.

(1) If B has the approximation property, then B̂ is reflexively repre-

sentable.

(2) If B is an L∞-space, then B̂ is unitarily representable.

Proof. Let Let K(B) denote a set that is cofinal in the family of all

compact subsets of B (ordered by inclusion). For the rest of the proof R

will denote an `p-sum of finite dimensional spaces (
∑

nMn)p. For the proof

of (1), R will indeed refer to Johnson’s R space. For the proof of (2), p will

equal 0 and each space Mn will be isometric to `
k(n)
∞ for some k(n) (were

we using the results of [FJPS06] in all their force, see the remark after

Theorem 2.34, we could have taken R = c0).

For each K ∈ K(B) we consider now the compact operator provided by

Theorem 2.34, TK : RK → B, that is defined on a copy RK of R.

Define then

Φ: B̂ →
∏

K∈K(B)

R∗K

as the product Φ =
∏
K∈K(E) T

∗
K , where again R∗K represents a copy of R∗

and TK∗ : B̂ → R∗K is the operator adjoint to TK.

This map is easily seen to be one-to-one.

To see that Φ is continuous we begin by observing that

(3.2) T ∗K
({
ξ∗ ∈ B∗ : ξ∗

(
TK(BRK

)
)
⊂ D ε

})
⊂ εBR∗K ,
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where D ε denotes the disc of the complex plane of radius ε. Taking into ac-

count that TK is a compact operator, (3.2) leads us to deduce that TK∗ : B̂ →
R∗K is continuous.

To see that Φ is an open mapping onto its image, choose a compact sub-

set K0 ⊂ B and let U = {ξ∗ ∈ B∗ : ξ∗(K0) ⊂ D ε} denote the corresponding

basic neighbourhood of 0 in B̂. The covering property of TK then implies

that TK0(BRK0
) ⊂ K0 and hence that{(

ξ∗K
)
K∈K(B)

∈
∏

K∈K(B)

R∗K : ξ∗K0
∈ BR∗K0

}
∩ Φ(B∗) ⊂ Φ(U).

It follows that Φ(U) is a neighbourhood of 0 in Φ(B∗) and, since U was

arbitrary, that Φ is relatively open.

We have thus that Φ is a linear homeomorphism of B̂ onto a subspace

of
∏
K∈K(E)R

∗
K .

Proof of (1): If R = R, each R∗K is linearly isometric to (
∑

nM
∗
n)`2 .

Since each M∗n is finite dimensional, it is stable. The `2-sum of stable Banach

spaces is known to be stable (see [KM81, Théorème II.1]). It follows from

Theorem 2.11 that
∏
K∈K(E)R

∗
K and, as a consequence, that B̂ is reflexively

representable.

Proof of (2): If RK = (
∑

nMn)0 with each space Mn isometric to `
k(n)
∞

for some k(n), we have that R∗K = (
∑

nM
∗
n)1. As M∗n is isometric to `

k(n)
1 ,

we conclude that R∗K ⊂ `1 . Therefore B̂ embeds in a product of `1’s and

hence is unitarily representable. �

We have already seen that nuclear groups are unitarily representable.

An immediate consequence of Theorem 2.38 is that all Schwartz locally

convex spaces are reflexively representable. Schwartz locally convex spaces

constitute a class of spaces where some of the classical theorems of Analysis

takes place and that still retains some of the flavour of finite dimensional

spaces. See [Jar81] or [Hor66] for the basic properties of Schwartz locally

convex spaces. See [ACDT07] as well for the introduction of the concept

in the topological group setting.

The essential example of Schwartz space is the dual group of a Banach

space. It is essential because every Schwartz locally convex space is linearly

homeomorphic to a subspace of a power of ̂̀1, the dual group of `1 (this was

obtained independently by Jarchow [Jar73] and Randtke [Ran73]). Since

`1 has the approximation property, Statement (1) of Theorem 2.38 yields

the following:
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Corollary 2.38. The additive group of a Schwartz locally convex vector

space is reflexively representable.

Another consequence, or rather the same, of Theorem 2.38 concerns free

topological groups. Theorem 2.38 can be directly applied to free locally con-

vex spaces and free Abelian topological groups on compact spaces. If X is

a completely regular space, the free locally convex space L(X) and the free

Abelian topological group A(X) on X are obtained by providing the free

vector space on X (resp. the free Abelian group on X) with a locally convex

vector space topology (resp. a topological group topology) such that every

continuous function f : X → E into a locally convex space (resp. a topologi-

cal grouop) can be extended to a continuous linear map f̄ : L(X)→ E (resp.

to a continuous homomorphism): free topological groups are used to get lin-

ear structure were it is lacking. The space of continuous functions C(X,R)

and the group of continuous functions C(X,T ) can then be identified (via

the restriction mapping) with the dual vector space and the character group

of L(X) and A(X), respectively. The topology of L(X) happens then to be

that of uniform convergence on equicontinuous pointwise bounded subsets

of C(X,R) and the topology of A(X) the topology of uniform convergence

on equicontinuous subsets of C(X,T ), see [Usp83], and [Pes95] for proofs

of these facts.

The elements of L(X) can also be seen as linear combinations of point-

mass measures on X. Since the topology of L(X) is the topology of uniform

convergence on equicontinuous pointwise bounded (=relatively compact)

sets, L(X) is a subspace of the dual group of C(X,R). The latter is usu-

ally identified with the space Mc(X) of measures with compact support on

X, in a natural way. By Tkachenko-Uspenskĭı’s theorem [Tka83, Usp90],

the topology of A(X) is actually the topology inherited from L(X) and, a

fortiori from Mc(X).

WhenX is compact, C(X,R) is a Banach space andMc(X) (the subindex

is usually dropped in this case) is its dual group, the following is then a sim-

ple Corollary of Theorem 2.39.

Corollary 2.39 (Corollary 6 of [Gal09]). The additive group of Mc(K)

and its subgroups L(K) and A(K) are unitarily representable for every com-

pact Hausdorff space K.

3.1. Free topological groups. Theorem 2.40 shows that free Abelian

topological groups on compact spaces are unitarily representable. Restrict-

ing to the compact case is unnecessary as Uspenskij [Usp08] has shown.
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What makes the unitary representability of free topological groups impor-

tant is their universal property: every topological group is a quotient of

a free topological group. For instance the solution to an important prob-

lem in descriptive set theory(see [GP03] for its formulation) would follow

immediately if the following question had a positive answer:

Question 2 ([GP03] and [Pes07b]). Is every Polish topological group

a quotient of a subgroup of the unitary group of some Hilbert space?

In view of the preceding remarks the answer to this question would be

in the affirmative if we had an answer to the following one:

Question 3 (Pestov, see for instance [Pes07b]). Are free topological

groups unitarily representable?

There are however paths to Question 2 other than the answer to Question

3. Indeed Gao and Pestov were able to obtain the commutative version of

question 2 without appealing to free Abelian topological groups (the answer

came nevertheless from the same circle of ideas, as it made strong use of free

Banach spaces).

Exercise 14. Show that every Abelian topological group is a quotient of

a unitarily representable group. The path followed in [GP03] is (1) embed

the Abelian topological G group in a product of metrizable groups
∏
iMi,

(2) show that each metrizable group Mi is the quotient of some Banach space

(use here the Free Banach or Lipschitz-free space on Mi), (3) every separable

Banach space is a quotient of `1 and (4) `1 is unitarily representable.

We now see that all free Abelian topological groups are unitarily repre-

sentable, this is a Theorem of Uspenskĭı.

Theorem 2.40 (Theorem in [Usp08]). Let X be a completely regular

topological space. The free locally convex space L(X) over X is then unitarily

representable

Proof (sketch). A fundamental tool for the proof is the Bartle-Graves’s

theorem (see, for instance, [BL00, Proposition 1.19]): every surjective lin-

ear operator T : E → F between Banach spaces has a continuous left-inverse,

i.e., there is S : F → E such that T ◦ S = idF .

Let now f : X → B be a continuous map with values in a Banach space

B. Applying the Bartle-Graves theorem to the quotient pf : `1 → B we get

a continuous map sf : B → `1 with pf ◦sf = idB. Let finally Ef : L(X)→ `1
be the linear extension of sf ◦ f to L(X).
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If F denotes the family of all continuous functions on X with values on

some Banach space, then (
∏
f Ef )(L(X)) is a subspace of a power of `1 and

is linearly homeomorphic to L(X). �

Exercise 15. Complete the preceding proof. First justify why we only

take care of mappings with range in a Banach space. Then prove with rigor

that (
∏
f Ef )(L(X)) is topologically isomorphic to L(X), note to that end

that every continuous function of f : X → B, extends to a continuous linear

map defined on (
∏
f Ef )(L(X)), viz. to the restriction composition of the

f -projection with (the restriction of) pf .check!!

We remark that questions 2 and 3 remain open for nonAbelian topolog-

ical groups. We quote here the following Conjecture of Uspenskĭı:

Conjecture 1 (Conjecture 4.1 of [Usp08]). The free topological group

F (X) is topologically isomorphic to a subgroup of Is(M), the isometry group

of a metric subspace of L1(µ).

4. When WAP(G) and B(G) are small: nonrepresentable groups

Not all groups are reflexively representable. The extreme case is rep-

resented by the group Homeo+[0, 1] of all orientation preserving homeo-

morphisms of the interval [0, 1]. The proof of this fact can be found in

Megrelishvili’s paper [Meg01a] or in its generalization in [GMe08] to the

effect that this group does not admit nontrivial representations in classes of

Banach spaces larger than reflexive ones.

Theorem 2.41 (Megrelishvili [Meg01a]). Every weakly almost periodic

function on Homeo+[0, 1] is constant.

The group Homeo+[0, 1] is a large group that is far from Abelian. In

general the algebras WAP(G) and B(G) tend to be richer when G is Abelian

and it can be expected that all Abelian groups are unitarily or reflexively rep-

resentable (whether this is true was asked by several authors, like Ruppert

[Rup84], Shtern [Sht94], Megrelishvili [Meg01a, ?] or Pestov [Pes07b]).

We will see here that the answer to both questions is negative and that

extreme examples are available also in the Abelian case, at least for B(G)

We begin by finding some classical Banach spaces that are not unitarily

representable. This depends on turning the topological (or rather, uniform)

information provided by positive definite functions into linear information.

To proceed in this way we need the basic structure of commutative von

Neumann algebras (see [Zim90] or [KR97, Section 9.4]). The essential fact
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of this theory is that every commutative von Neumann algebra of operators

A is isometrically isomorphic to L∞(X,µ) for some measure space (X,µ)

and that this isomorphism can also be chosen to preserve the action of

the algebras as algebras of operators. More concretely, if A is an algebra of

operators on the Hilbert space H, there are isometric isomorphisms V : A →
L∞(X,µ) and VH : L2(X,µ) → H such that V(T )f = T (VH(f)). It is

important to recall here that L∞(X,µ) acts on the Hilbert space L2(X,µ)

by multiplication operators: every f ∈ L∞(X,µ) induces a multiplication

operator Mf : L2(X,µ) → L2(X,µ), Mf (g) = fg. The unitary group of

L∞(X,µ) is then L∞(X,µ,T ), the multiplicative group of all f ∈ L∞(X,µ)

with with |f | = 1, a.e. We will write L0(X,µ,T ) to denote the group

L∞(X,µ,T ) equipped with the weak operator topology that on this set

coincides with the topology of convergence in measure.

Lemma 2.42. Let E be a topological vector space. Every positive defi-

nite φ : E → C induces continuous homomorphisms Vφ : E → L0(X,µ,T )

(multiplicative) and Uφ : E → L0(X,µ) (additive) such that:

φ(g) =

∫
X
Vφ(g)(x) dµ(x), and eiUφ = Vφ.

Proof (sketch). By Theorem 1.6 there is a unitary representation

π : E → U(H) such that φ = φπ,ξ,ξ for some ξ ∈ H. Since E is Abelian,

the smallest weak operator closed subalgebra A of B(H) (the algebra of

all bounded operators on H) that contains π(E) is commutative add a

reference!. By the preceding remarks there is a isometric isomorphism

V : A → L∞(X,µ) and f ∈ L2(X,µ) so that φ = φV◦π,f,f .

The claimed map Vφ will be the composition V ◦ π. Since π(E) is made

of unitaries, so will be the range of Vφ, hence Vφ(E) ⊂ L0(X,µ,T ).

The representation π in this disguise will be our Vφ.

It is a consequence of the resolution theorems for one-parameter groups

of operators that every continuous homomorphism such as Vφ(E) ⊂ L∞(X,µ,T )

has a ”logarithm” that produces Uφ, see [Ban91, Section 4]. �

A direct proof of the existence of Uφ in the above lemma can be found

in [AMM85] or [BL00, Proposition 8.7]

Corollary 2.43. If a metrizable topological vector space E is unitarily

representable, then it is topologically isomorphic to an additive subgroup of

L0(X,µ), for some compact X and some Borel measure µ on X and to a

multiplicative subgroup of L0(X,µ,T ).
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Theorem 2.44. An infinite-dimensional Lp(µ)-space is unitarily repre-

sentable if and only if 0 ≤ p ≤ 2.

Idea of Proof. We have already noted that Lp(µ) is unitarily repre-

sentable for 0 ≤ p ≤ 2, see te remarks after exercise 12.

For p > 2, the infinite dimensional spaces Lp(µ) have cotype p (see sec-

tion III.A of [Woj91] for the notion and results about cotype) while Banach

spaces linearly homeomorphic to subspaces of L0(X,µ) all have cotype 2,

[BL00, Proposition 8.17]. �

We will next pursue this line of thought. To get more subtle examples

about reflexive representability or unitary representability we will need to

resort to deeper results. These examples all involve the Banach space c0.

5. c0 as source of examples

The Banach space c0 was the first Banach space that was found to be

nonuniformly embeddable in `2, this was achieved by Enflo in [Enf69]. In

this section we will obtain some stronger results that will lead to a different

proof of Enflo’s theorem, Theorem 2.49. All these results provide new clues

suggesting that WAP(c0) is quite poor and hence a good source of (negative)

examples.

While dealing with the Banach space c0, the sequence with one in the

nth place and zero otherwise will be denoted by en.

We first need a couple of results reminiscent of the notion of cotype.

The first of them can be found for instance as Theorem 13 of [Dil01] or as

Proposition 8.16 of [AMM85]

Theorem 2.45 (Nikishin factorization theorem). Let X be a Banach

space. Every continuous linear operator T : X → L0(µ) factorizes through

Lq for each 0 < q < 1, i.e. there are continuous linear operators S1 : X → Lq
and S2 : Lq → L0 such that S2S1 = T .

Theorem 2.46 (Theorem 4.3 of [KMS93]). For every bounded operator

T : c0 → Lq, 0 < q ≤ 2,
∑
‖T (en)‖2 <∞.

With this ingredients we get the following version of Corollary 3 of

[Gal09].

Corollary 2.47. If φ ∈ B(c0) is positive definite with φ(0) = 1, then

limn φ(en) = 1.
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Proof (Sketch). Let φ : c0 → C be positive definite and continuous.

By Lemma 2.43, there is a continuous linear operator Uφ : c0 → L0(µ).

Let c0
S1→ Lq

S2→ L0 be a factorization of the operator Uφ as in Theorem

2.46. By Theorem 2.47,
∑

n ‖S1(en)‖2q = M < ∞, hence limn Uφ(en) =

limn S2(S1(en)) = 0. From Uφ(en)→ 0 it is easy to deduce that limn φ(en) =

0. �

From Corollary 2.48 we deduce immediately that positive definite func-

tions do not generate the topology of c0, thus:

Corollary 2.48 (Enflo [Enf69]). c0 is not unitarily representable.

But much more can be deduce from Corollary 2.48, for instance that

some Abelian groups have trivial B(G):

Theorem 2.49 (Banaszczyk [Ban83]). There is a closed subgroup H of

c0 with B(c0/H) consisting solely of constant functions.

Proof (sketch). Enumerate a countable dense subgroup of c0 as (vn)n,

and do it in such a way that vn ∈ sp(e1, . . . , en−1), and define H = sp(en +

vn)n. Since every element of h ∈ H is of the form
∑

j zj(ej+vj) with zj ∈ Z,

we have that ‖h1 − h2‖ ≥ 1 for every h1, h2 ∈ H, h1 6= h2 and hence H is

discrete, and closed.

Suppose now that π is a unitary representation of c0/H on a Hilbert

space H. This gives rise to a representation π̃ of c0 such that π̃(H) = Id.

From Theorem 2.48 we deduce that π̃(en) must converge to the identity

operator Id in the weak operator topology, and also in the strong operator

topology, for both topologies coincide in the unitary group.

Since π̃(H) = Id,

(5.1) π̃(vn) = π(en)−1.

Taking into account that π̃(en)→ Id we deduce that limn π̃(vn) = Id. But

(vn) was a dense subgroup of c0, what means that π̃(vn) is dense in π̃(c0).

We conclude that π̃(c0) = π(c0/H) = {Id} and, since π was arbitrary, that

c0/H does not have nonconstants unitary representations. �

Summarizing: we now know that Abelian groups can behave as badly as

possible concerning positive definite functions, they may even have none at

all. On the other hand, we also have found certain families of groups where

positive-definite functions work well: locally compact groups, dual groups of

L∞ spaces, nuclear groups. All these are examples of Schwartz groups. We

also know that all Schwartz spaces are reflexively representable. We cannot
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therefore leave this picture without wondering whether all Schwartz spaces

are unitarily representable. Notice also that we have not as yet any example

of Abelian groups that are not reflexively representable let alone any one

satisfying Theorem 2.50 for weakly almost periodic functions.

5.1. Unitarily representable topologies on c0. We consider now

c0 as a vector subspace of ̂̀1. The topology that c0 inherits (i.e. that of

uniform convergence on compact subsets of `1) is the finest one among all

possible Schwartz locally convex vector space topologies that are coarser

than the norm topology, [?, Corollary 14.5]. We denote this locally convex

vector space as S(c0). It is known, [Ran73] or [Jar73], that every other

locally convex Schwartz space is a subspace of a power of S(c0).

Neighbourhoods of 0 in S(c0) are determined by sequences of numbers

going to 0: given such a sequence α = (αn)n, consider the neighbourhood

(5.2) Uα =

{
(xn)n ∈ c0 : |xn| ≤

1

|αn|
, for every n

}
.

The sets Uα (with α ∈ c0) then constitute a neighbourhood basis at 0 of

S(c0), see [Ran73, Corollary 3].

Denote now by c00 the space of all sequences with finitely many nonzero

terms.

Lemma 2.50. If φ : c00 → C is norm-continuous and positive-definite

then it is also continuous in the σ(c00, `2)-topology.

Proof (sketch). We proceed as in Theorem 2.48, associating to ev-

ery such φ a linear map T : c00 → L0 and splitting T through Lp as S1S2.

Since (Theorem 2.47) (S1(en)) ∈ `2, it is then easy to check that for every

neighbourhood U of 1 in C, the set φ−1(U) contains a neighbourhhod de-

termined by S1(en) (roughly speaking, if
∑
|anS1(en)| is small, T ((an)) =

S2
∑
anS1(en) and T ((an) is again small. �

This will be a valuable tool to answer one of our remaining questions.

Theorem 2.51. The Schwartz space S(c0) is not unitarily representable.

Proof. Consider the subspace c00 of c0. Since every positive-definite

mapping on c00 is continuous in the σ(c00, `2) topology we only have to

observe that the σ(c00, `2) topology is strictly weaker than the topology of

S(c0). But this follows easily from the description of neighbourhoods given

in (5.2), simply take ᾱ ∈ c0, ᾱ /∈ `2, then Uᾱ does not contain any σ(c00, `2)-

neighbourhood. �
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We finally remark that some Abelian groups are not reflexively repre-

sentable. This is the result of adapting the following theorem of Raynaud,

[Ray83].

Theorem 2.52 (Theorem 2.4 of [FG]). The additive group of c0 is not

reflexively representable.

Proof. Suppose d is a stable, invariant distance generating the topology

of c0.

Let sn = (1/n) (e1 + · · ·+ en) denote the summing basis of c0 normalized

dividing by n.

We will find a sequence (hk) ⊂ c0 with limk φ(hk) = φ(0) for every

φ ∈WAP(G) and ‖hk‖ = 1 for every k. This will show that the topology of

c0 is not generated by weakly almost periodic functions.

Let φ ∈ WAP(G) and let an integer k be fixed. Choose nontrivial

ultrafilters U1, . . . ,U2k, then

Lφ,k := lim
n1,U1

lim
n2,U2

· · · lim
n2k−1,U2k−1

lim
n2k,U2k

φ

 k∑
j=1

s2j −
k∑
j=1

s2j−1


(5.3)

φ∈WAP
= lim

n1,U1

lim
n3,U3

· · · lim
n2k−1,U2k−1

lim
n2,U2

lim
n4,U4

· · · lim
n2k−2,U2k−2

lim
n2k,U2k

φ

 k∑
j=1

s2j −
k∑
j=1

s2j−1

 .

(5.4)

Note that in the second limit we have shuffled the order of summation. One

can see that the limit is preserved after this shuffling by applying a variant

of Grothendieck’s double limit, Theorem 1.8, see [BL00, Lemma 9.19] for

the validity of this variant. Observe that for n1 < n2 < . . . nk < . . . < n2k,

(5.5) ‖
k∑
j=1

sn2j −
k∑
j=1

sn2j−1‖ =
1

k
.

As a consequence of (5.3), limk Lφ,k = φ(0) for any φ.

Applying the second limit, (5.4), we can find for each k a collection of

indices n1 < n3 < · · · < n2k−1 < n2 < · · · < n2k big enough for the following

inequality to hold:

(5.6)

∣∣∣∣∣∣φ
 k∑
j=1

sn2j −
k∑
j=1

sn2j−1

− Lφ,k
∣∣∣∣∣∣ < 1

k
.
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Using these indices we define now hk =
∑k

j=1 sn2j −
∑k

j=1 sn2j−1 . Since

limk Lφ,k = φ(0). It follows from (5.6) that limk φ(hk) = φ(0). Observe on

the other hand that (recall that, for every k, n1 < n3 < · · · < n2k−1 < n2 <

· · · < n2k)

(5.7) ‖hk‖ = ‖
k∑
j=1

sn2j −
2k∑

j=k+1

sn2j−1‖ = 1.

�

6. Concluding remarks

We have found that additive groups of locally convex Schwartz spaces

occupy the border between unitarily and reflexively representable groups,

they are always reflexively representable but may fail to be unitarily repre-

sentable. In general, topological groups may have very few representations

on Hilbert or even reflexive Banach spaces. The additive group of c0 for in-

stance is not reflexively representable and one of its quotients does not admit

any nontrivial unitary representation. Thus, commutativity alone does not

seem to improve much this sort of representation-theoretic behaviour. It

should be remarked nevertheless that, to this author knowledge, no exam-

ple of an Abelian topological group admitting no nontrivial representation

on reflexive Banach spaces is known. That is why we ask whether there is

such a counterpart for Theorem 2.50:

Question 4. Is there an Abelian topological group G with no noncon-

stant weakly almost periodic functions?

Recall that examples of nonAbelian topological groups with no noncon-

stant weakly almost periodic functions do exist (Theorem megrhomeo).

The relation of reflexive and unitary representability with the uniform

or coarse classification of topological groups, gives some other results and

opens several other questions.

By Corollary 2.30 and 2.31, an amenable metrizable topological group

is unitarily representable if and only if it embeds coarsely or uniformly in

a Hilbert space and it is reflexively representable if and only if it embeds

uniformly in stable metric group. Two open ends are clearly left open here.

Question 5. Suppose (G, d) embeds coarsely in a stable metric space

(X, ρ), is G then reflexively representable? What if (G, d) and (X, ρ) are

Banach spaces?
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For noncommutative groups, more precisely for nonamenable groups,

even the simplest relations between uniform embeddability and representabil-

ity are not known:

Question 6 (Megrelishvili). If G is unitarily representable and H is

uniformly homeomorphic to G (for the left uniformities), is H necessarily

unitarily representable?

Since reflexively representable groups embed uniformly in reflexive Ba-

nach spaces, we may wonder about the relation existing between reflexive

representability and embeddings in reflexive Banach spaces. The difficulty

resides in finding a specific class of functions that makes a topological group

uniformly embeddable in a reflexive Banach space.

Raynaud [Ray83] proves that a Banach space E admitting a stable

distance uniformly equivalent to the norm distance, then E must contain

some linear copy of `p for some 1 ≤ p < ∞. Since some reflexive Banach

spaces do not contain any linear copy of `p (as for instance Tsirelson space,

see [BL00, Section 10.5]), we deduce from 2.31 that

Theorem 2.53 (Theorem 4.2 of [?]). There are reflexive Banach spaces

that are not reflexively representable.

Although the class of topological groups that embed uniformly in a re-

flexive Banach space is strictly larger than that of reflexively representable

groups, it does not contain all of Abelian topological groups. This is deep

result of Kalton.

Theorem 2.54 (Kalton, [Kal07]). The Banach space c0 does not embed

uniformly in any reflexive Banach space.

Observe that theorem 2.53 now follows directly from Theorem 2.55 if

one applies Theorem 2.18.

The last section of [Kal07] contains several questions related to the

structure of Banach spaces that embed coarsely (or uniformly) in stable

metric spaces. They are obviously linked to the structure of reflexively

representable Banach spaces through Theorem 2.31. Concerning coarse em-

beddings some data is obviously still missing.

Question 7. Let (X, d) and (Y, ρ) be metric spaces. If (X, d) embeds

coarsely in (Y, ρ), is there always a coarse embedding of (X, d) into (Y, ρ)

that is uniformly continuous? What if (X, d) is a Banach space?
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Size and complexity of compactifications.

Interpolation sets

The compactifications we have introduced in section 3 satisfy some of

our demands at the cost of being quite complicated objects; we examine in

this Section some proofs of this complexity; this will be done through the

introduction of a class of sets that are key instruments in the analysis of

semigroup compactifications.

This sets have as main property that their closure in the compactification

is homeomorphic to βN. We will thus be taking β N as a measure of what we

mean a complicated space. This is admittedly vague and not much rigorous

but we only want to get an idea of the complexity of our spaces and do not

pretend to dwell on establishing precise hierarchy.

We already know that for G discrete, GLUC can be realized as the very

well-known object βG. Even if GWAP and GB should in principle be simpler

objects, they are however not so well understood. We will find proofs of this

fact very often in the remainder of these notes.

We remark that if Section 2 has been devoted to relate the topology of

the group G and the topology induced by the compactifications, the analysis

of this Section can be seen as relating the topological group uniformity of

G with the uniformity induced by the compactifications.

Let us now introduce the sets that will serve us to illustrate how big and

complex these structures are:

Definition 3.1. Let G be a group and let X denote a subalgebra of

`∞(G), we say that a subset A of G is an X-interpolation set when every

bounded function f : A→ C admits a continuous extension f̄ ∈ X.

Examples 3.2 (Some special interpolation sets). Let G be a topological

group. Interpolation sets for some of the algebras of Section 1 have been

heavily studied and have been baptized:

(1) If G is discrete, then every set is an LUC(G)-interpolation set.

For nondiscrete G, every uniformly discrete subset of G will be an

LUC(G)-interpolation sets.

53
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(2) There is no exact reference in the literature on WAP(G)-interpolation

sets. Close relatives are Ruppert’s finite translation sets [Rup85]

also calledRW -sets by Chou [Cho90]. These areWAP -interpolation

sets E whose characteristic function χE ∈ WAP (G) (we will call

them uniformly approximable WAP(G)-interpolation sets, see The-

orem 3.6).

(3) The B(G)-interpolation sets are called Sidon sets. Picardello [Pic73]

uses the name weak -Sidon sets. He reserves the name Sidon set

to the interpolation sets that appear replacing B(G) by another

smaller algebra, for amenable G (in particular, for Abelian G) both

clases coincide.

(4) The AP(G)-interpolation sets are called I0-sets, this name goes

back to the work of Hartman and Ryll-Nardzewski [HRN64]. It is

interesting to observe that every bounded function f on an I0-set

admits an almost periodic extension f̄ with absolutely convergent

Fourier series[Kah66].

The presence of X-interpolation sets is a measure of how complex the

compactification but also of how rich the algebra X is, recall that for to be

A is an X-set lots of very different functions must come from elements of X.

It is also a notion of independence (if S is a linearly independent subset of

a vector space E, every function on S extends to a linear map on E). From

the topological point of view this is reflected in the presence of copies of βN.

Lemma 3.3. Let G be a topological group. For a set A ⊂ G the following

assertions are equivalent:

(1) A is an X-interpolation set.

(2) Every f : A → C admits a continuous extension f̄ to the compact

space GX.

G
ε
X−−−−→ GX

incl

x f̄

y
A

f−−−−→ C

(3) The closure clGX A of A in GX is homeomorphic to βA.

(4) If Ai ⊆ A, i = 1, 2 are disjoints subsets of A, then clε
X

(X)A1 ∩
clε

X
(X)A2 = ∅.

Proof.
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2⇐⇒ 1 By Theorem 1.13, the evaluation map φ 7→ Tφ is an isometric iso-

morphism isomorphism from X onto X = C(GX,C) (Tφ(p) = φ(p)

for all p ∈ GX).

If A is an X-interpolation set, every f : A→ C is the restriction

to A of some φf ∈ X. The evaluation Tφf is a continuous function

on GX. We may define in that case f̄ = Tφf .

The same equality defines an element φf ∈ C(GX,C) = X as-

sociated to f when Condition 2 holds. Both φf and f̄ extend f to

an element of X and to a continuous function on GX respectively.

2⇐⇒ 3⇐⇒ 4 These conditions are equivalent for every subset of a compact space,

see [Dug66] .

�

1. How interpolation sets look like: lacunarity

Lacunary sequences are at the root of the concept of interpolation set.

A sequence an of integers is called a lacunary sequence if
an+1

an
≥ λ > 1 for some λ and every n.

Lacunary sequences were introduced by Hadamard to discuss a particular

sort of homogeneity in the behaviour of certain trigonometric series, see

[Kat76, Chapter 5]. In [Str63] Strzlecki proved that lacunary sequences

are I0 sets, see [KR99] for a recent proof.

We will prove here the technically simpler fact that lacunary sequences

with λ > 4 are I0-sets. In fact the bigger λ is the greater degree of ”in-

dependence” the set has [GH06a]. From lemma 3.3 it clearly follows that

a sequence (an)n is an I0-set if given two closed disjoint intervals I1 and

I2 in T and an arbitrary arrangement (In)n of the intervals I1 and I2 (so

that In is either I1 or I2) there is always an almost periodic function χ with

χ(n) ∈ In.

Example 3.4 (Lacunary sequences). Lacunary sequences are always I0-

sets

Proof for the case |zn+1/zn| ≥ 4. Let I1 and I2 be two symmetric

closed intervals in T of arc length 1/3 centered in 1 and −1 respectively. It

is crucial to observe that both intervals will contain at least one n-rooth of

the unity for every n ≥ 2. Let {In} be an arbitrary arrangement of I1 and

I2.

We initially choose an interval J1 of arc length 1/3|z1| with z1(J1) =

{ta1 : t ∈ J1 } = I1.
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The set a2(J1) will be an arc of length |z2|
3|z1| , and will cover the whole T

once and at least one sixth of I1 or I2 twice. For some t2 ∈ J1, z2(t) ∈ I2,

if the interval centered in t2 of arc length 1/3|z2| is contained in J1 we

choose this interval to be J2, otherwise we still can move to the other corner

and have room to define an interval J2 ⊂ J1 of the the same length such

that z2 maps J2 into I2. Following in this manner we get a sequence Jn of

nested intervals in T . The intersection
⋂

Jn contains an element t0 with

tzn ∈ In. �

Lacunary sequences constitute an important source of examples of I0-

sets. Another source is of course formed by independent sets. Say that a

subset A = {ai : i ∈ I} of an Abelian group is independent if 〈 aj 〉∩〈 ai : i 6=
j 〉 = {e}, then A is an I0-set, for every function on f : A → T extends to

a homomorphism on f̄ : 〈A 〉 → T and then to a character of G. Similarly,

any set A such that the subgroup 〈A 〉 is fre, is also an I0-set. Of course no

such set can be found in Z where any two elements are always dependent.

We begin now to draw the differences between I0-sets and Sidon sets. It

is interesting to observe how the joint continuity of multiplication in GAP

plays here a prominent role.

Example 3.5. If A = A1 ∪ A2 with A1 = {6n : n ∈ N} and A2 =

{6n + n : n ∈ N}, then A is a Sidon set but it is not an I0-set.

Proof. Both A1 and A2 are lacunary sets, hence I0-sets and Sidon ssets

and there is a quite deep theorem, due to Drury [Dru70], stating that the

union of two Sidon sets is always a Sidon set (for this particular case easier

proofs can be found). For a proof of the union theorem for Sidon sets the

reader may consult section 5.5 of the monograph [DR71].

It is also a general fact that an I0 set A set cannot be partitioned in two

sets A1 and A2 in such a way that A1 − A2 ∪ A2 − A1 contains an infinite

symmetric set B (in this case B = {n ∈ Z : n 6= 0}), let us see why: If α

is an accumulation point of B in GAP, then 0 is an accumulation point of

B, simply take a net bη going to α and consider for every η some α(η) ≥ bη
with bα(η) 6= bη. Then the net xη = bη − bα(η) ∈ B and converges to 0. It

follows that either 0 ∈ A1 −A2
GAP

= A1
GAP

−A2
GAP

or 0 ∈ A2 −A1
Gap

=

A2
GAP

−A1
GAP

, and in either case we deduce that A1
GAP

∩A2
GAP

6= ∅. Since

two disjoint subsets of A have nondisjoint closures in GAP, we conclude A

is not an I0-set. �
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Much is known about how a Sidon set is like, mainly for the group Z,

see the reference [LR75]. The series of papers [GH06a, GHK06, GH05,

GH06b] gives a modern view on the lacunarity problems. Sidon sets on

noncommutative groups are studied in [Pic73, Cho82, Cho90].

Concerning the description of Sidon sets and WAP-interpolation sets

the best information available seems to be yet the one obtained by Rup-

pert [Rup85]. This is a characterization of what we could call uniformly

approximable X-interpolation sets.

Definition 3.6. A subset A ⊂ G of a topological group G is a uniformly

approximable X-interpolation set for some algebra X ⊂ `∞(G) if A is an X-

interpolation set and the characteristic function 1A ∈ X.

Theorem 3.7. Let G be a discrete group.

(1) ([Dru70]) If G Abelian, every Sidon set is uniformly approximable.

(2) ([Rup85, Theorem 7]) A subset A ⊂ G is a uniformly approximable

WAP-interpolation set if and only if every infinite subset B ⊂ A

contains a finite subset F such that both

(1.1)
⋂
b∈F
{x : bx ∈ A} and

⋂
b∈F
{x : xb ∈ A}

are finite.

(3) No infinite subset A of G is a uniformly approximable I0-set.

Proof. (1) This fact (the key step in the union theorem for Sidon sets)

is too hard to be proved here. It requires a full comprehension of Sidon sets

as ”almost linearly independent”. One fundamental tool are Riesz products,

that are build as products of functions into T with the help of a different

norm available on B(G), the one it gets as the conjugate Banach space of

C∗(G), the group C∗-algebra. In the locally compact Abelian case, B(G)

with this norm is identified with M(Ĝ) via the Fourier-Stieltjes transform.

(2) If te condition (1.1) in Statement (2) does not hold, then it is possible

to find two sequences (xn) and (yn) such that

(a) yn ∈ B for all n (b) xiyn /∈ {xjyk : k ≤ j < n} for all i < n,

(c) xnyi ∈ A for n ≥ i, and (d) xnyi /∈ {xkyj : k < j ≤ n} for all i ≤ n.

Then the set C = {xnym : n ≥ m} is contained inA, but 0 = limn limm 1B(xnym) 6=
limm limn f(xnym) = 1 which shows that B cannot be uniformly approx-

imable. This proves necessity in (2). Sufficiency is obtained through another

interesting property: A is a uniformly approximable WAP(G)-interpolation
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set if and only if clGWAP A is open and

clGWAP A ∩ (GWAP \G)2 = ∅.

(3) Suppose 1A ∈ AP(G). The set {Lx1A : x ∈ G} must be relatively

compact in `∞(G). Since Lx1A = 1x−1A, and ‖1A − 1B‖∞ = 1 if A 6=
B, we conclude that there is an infinite family B = {xn(i) : i ∈ I} with

x−1
n(i)A = x−1

n(j)A for every i, j ∈ I. Obviously no finite subset of B can

satisfy (1.1), hence A is not a uniformly approximable WAP-interpolation

set, let alone a uniformly approximable I0-set. �

Much more about Sidon sets in discrete groups is known, see for instance

[LR75, Cho82, Cho90] and references therein.

In the case of WAP(G)-interpolation sets, there is not so much infor-

mation available, the following extension of statement (2) in Theorem 3.7 is

worth mentioning. The theorem is due to Filali [Fil07] and has its roots in

[BF02]. A similar approach also producing WAP-interpolation sets can be

found in [FS04, Theorem 1.4].

Theorem 3.8. Let A = (xn) be a sequence in a topological group and

let U denote a compact symmetric neighbourhood of the identity in G. If A

satisfies the following conditions:

(1) For any neighbourhood V of the identity,
⋂
n

(
x−1
n V xn ∩ xnV x−1

n

)
is again a neighbourhood of the identity.

(2) U2xn ∩ U2xm = ∅, for every n 6= m.

(3) If x /∈ V 2,

xUT ∩ UT and UTx ∩ UT

are both relatively compact.

Then A is a WAP-interpolation set.

Proof (sketch). Let f : A → C be bounded and let g : G → C be

continuous, positive and supported in U . Define f̄ =
∑

n h(xn)Rx−1
n
h, that

is

f̄(s) =
∑
n

h(xn)g(sx−1
n ).

Clearly f̄ is an extension of f . f̄ ∈ LUC(G) for it consists in a linear

combination of LUC(G)-continuous functions with disjoint supports (the

support of Rx−1
n

is contained in Uxn). With the aid of property (1) one

shows that f̄ ∈ RUC(G) and then Grothendieck’s criterion shows that f̄ ∈
WAP(G). See [Fil07, Theorem 1] for full details. �
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2. Interpolation sets and `1-basis

The sole existence of an infinite interpolation set immediately implies

that the cardinality of the compactification is at least 2c, as big as possible for

separable groups. With the aid of Bourgain-Fremlin-Talagrand’s dichotomy,

good classifications of groups having some infinite X-interpolations are avail-

able. This approach through Bourgain-Fremlin-Talagrand’s dichotomy was

first used in [GH04] and has been also used in the more general setting of

dynamical systems (see for instance [Gla07]).

For this approach we need the connection between the concept of inter-

polation set and the concept of `1-basis.

Definition 3.9. A sequence (an)n<ω contained in a Banach space B is

called an `1-basis when there is some δ > 0 such that∥∥∥∥∥
m∑
n=1

λnan

∥∥∥∥∥ ≥ δ
m∑
n=1

|λn| , for any complex numbers λ1, . . . , λm.

If (an) is an `1-basis the correspondence sending each an to the canoni-

cal en vector of `1 (that with 0’s everywhere save the 1 placed in the n-

th. position) defines a topological isomorphism from the Banach subspace

sp ({an : n < ω}) of B generated by {an : n < ω} onto `1.

The connection between between interpolation sets and `1-basis is hinted

below, it exploits the fact that `1-basis in X∗ are actually X∗ ∗.

Lemma 3.10. Let G be a topological group and X a closed separating

subalgebra of CB(G). If a countable subset A = {an : n ∈ N} ⊆ G is an

X-interpolation set, then A is an `1-basis in X∗.

Proof. We first remark the well-known fact that, as a consequence of

the open mapping theorem, for a given X-interpolation A there is a constant

κA such that ‖f̄‖ ≤ κA‖f‖∞ for every bounded f : A → C with extension

f̄ ∈ X .

Assume A is an X-interpolation set. Let λ1, . . . , λn be complex numbers

and define f : A→ C by f(ak) =
|λk|
λk

for 1 ≤ k ≤ n and f(ak) = 0 if k > n.

This function f is the restriction to A of some f̄ ∈ X with ‖f̄‖ ≤ κA. Now,∥∥∥∥∥
n∑
k=1

λkak

∥∥∥∥∥
X∗

≥

1

κA

∣∣∣∣∣f̄
(

n∑
k=1

λkak

)∣∣∣∣∣ =
1

κA

∣∣∣∣∣
n∑
k=1

λkf(ak)

∣∣∣∣∣ =
1

κA

n∑
k=1

|λk| .
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�

Remark 3.11. It is interesting to note that the converse of the above

theorem is not true, if A is an `1-basis in X∗, then every bounded function

on A extends to a continuous functional on X∗, i.e., to an element of the

second conjugate X∗ ∗. The restriction of this function to GX must happen

to be σX(X∗,X)-continuous to deduce that f ∈ X, and therefore that A is

an X-interpolation set. This nonetheless happens in some situations, for

instance when X is the conjugate space of some Banach space B in such a

way that there is an embedding G ↪→ B ↪→ B∗∗ = X∗ compatible with the

embedding G ↪→ X∗. An example of paramount importance is the case of

Sidon sets of discrete groups. A discrete group embeds in its group algebra

C∗(G) and the latter is a predual of B(G).

Corollary 3.12. Let G denote a countable discrete group. A sequence

S in G is a Sidon set if and only if it is an `1-basis in C∗(G) (or in B(G)∗).

This connection between interpolation sets and `1-basis gives the key for

a qualitative criterion for their existence. It is founded on the celebrated

Rosenthal’s `1-theorem (already presented in Theorem 3.13.

Theorem 3.13 (Rosenthal). If (bn) is a bounded sequence in a Ba-

nach space B, then either (bn) has a weakly Cauchy subsequence (weakly≡
σ(B,B∗)) or a subsequence (bn(k)) of (bn) is an `1-basis.

Theorem 3.13 gives a serious hint on how Banach spaces without `1-basis

should look like. Rosenthal [Ros77] made it more precise and subsequently

Fremlin, Bourgain and Talagrand [BFT78] gave the definitive characteri-

zation.

Theorem 3.14 (Bourgain, Fremlin, and Talagrand [BFT78]). Let L

denote a separable and metrizable space and let F be a subset of B1(L). If

every countable subset of F has an accumulation point in B1(L) then F has

the following properties:

(1) F is relatively sequentially compact (i.e. every sequence has a sub-

sequence convergent in CF ).

(2) F has a compact closure in B1(L).

(3) F is sequentially dense in a compact subset of B1(L) (i.e. every

point of B1(L) is the pointwise limit of some sequence in F ).

Compact spaces that can be embedded in B1(L) for some separable and

metrizable L are usually named Rosenthal-compact spaces. By theorem 3.14
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we have that a Rosenthal-compact space is necessarily sequentially compact,

and sequentially separable.

In the usual terminology B1(L) will be the subset of RL consisting of

limits of sequences of continuous functions. We always regard B1(L) with

the topology inherited from RL.

Actually, Rosenthal’s theorem in the form of Theorem 3.13 is not di-

rectly applicable to all kinds of interpolation sets we are interested in, but

its proof (an utterly useful application of Ramsey that works mainly with

spaces of functions) does prove to be meaningful for the study of interpo-

lation sets. We will use Rosenthal’s theorem trough Todorcevic’s nontrivial

reformulation that encompasses as well Bourgain-Fremlin-Talagrand’s the-

orem.

Theorem 3.15 ( [Tod97]). Suppose X is separable and completely metriz-

able (i.e. Polish) and let {fn : n ∈ N} ⊂ CB(X,C) be a pointwise bounded

sequence. Then either:

(1) There is a subsequence {fn(k) : k ∈ N} such that clCX{fn(k) : k ∈ N}
is (homeomorphic to) βN, or

(2) Every point of clCX{fn : k ∈ N} is the limit of a subsequence of

{fn : n ∈ N}

Proof. This follows directly from from Todorcevic’s Propositions 1 and

2 of Section 13 in [Tod97] in the case of real-valued functions. By Propo-

sition 1 of loc. cit. (that uses Baire’s characterization of (non-) class-1

functions) it is proved, that either clRX{fn : n ∈ N} is contained in B1(X)

the set of all Baire class-1 functions or {fn : n ∈ N} has a subsequence

{fn(k) : k ∈ N} with clRX{fn(k) : k ∈ N} = βN. In the former case Proposi-

tion 2 of loc. cit., that actually corresponds to Bourgain-Fremlin-Talgrand’s

theorem, shows that every point in clRX{fn : n ∈ N} is the limit of some

Cauchy subsequence. �

Exercise 16. Extend the preceding proof to the case of complex-valued

functions.

Corollary 3.16. Suppose X is separable and completely metrizable

(i.e. Polish) and consider a pointwise bounded sequence {fn : n ∈ N} ⊂
CB(X,R) with no pointwise Cauchy subsequence (i.e., has no Cauchy subse-

quences as a subset of RX). Then {fn : n ∈ N} has a subsequence {fn(k) : k ∈
N} with clCX{fn(k) : k ∈ N} homeomorphic to βN.



62 3. SIZE AND COMPLEXITY OF COMPACTIFICATIONS. INTERPOLATION SETS

In the following subsections we examine the comsequences of Theo-

rem 3.14 and Theorem 3.16 to the existence and abundance of interpolation

sets.

3. When is |GX| < 2c? The Bourgain-Fremlin-Talagrand

dichotomy

We now see how Bourgain-Fremlin-Talagrand’s theorem applies to the

problem of (non-)existence of X-interpolation sets. We want to regard the el-

ements of G as sets of continuous functions on the algebra X. For Rosenthal-

like theorems to apply we thus need a Polish topology on X that makes the

elements of G continuous. This task can be difficult, or at least unnatural,

if we insist in using the uniform topology on the whole X. Typically we find

a big enough subset of X that is Polish for some weaker topology.

Next theorem states what we need and its corollaries will show that the

hypothesis are natural. We say here that a subset L of a Banach algebra

is generating if the closed subalgebra generated by L is X. Observe that a

generating set necessarily separates the points of GX.

Theorem 3.17. Let G be a separable topological group and let X be a

uniformly closed separating subalgebra of `∞(G) that contains a generating

set L such that (L, τ) is Polish for some topology finer than that of pointwise

convergence. Then G has no X-interpolation set if and only if the spectrum

GX is a Rosenthal-compact space.

Proof. Since L separates points of GX, we can regard GX as a subset of

CL (that is, the restriction mapping from X to L will be a homeomorphism).

Under this identification, each element of G corresponds to a continuous

functions (L, τ)→ C.

If G has no infinite X-interpolation set, no subset of A can have a clo-

sure in CL that is homeomorphic to βN (statement (3) of lemma 3.3), and

Theorem 3.15 shows that every infinite subset A of G contains an infinite

CL-Cauchy sequence. We deduce therefore that G is relatively sequentially

compact in CL. Theorem 3.14 applies now to show that G has a compact

closure in B1(L). Since clCL G = GX we conclude that GX ⊆ B1(L) and thus

that GX is Rosenthal-compact.

If converselyGX is Rosenthal-compact, then |ε
X

(G)| ≤ c because Rosenthal-

compact spaces are sequentially separable (again theorem 3.14) and state-

ment (3) of lemma 3.3 shows that G cannot contain any X-interpolation set

(the cardinality of Stone-C̆ech compactifications of infinite discrete spaces

is at least 2c). �
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Corollary 3.18. A second countable locally compact group G has no

infinite Sidon subsets if and only if GB is Rosenthal compact.

Proof. Choose L = P1(G) the set consisting of positive-definite func-

tions f with ‖f‖∞ = f(1G) = 1 and τ = σ(L∞(G), L1(G)). τ is a Polish

topology and by Raikov’s theorem (see Theorem 3.31 of [Fol95]) agrees

with the compact open topology on P1(G). Since B(G) is spanned by L,

Theorem 3.17 can be applied. �

Corollary 3.19 ([GH04]). If G is a second countable locally compact

group, G has no infinite I0-sets if and only if GAP is Rosenthal compact.

Proof. We now choose L =
⋃
n P1,n(G) where P1,n stands for the set

of elements of P1(G) whose associated GNS representation (see Proposition

1.6, (3)) has dimension n.

L is again a generating set for AP (G). While P1,n(G) is again Polish

for the σ(L∞(G), L1(G))− (=compact-open) topology it is not clear at all

whether L is. We choose instead the topological sum as the τ -topology, that

surely satisfies this condition and apply Theorem 3.17. �

Being Rosenthal compact is indeed a condition on GX that imposes se-

vere restrictions on X as is clearly manifested when X = AP (G):

Theorem 3.20 ([GH04]). Let G be a second countable topological group.

The following assertions are equivalent.

(1) G has no I0-sets.

(2) The Bohr compactification GAP of G is metrizable.

(3) AP (G) is separable.

(4) G has countably many inequivalent finite dimensional unitary rep-

resentations.

Proof. (2), (3) and (4) are always equivalent, as the topological weight

of a compact group equals the number of irreducible, inequivalent represen-

tations ([HR63, 28.51]) and AP (G) = C(GAP,C).

By Corollary 3.19 G has no I0-sets if and only if GAP is Rosenthal com-

pact, thus (2) implies (1). To see that (1) implies (2) we simply observe that

Rosenthal-compact topological groups are metrizable (Rosenthal-compact

sets have Gδ-points, see [Tod97]). �

Corollary 3.21. The Bohr compactification GAP of a topological group

G has cardinality |GAP| ≥ 2c as soon as G has uncountably many inequiva-

lent finite dimensional representations.
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The above Corollary applies for instance to all infinite locally compact

Abelian groups and all groups admitting an infinite Abelian quotient.

The analog of Theorem 3.20 for Sidon sets or WAP-interpolation set is

not true, as there are groups with c-many inequivalent unitary representa-

tions (infinite dimensional) with small compactifications:

Theorem 3.22. If G is a simple Lie group, then every φ ∈ WAP(G)

goes to 0 at infinity. Thus GWAP = G∗, the one-point compactification of

G.

A self contained proof can be found in [Rup84, Chapter 5]. These

groups are of course not SIN (otherwise we would enter in contradiction

with Theorem 3.25). For SIN groups the size of GB does not seem to be

known; it is thus uncertain how the condition GB Rosenthal compact affects

the structure of G.

Question 8. Is it true that |GB| ≥ 2c for all discrete groups?

It is interesting to remark that a considerably weaker Conjecture of

Chou [Cho82] remains open: Every discrete group G has some φ ∈ B(G)

that cannot be decomposed as φ = φ1 +φ2 with φ1 ∈ AP(G) and φ2 ∈ C0(G).

The class of discrete groups admitting infinite Sidon sets, i.e., the groups

with |GB| ≥ 2c is nevertheless quite large.

Theorem 3.23. If H is a closed subgroup of a SIN group G, the Sidon

sets in H are Sidon sets in G.

The following is just a sample of the possible consequences of Theo-

rem 3.23.

Corollary 3.24. If a discrete group G has some Abelian or some free

subgroup, then |G| ≥ 2c.

Proof of theorem for discrete G. This is easy because every pos-

itive definite function φ on H extends to a positive definite function φ̄ on

G, namely to φ̄(g) = φ(g) if g ∈ H, and φ̄(g) = 0, if g /∈ H, [HR70, 32.43].

The rest of the proof is completely straightforward.

The restriction mapping R : B(G) → B(H) is known to be surjective

for several pairs (G,H). R is in particular always surjective G is SIN,

see [McM72], or [Kan04] and the bibliography therein for more recent

developments. �
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We already know that Theorem 3.23 cannot be extended to all locally

compact groups (e.g. simple Lie groups, whose weakly almost periodic func-

tions vanish at infinity contain infinite discrete Abelian groups). We will

also see that this same result is far from being true for I0-sets. (even if G is

discrete).

3.1. The case of WAP-interpolation sets: complete answers. It

is unclear whether the above theorems could work for WAP(G) but the fact

is we do not need them. In general the main advantage of B(G) (or even

B(G)) over WAP(G) is that the former can be seen as the dual of a C∗-

algebra under a suitable norm. This helps for instance in finding a natural

topology for Lemma 3.17 to hold. While the looser relation of WAP(G)

with the analytic structure carried by topological groups could be blamed

for the lack of theorems like 3.17, this same condition makes it easier to

build WAP-interpolation sets by hand:

Theorem 3.25 ([Cho69] for the discrete case; [Fil07] and [FS04] for

the general case). Every subset of a locally compact SIN group G that is not

precompact contains some infinite WAP-interpolation set.

Sketch of proof for the discrete case. Let B ⊂ G be infinite.

We construct a sequence A = (an) ⊂ A inductively, taking care that

(3.1) an+1 /∈
{
xi · xj · xk : with xl ∈ {al, a−1

l } and 1 ≤ i, j, k ≤ n
}

The set A thus defined satisfies the condition of statement (2) (even a

stronger one, it is a T -set) in Theorem 3.7 and therefore is a WAP-interpolation

set. �

Exercise 17. Use the idea just applied to discrete groups to prove The-

orem 3.25. Instead of applying Theorem 3.7, one should obviously apply

Theorem 3.8. Recall that a locally compact group is SIN if it has a neigh-

bourhood basis {Ui}i∈I at the identity consisting of invariant sets, i.e., with

Uig = gUi for all g ∈ G and all i ∈ I.

4. When X-interpolation sets are everywhere.

We have so far found some examples of locally compact groups contain-

ing no infinite I0, Sidon or even infinite WAP-interpolation sets at all, and

thus some instances of groups with very simple X-compactifications. We

have however also seen that for large classes of groups (SIN groups, for in-

stance) this is not the typical case. The structure of the compactifications

in these cases is usually intricate as we will be seeing.
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In this section we present a sample of how plentiful X-interpolation sets

may get to be. Example 3.4 already proved that every infinite subset B of

Z must contain some infinite I0-set (a lacunary sequence of ratio at least

4; as we said any lacunary set actually works) and Theorem 3.25 showed

that every infinite subset of a discrete group contains some infinite WAP-

interpolation set. Going further in that direction one can prove:

Theorem 3.26. [GH99, Lemma 2.3] Let G be a locally connected group

which is either locally compact or completely metrizable. A subset of A ⊂
Hom(G,T ) is either equicontinuous (and thus relatively compact in the topol-

ogy of uniform convergence on compact sets), or contains an infinite ε-

Kronecker (ε arbitrary).

Here, we have used a lacunary-type property stronger than being I0: say

that A ⊂ G is ε-Kronecker if for every f : A → T there is some χ : G → T
such that |f(x)−χ(x)| < ε for all x ∈ A. For the many lacunary properties

of ε-Kronecker sets, see the series of papers [GH06a, GHK06, GH05,

GH06b]. Of course, ε-Kronecker sets with ε <
√

2 are I0-sets.

Corollary 3.27. Every infinite subset of a finitely generated Abelian

group contains an infinite I0-set. Every unbounded subset of Rn contains an

infinite I0-set.

If G is a discrete subset and A ⊆ G is infinite we may fix two disjoint

intervals as in Example 3.4 and define for every C ⊂ A and every φ : C →
{1, 2} a set of characters like this:

N(φ,C) = {χ ∈ Ĝ : χ(c) ∈ Iφ(c) for all c ∈ C }.

The elements of the family

X = {C ⊆ A : N(φ,C) 6= ∅ for all φ ∈ {1,−1}C}

are clearly I0-sets. The family X can be ordered in such a way that for

any of its maximal elements B, it follows that A ⊆ 〈B〉 so that either A is

contained in a finitely generated subgroup (and Lemma 3.26 applies) or B

is an infinite I0-subset of A with |B| = |A|. Putting everything together we

obtain:

Theorem 3.28. [GH99] A subset A of an LCA group G always contains

an I0-set of cardinality κ(Ā), the compact-covering of Ā the closure in G of

A.

The scope of Lemma 3.26 is not limited to locally compact groups, we

have for instance:
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Corollary 3.29. The following sets contain an infinite I0-set:

(1) Sets with noncompact closure in free Abelian topological groups and

strict inductive limits of locally compact groups.

(2) Unbounded subsets of locally convex spaces.

(3) Sets with noncompact closure in locally convex spaces with Schur’s

property (such as `1).

(4) Sets with noncompact closure in nuclear groups.

The first two statements appear in [GH99] , the third in [HGM99] and

the fourth in [BMP96].

4.1. Applications of Rosenthal `1-theorem. A fundamental tool

for determining the existence of X-interpolation sets is obtained by relat-

ing their presence to the absence of weakly convergent sequences. This is

obtained via Rosenthal-type theorems that use 3.15 like the following one:

Theorem 3.30. Let G be a separable and metrizable locally compact

group and X a subalgebra of `∞(G) as in Theorem 3.17. Any sequence

{gn : n ∈ N} contained in G has a subsequence {gn(k) : n ∈ N} with one of

the following two properties:

(1) {gn(k) : k < ω} is an X-interpolation set.

(2) {gn(k) : k < ω} is a pointwise Cauchy sequence.

Translating theorem 3.30 to concrete algebras one gets (see [GH04]):

Theorem 3.31. Let G be a separable and metrizable locally compact

group. Any sequence {gn : n ∈ N} contained in G has a subsequence {gn(k) : n ∈
N} with one of the following two properties:

(1) {gn(k) : k < ω} is a Sidon set (I0-set).

(2) {gn(k) : k < ω} is a Cauchy sequence for the topology of pointwise

convergence on B(G) (resp. AP(G)).

The separability hypothesis can be removed in Theorem 3.31, see [GH04]

for details. On the contrary, the metrizability hypothesis cannot be disposed

of. For a (compact) counterexample, see [GH04].

It is usually much harder to find I0-sets in noncommutative groups.

One reason for this fact is that no analog of Lemma 3.23 holds. The paper

[Her08] contains examples of how dramatically this can fail for noncommu-

tative discrete groups. The abundance of I0-sets is actually a rather com-

mutative property 1. Actually no group having infinite I0-sets contained in

1Or maybe a property that requires a high degree of independence
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every infinite subset is known, apart of Abelian by finite groups. For some

classes of groups it is known that this is indeed the only possible case.

Theorem 3.32 (Theorem 4.1 and Corollary 6.3 of [Her08] and [WR96],

respectively). Suppose G is either (a) a finitely generated group G without

non-abelian free subgroups or (b) an FC-group2. If every infinite subset of

G contains an infinite I0-set, then G is abelian by finite.

Sketch of Proof. In case (a) Hernández shows that G has sequences

S = {xn} that converge to 1G in the topology of GAP. Since clGAP S =

S ∪ {e} is a countable compact set and clGAP A ⊂ S for every A ⊂ S, no

such A can be an I0-set.

In case (b), Riggins and Wu show that only countably many finite-

dimensional representations of the commutator subgroup G′ of an FC group

G are inequivalent. The topology that G′ inherits from GAP is therefore

metrizable and produces many nontrivial convergent sequences unless it is

finite. �

See [GHW07] for a summary on what is known about the existence of

I0-sets in noncommutative locally compact groups. For B(G) the situation

is quite different and Sidon sets are more abundant. De Michele and Soardi

[DMS76] show for instance that discrete FC-groups have infinite Sidon sets

in every infinite subset, this trivially generalizes to locally compact [FC]

groups (groups with precompact conjugacy classes):

Theorem 3.33. If G is a locally compact [FC] group, and A ⊂ G is not

precompact, then A contains an infinite Sidon subset.

Proof (sketch). If G is a discrete FC group, G/Z(G) is topologically

isomorphic to a direct sum of finite groups. This gives great control on posi-

tive definite functions and makes possible to associate to every sequence (yn)

in G a positive definite function with φ(yn) not convergent. Theorem 3.31

then proves the discrete case. The general case follows easily from the struc-

ture of [FC] groups: every [FC] group is the extension of a compact group

by the product of a vector group and a discrete SIN group, see for instance

[Liu73]. �

2An FC group is a discrete group all whose conjugacy classes are finite. A locally

compact group whose conjugacy classes are relatively compact is said to be an [FC] group.
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Algebraic structure of compactifications

We have already had a glimpse over the algebraic structure of compacti-

fications in Section 1. We know for instance that all four compactifications,

GLUC, GWAP, GB and GAP admit a binary operation that extends the mul-

tiplication of G and makes them into a semigroup. We also know that only

GAP has a group structure. It is also important to recall that this operation

is jointly continuous only for GAP; GWAP and GB have separately continuous

multiplication while only right multiplication is continuous for GLUC.

In this section we will deal almost exclusively with Abelian groups, very

often discrete, since as we will see the algebraic structure of the compact-

ifications is not well understood even in these cases. We also recall that

for Abelian G, GWAP, GB and GAP are all commutative, while ZLUC is not.

Concerning the algebraic structure we will only touch some basic facts as

the existence of idempotents and cancellability properties of semigroup com-

pactifications. The algebraic structure of compactifications is a rich subject

with many connections with other ares, the monograph, [HS98] gives many

examples and is devoted almost exclusively to ZLUC! Some of the results

presented here are part of a joint work in progress with M. Filali and appear

here with his kind permission.

1. Idempotents

Idempotents are essential in the description (and some applications as

those to Ramsey theory) of the algebraic structure of semigroup compactifi-

cations. Observe for instance how important are projections in C∗-algebras,

including characteristic functions in L∞(X,µ)-spaces.

Definition 4.1. Let S be a semigroup. The set of idempotents of S

will be denoted as E(S).

If S is commutative E(s) is obviously a subsemigroup of S.

The set of idempotents is never empty in the semigroups we are inter-

ested in. This now well-known fact was first proved in this generality by

Ellis, [Ell69].

69
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Theorem 4.2 (Ellis theorem). Every compact right topological semi-

group contains at least one idempotent.

Proof (sketch). Take a set A that is minimal in the family (ordered

by inclusion) A = {T ⊂ S : T closed, and TT ⊂ T}.
If x ∈ A, Ax ∈ A and, since Ax ⊂ A, Ax = A. This shows that the set

B = {a ∈ A : ax = x} is nonempty. Again BB ⊂ B and closed, thus B = A.

It follows that xx = x. �

Lemma 4.3. Suppose S and T are compact right topological semigroups

and that φ : S → T is a continuous surjective homomorphism. Then φ(E(S)) =

E(T ).

Proof. For every e ∈ E(T ), the set Ve = φ−1({e}) is a compact semi-

topological semigroup. By Ellis Theorem there must be an idempotent in Ve
and hence e ∈ φ(E(s)) and E(T ) ⊂ φ(E(S)). The other inclusion is trivially

checked. �

Theorem 4.4. ZLUC, ZWAP and ZB have uncountably many different

idempotents.

Proof. Let B denote the unit ball of the space L∞(X,µ), that is the set

of essentially bounded mappings f : X → C with |f | ≤ 1 a.e. If equipped

with the σ(L∞, L1)-topology B is semitopological semigroup. For every

measurable subset A ⊂ X the characteristic function 1A ∈ E(B). We will

assume that µ is a measure defined on a Kronecker subset X of T . Hence

every function f : X → T can be approximated by characters.

Identifying every element of f ∈ L∞(X,µ) with the multiplication oper-

ator Mf on L2(G), L∞(X,µ) is a commutative von Neumann algebra (the

only one up to isomorphism, actually) and, B turns into a semigroup of

operators under multiplication. As such the σ(L∞, L1)-topology, turns into

the weak operator topology (see, for instance, Proposition 4.50 of [Dou98]).

Let L0(X,µ,T ) denote the subset of B consisting of functions with |f | =
1, a.e. with the σ(L∞, L1)-topology (that here coincides with the topology

of convergence in measure, thence the subindex 0). This is the unitary

group of the von Neumann algebra L∞(X,µ) and is well known to be weak

operator dense in B.

Define now f0 ∈ L∞(X,µ,T ) as f0(eit) = eit. We are actually defin-

ing a unitary representation π : Z → L∞(X,µ,T ) ⊂ U(L2(X,µ)) of Z on

L2(X,µ), as π(n) = fn0 . For each h ∈ L2(X,µ) the functions Pf : Z → C
given by Pf (n) =

∫
fn0 (x)|h(x)|2 dµ are positive definite (it is a diagonal
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coefficient of π) and as thus extend to P̄f : ZB → C. We have therefore that

the map π extends to a continuous homomorphism π̄ : GB → B. The fact

that X is a Kronecker set is used at this point to observe that:

{fn0 : n ∈ Z}WOT
= L∞(X,µ,T ) = B,

and, hence, that π̄ is onto.

Since X has uncountably many different measurable sets, B has that

many idempotents and it follows from Lemma 4.3 that so will do ZB, ZWAP

and ZLUC. �

The actual number of idempotents in ZWAP is 2c, [BM72]

The question of whether E(ZWAP) is closed or not was one of the impor-

tant questions regarding compact semitopological semigroups. It was solved

independently by [BP00] and [BLM01]. Theorem 4.4 shows that the an-

swer to that question is negative. The argument of Theorem 4.4 has been

taken from [BLM01] and was devised to solve this latter question. We have

benefited from the helpful exposition included in [Sal03].

Corollary 4.5 ([BP00] and [BLM01]). The idempotent semigroup

E(ZWAP) is not closed.

Proof. We use the proof of Lemma 4.4 and its notation. It is enough

to find a sequence of subsets An ∈ X such that 1An does not converge to a

characteristic function for the σ(L∞, L1)-topology. We can take

An =
2n−1⋃
k=0

[
k

2n
,
k

2n
+

1

2n+1

)
,

then 1An converges to the constant function 1/2.

This shows that E(B) is not closed, since E(ZWAP) is mapped onto E(B)

by Lemma 4.3, we see that the latter cannot be closed. �

2. Cancellability

Another set of properties that give information about the algebraic struc-

ture of a semigroup are those related to cancellability. Cancellation is never

possible in GB, GWAP or GLUC as they contain many idempotents: let S

denote any of these semigroups if 1G 6= f ∈ E(S), then f · f = f · 1G.

Even if cancellation is never possible in these compactifications one can

hope for weaker forms of cancellability:

Questions 4.6. Let GX denote one of the compactifications: GB, GWAP

or GLUC
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(1) Does GX contain any cancellable elements?, i.e. is there any p ∈ GX

such that whenever q, s ∈ GX are such that q 6= s, then pq 6= ps?

(2) Does GX contain elements such that xg 6= x and gx 6= x for all

g ∈ G with g = 1G.

(3) Are there other bigger sets U in GX such that up 6= uq whenever

u ∈ U and p, q ∈ GX?

(4) Is the action of G by multiplication on GLUC effective? That is to

say, given 1G 6= g ∈ G, is there pg ∈ GX such that pgg 6= pg?

We can say here that the strongest answers for the above Questions have

been obtained for GLUC. That in spite of being, at least in principle, the

most complicated of these compactifications. We summarize here some of

the known answers:

(1) ZLUC and, in general, GLUC when G has uncountably many repre-

sentations, has cancellable elements, see Theorem 4.11. It is not

known whether ZWAP has any cancellable elements.

(2) The answer to (2) is positive for GLUC, for is locally compact G.

In this case the action of G on GLUC is free, i.e., pg 6= p for any

g 6= 1G and p ∈ GLUC, see Theorem 4.7. This result is known as

Veech’s theorem. GWAP also satisfies Veech’s theorem when G is

maximally almost periodic (this is rather trivial). On the opposite

side Veech theorem must fail in those locally compact groups with

WAP(G) ⊂ C0(G).

(3) This can be done in some cases, see Theorem 4.16 and Theorem 4.17

(4) It should be mentioned that all these cancellation properties fail

completely in some nonlocally compact massive groups, like so-

called extremely amenable groups. If G is such a group, there is

p ∈ GLUC with gp = p for every g ∈ G and the answer to questions

(2), (3) and (4) is negative. The theory of extremely amenable

groups has been recently developed by Pestov, see [Pes07a] for

an account. The groups U(H) and L∞(X,µ,T ) are examples of

extremely amenable groups.

We begin to review some of the available answers to the questions in 4.6

with the well-known Veech’s theorem.

Theorem 4.7 (Ellis [Ell60]for discrete G, Veech for locally compact

G[Vee77]). Let G be a locally compact group. If p ∈ GLUC, g ∈ G and

g 6= 1G, then pg 6= p. In other words, the action by multiplication of G on

GLUC is free.
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Proof (sketch). We sketch Pym’s proof of Veech’s theorem, see [Pym99]

for full details.

First, there is a partition of G into three sets A0, A1 and A2 in such a

way that Rg(Ai)∩Ai = ∅ for i = 1, 2, 3. It suffices to take A1 maximal with

respect to the property Rg(A1) ∩A1 = ∅ (such sets exists because gh 6= h);

then A0 = Rg(A1) and A2 = G \ (A1 ∪A0).

If G is discrete, disjoint subsets of G have disjoint closures in GLUC = βG

and given s ∈ GLUC, p belongs to the closure of precisely one of the sets Ai.

It is then easy to see that pg 6= p.

The general case can be derived through Pym’s Local Structure Theorem

for GLUC. It roughly states that every element p ∈ GLUC is in the closure of

some LUC-interpolation set X. Since clGLUCX is homeomorphic to βX and

G is open in GLUC (G is locally compact), an argument similar to the one

used above for discrete groups works. �

The proof of Lemma 4.7 gives the first proof of how useful interpolation

sets are in dealing with the algebraic structure of G. We will next see some

more instances.

Theorem 4.8. Let G be a discrete Abelian group and let T ⊂ G be a

uniformly approximable WAP-interpolation set. If p ∈ clGWAP T then pq 6= p

for any 1G 6= q ∈ GWAP

Proof. By [Rup85] all uniformly approximable WAP-interpolation

set(see the last sentence in Theorem 3.7) satisfy the property

clGWAP T ∩ (GWAP \G)2 = ∅.

If q /∈ G, pq ∈ (GWAP \ G)2, so pq 6= p. If 1G 6= q ∈ G, we consider

a character χ : G → T , with χ(q) 6= 1T ; χ ∈ WAP(G) and admits an

extension χ̄ : GWAP → T . Since T is a group it follows from χ̄(pq) = χ̄(p)

that χ(q) = 1T , a contradiction showing that pq 6= p. �

The above theorem is essentially the construction of [BF02] and [Fil07].

In these references the construction is taken over to cover, at least, all lo-

cally compact SIN groups. This more or less the highest generality possible,

examples of [FS04] and [Fil07] show that WAP-interpolation sets are not

so easy to construct in locally compact IN groups. Filali [Fil07] never-

theless manages to develop this technique to work in the class of E-groups

introduced by Chou [Cho75].
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We do not know at present if the above theorem holds for Sidon sets,

but the proof of Lemma 8.33 of [HS98] also leads to similar results for this

algebra, see Corollary 4.11 below.

If X ⊃ AP(G) we use the symbol bX : GX → GAP to denote the canonical

quotient semigroup homomorphism, recall that bX|G = b, where b = εAP is

the Bohr map. Note that the the following diagram commutes:

G
b //

ε
X
��

GAP

GX
bX

<<

Lemma 4.9. Let G be a maximally almost periodic topological group and

let X be an algebra with X ⊃ AP(G). Consider S ⊂ G such that b(S) is

discrete, then for every t ∈ S and p ∈ clGX S, b(t) = bX(p) implies p = ε
X

(t).

Proof. Let p = limj εX(sj), with sj ∈ S. Then

lim
j
b(sj)) = lim

j
bX(ε

X
(sj)) = bX(p) = b(t).

And we deduce that limj b(sj) = b(t). By hypothesis b(A) is discrete in this

topology and we must have that eventually b(sj) = b(t). Since b is injective,

we obtain as a consequence that sj = t and hence that p = ε
X

(t). �

Theorem 4.10. Let G be a maximally almost periodic group, let X be an

algebra with X ⊃ AP(G) and let T ⊂ G satisfy the following two properties:

(1) T is discrete as a subset of GAP, i.e., if b : G→ GAP is the canonical

map, b(T ) is a discrete subset.

(2) The characteristic function 1T ∈ X

If p ∈ clGX T then pq 6= p for any 1G 6= q ∈ GX.

Proof. Let q ∈ GX be such that pq = p. Let (ti) be a net in T such that

limi εX(ti) = p. By continuity of ρq (Corollary 1.19), limi εX(ti)q = pq = p.

Now it follows from 1T ∈ X that clGX T is open, hence there must be

some t ∈ T with ε
X

(t)q = v ∈ clGWAP T . Since bX(q) = 1G (bX(pq) = bX(p)

and GAP is a group), we have that b(ε
X

(t)) = bX(v), with v ∈ clGX T . By

Lemma 4.9 v = ε
X

(t) ∈ ε
X

(G). Since b is injective we finally conclude that

t = g. From ε
X

(t)q = v = ε
X

(t), we conclude that q = 1G as desired. �

Corollary 4.11. Let G denote a locally compact Abelian group. If

T ⊂ G is an I0-set and p ∈ clGX T , then px 6= p for every 1G 6= x ∈ GX.

where X is any of the algebras LUC(G), WAP(G) and B(G).
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Proof. This corollary follows immediately from Theorem 4.10 and the

fact that Sidon sets (and therefore I0-sets) are uniformly approximable Sidon

sets, Statement (2) of Theorem 3.7. �

While the algebraic structure of GLUC is more involved, its topological

structure is simpler, and this helps in unveiling some algebraic relations, let

us see how a well-known Lemma on the topology of βG leads to finding

cancellable elements in GLUC.

Lemma 4.12 (Theorem 3.40 of [HS98]). Let A and B are countable

(or σ-compact) subsets of βD. If clβD A ∩ B = A ∩ clβD B = ∅, then

clβD A ∩ clβD B = ∅.

Corollary 4.13. Let G be a discrete maximally almost periodic group

with uncountably many finite dimensional inequivalent representations. Then

GLUC = βG has left cancellable elements, that is there are elements p ∈ βG
such that

q 6= r ∈ GLUC =⇒ pq 6= pr.

Proof. By theorem 3.20 G must contain some countably infinite I0-set

A. Take p ∈ clβGA and let q, r ∈ βG be such that pq = pr. If Aq∩clβD Ar =

∅ and clβD Aq ∩ Ar = ∅, then clGLUC Aq ∩ clGLUC Ar = ∅, by Lemma 4.12.

Since pq ∈ clGLUC Aq ∩ clGLUC Ar, we can assume that Aq ∩ clGLUC Ar 6= ∅.
This means that there are a ∈ A and v ∈ clGLUC A, aq = vr.

We have as in Theorem 4.10 that bLUC(q) = bLUC(r) and thus that

b(a) = bLUC(r). Lemma 4.9 applies and shows that r = εLUC(a). Since

a and r were chosen so that aq = vr and a ∈ G is invertible we conclude

that q = r. �

Theorems 4.10 and 4.13, and Corollary 4.11 are not sharp. Much more on

cancellability on GLUC is known. As we have said GLUC is not commutative

and as a consequence left and right cancellability are different concepts. We

have here chosen to illustrate left cancellability because its techniques adapt

better to other compactifications. But, according [HS98, p. 174] right

cancellability is easier to deal with than left cancellability due to continuity

of right translations ρq. We summarize here, without proof what Hindman

and Strauss, [loc. cit.], prove about right cancellability, we refer the reader

to this monograph for unexplained terminology.

Theorem 4.14 (Sections 8,9 and 10 of [HS98]). Let D be a discrete

group.

(1) If xp 6= p for every 1D 6= x ∈ βD, then p is right cancellable.
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(2) If D is countable, x ∈ βD is right cancellable if and only if Dx is

discrete.

(3) The set of right cancellable elements of βD contains an open and

dense subset in βD.

(4) Weak P-points in βD are right cancellable. P -points are both left

and right cancellable.

(5) There are left cancellable elements that are not right cancellable.

Cancellability on GLUC for G not discrete has also been studied, see Filali

[Fil96]. One intriguing question that seems to be open is:

Question 9 (Question 8.43 of [HS98]). Are weak P-points left can-

cellable in βN?

Interpolation sets have proved essential to find points in GWAP or GB

such that px 6= p for every other point x in the compactification. Idempo-

tents constitute the easiest example of noncancellable elements. Idempotents

occupy a region of the compactification inaccessible for interpolation sets:

if interpolation sets can be regarded as thin sets, idempotents are in the

closure of rather thick sets:

Theorem 4.15. Let p ∈ ZLUC be an idempotent. If p ∈ clZLUC A with

A ⊂ Z, then A ∩ nZ 6= ∅ for every n ∈ Z.

Proof. Consider the quotient homomorphism Qn : Z → Z/nZ. Since

Z/nZ is finite, Q extends to a continuous homomorphism Q̄n : ZLUC → Zn.

We have then that Q̄n(p) = 0. Thus Q̄n
−1

({0}) is a neighbourhood of p and

A ∩ Q̄n−1
({0}) = A ∩ nZ 6= ∅. �

This however does not seem sufficient to prove cancellability,

Question 10 (Filali). Are there any cancellable elements in ZWAP or

ZB?

We close this Section remarking that the same circle of ideas taking

to Theorem 4.10 and its consequences leads to a considerable extension of

Veech’s theorem off G. The hypothesis of the following theorem are not

sharp, this is just a sample.

Theorem 4.16. Let G be a maximally almost periodic group with un-

countably many inequivalent finite dimensional representations. For every

C∗-algebra with LUC(G) ⊃ X ⊃ B(G), there is an open and dense subset V

of GX such that for every p ∈ GX, the mapping ρp is injective on U .
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Sketch. Let A ⊂ G be an I0-set. Then U := clXA∪G will be open and

dense in GX (note that 1A ∈ B(G) ⊂ X). If u, v ∈ clXA, and up = vp we

have as usual that bX(u) = bX(v). An argument similar to that of Lemma

4.9 then shows that u = v. Veech’s theorem takes care of the remaining

cases and the theorem follows. �

In [BP06] Budak and Pym obtain the analog of Theorem 4.16 for GLUC,

we see here how its main hypothesis (b : G→ GAP is not surjective) relates

to our previous arguments.

Corollary 4.17 (Theorem 4.1 of [BP06]). If G is a locally compact

σ-compact group for which b : G → GAP is not surjective, then GLUC = βG

contains an open and dense subset U such that for every p ∈ GLUC, the

mapping ρp (ρp(u) = up) is injective on U .

Proof of the discrete case (sketch). The proof is much the same

as that of Theorem 4.16. Since b is not surjective and b(G) is σ-compact,

b(G) cannot be countably compact and a sequence B = (xn) can be found

such that b(B) is discrete.

Suppose now that u1p = u2p with u1 6= u2 ∈ B. Take Bj ⊂ B, j = 1, 2,

with ujp ∈ ρp(clGLUC Bj) and B1 ∩ B2 = ∅. We can assume, by Lemma

4.12, that there is some g0p ∈ B1p∩ (clGLUC B2)p 6= ∅. Then b(g0)bLUC(p) =

bLUC(g0p) = bLUC(qp) for some q ∈ clGLUC B2, since GAP is a group we

conclude that b(g0) = bLUC(q) and Lemma 4.9 yields g0 = q, a contradiction

with B1 ∩B2 6= ∅. �

Remark 4.18. In theorems 4.13 and 4.16 we have made use of I0-sets.

The present proofs do not allow to use just Sidon or WAP-interpolation

sets (as could be guessed). Let A1 and A2 be disjoint I0-sets such that

clGAP A1 ∩ clGAP A2 6= ∅ but A0 = A1 ∪ A2 is not I0, cf. Example 3.5.

Let p ∈ GWAP (or GB) be such that bWAP(p) ∈ clGAP A1 ∩ clGAP A2. This

will produce elements p1, p2 in the GWAP-closure of A1 and A2 (necessarily

different as A0 is Sidon) with bWAP(p1) = bWAP(p2), so that the argument

of Theorem 4.16 does not work. In theorem 4.13 we used that I0-sets are

discrete in GAP. It is an old open question whether Sidon sets of Z can

accumulate at some point of Z.
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