
Evaluation and Tuning of the Level 3 CUBLAS for Graphics Processors

Sergio Barrachina Maribel Castillo Francisco D. Igual Rafael Mayo

Enrique S. Quintana-Ortı́

Depto. de Ingenierı́a y Ciencia de Computadores

Universidad Jaume I

12.071–Castellón, Spain

{barrachi,castillo,figual,mayo,quintana}@icc.uji.es

Abstract

The increase in performance of the last generations of

graphics processors (GPUs) has made this class of plat-

form a coprocessing tool with remarkable success in certain

types of operations. In this paper we evaluate the perfor-

mance of the Level 3 operations in CUBLAS, the implemen-

tation of BLAS for NVIDIA R© GPUs with unified architec-

ture. From this study, we gain insights on the quality of the

kernels in the library and we propose several alternative im-

plementations that are competitive with those in CUBLAS.

Experimental results on a GeForce 8800 Ultra compare the

performance of CUBLAS and the new variants.

Keywords: Graphics processors, linear algebra, BLAS,

high performance.

1. Introduction

Dense linear algebra operations lie at the heart of many

scientific and engineering applications. The interest of the

scientific community to solve larger or more complex nu-

merical problems, where the computation time is often the

limiting factor, naturally leads to the need of attaining high

performance on whatever architectures are the state-of-the-

art.

In this paper we evaluate the implementation of the

Basic Linear Algebra Subroutines (BLAS) provided in

CUBLAS 1.0 [9]. This is a library implemented on top of

the NVIDIA R© CUDATM (compute unified device architec-

ture) [10]. Our evaluation is focused on the kernels of the

Level 3 BLAS, which are often used to perform large num-

bers of arithmetic operations, and are thus natural candi-

dates for execution on graphics processors. The target archi-

tecture is the GeForce 8800 Ultra. Several previous studies

have evaluated the performance of tuned implementations

of the Level 3 BLAS constructed using graphics applica-

tion programming interfaces (APIs) [8, 3, 7]. However, the

recent development of CUBLAS and the fast evolution of

graphics hardware renews the interest in evaluating the per-

formance of these operations on new generation hardware.

The results of the evaluation demonstrate that not all ker-

nels in CUBLAS are equally tuned. Therefore, as part of

our work we also propose several variants of the kernels

that improve the performance of the basic implementations

in CUBLAS. In addition, we propose a hybrid parallel algo-

rithm that splits the computation between the CPU and the

GPU, achieving good performance results.

The rest of the paper is structured as follows: Sec-

tion 2 introduces the unified architecture of current GPUs

and the CUDA API. Section 3 explains the importance of

the performance of BLAS implementations, and introduces

CUBLAS. Section 4 evaluates the implementation of the

Level 3 BLAS kernels in CUBLAS. In Section 5, we pro-

pose several improvements over CUBLAS and report the

performance gains. Finally, Section 6 summarizes the con-

clusions and outlines future work.

2. GPUs with unified architecture

In 2006 a generation of GPUs with a completely differ-

ent architectural design appeared which solved many of the

restrictions related with general purpose computation that

were present in previous generations of graphics proces-

sors. These new GPUs feature a unified architecture, with

one processing unit or unified shader that is able to work

with any type of graphical data, transforming the sequential

pipeline of previous GPUs into a cyclic pipeline.

In particular, there are several characteristics in the new

generation of GPUs which favour its use as a general-

purpose coprocessor:

1. In general, the clock frequency of the unified shader

is much higher than that of the fragment processors

present in previous GPUs (though still much lower

than the clock frequency of current CPUs).

2. The shader consists of a large collection of compu-

tation units (up to 128, depending on the GPU ver-

sion), called Streaming Processors (SP), which operate

in clusters of 16 processors in SIMD mode on the input

data stream.

3. The memory hierarchy is much more sophisticated,

and includes a L2 cache and small fast memories

shared by all the SP in the same cluster.

Altogether with these unified architecture, the CUDA

general-purpose API [10] has been developed to exploit the

potential computational power that this hardware offers. In

fact, CUDA has been proposed as a standard (although only

compatible with NVIDIA hardware so far) to program the

new generation of GPUs, without the requirement of learn-

ing more complex graphics-oriented languages.

3. BLAS and CUBLAS

The BLAS are a collection of kernels that provide stan-

dard building blocks for performing basic vector and ma-

trix operations. Level 1 BLAS perform scalar, vector and

vector-vector operations; Level 2 BLAS perform matrix-

vector operations; and Level 3 BLAS perform matrix-

matrix operations. Highly efficient implementations of

BLAS exist for most current computer architectures and the

specification of BLAS is widely adopted in the development

of high quality linear algebra software, such as LAPACK

and FLAME [1, 2].

The Level 3 BLAS are specially important as the perfor-

mance of more complex routines that employ them directly

depends on that of the underlying BLAS implementation.

Level 3 BLAS is basically formed by five kernels: GEMM

(matrix multiplication), SYMM (symmetric matrix multipli-

cation), SYRK (symmetric rank-k update), TRSM (triangu-

lar system solve with multiple right-hand sides), and TRMM

(triangular matrix multiplication). Among these, in our

evaluation we select GEMM, SYRK, and TRSM. The two

other kernels are quite similar to SYRK, and therefore we ex-

pect the result of our analysis to apply to SYMM and TRMM

as well.

CUBLAS [9] is an implementation of BLAS developed

by NVIDIA on top of the CUDA driver. CUBLAS provides

functions for creating/destroying matrix and vector objects

in GPU memory space, filling them with data, executing

BLAS on the GPU, and transferring data back to main mem-

ory. Thus, CUBLAS offers basic BLAS functions as well

as helper functions for writing data to and retrieving data

from the GPU memory. As current GPUs only support sin-

gle precision arithmetics, no double precision version of the

kernels has been implemented in CUBLAS.

The following code illustrates how easy it is to use

CUBLAS from a C/C++ program to scale a vector:

1 int main(void){

2 ...

3 float* host_vector, * device_vector;

4
5 host_vector = (float*) malloc(M*sizeof(float));

6
7 ... // Initialize vector of M floats

8 cublasAlloc(M, sizeof(float),

9 (void**) &device_vector);

10
11 cublasSetVector(M, sizeof(float), host_vector,

12 device_vector, 1);

13 cublasSscal(M, ALPHA, device_vector, 1);

14 cublasGetVector(M, sizeof(float), device_vector,

15 host_vector, 1);

16
17 cublasFree(device_vector);

18 ...

19 }

Lines 8 and 21 initialize and terminate the CUBLAS en-

vironment much in the style of packages like MPI. Lines

10-11 and 19 allocate and free space for the vector in the

GPU memory. Lines 13-14 and 16-17 move the data from

the main memory to the GPU memory and retrieve the re-

sults. Finally, the call in line 15 scales the contents of the

vector using the GPU hardware.

CUBLAS also provides wrappers to help writing Fortran

programs that use the library.

4 Evaluation of the Level 3 CUBLAS

We first evaluate the performance of the Level 3 BLAS

implementation of CUBLAS on a GPU with unified archi-

tecture. Detailed specifications of the hardware of the sys-

tem can be found in Table 1.

CPU GPU

Processor Intel Core 2 Duo NVIDIA 8800 Ultra

Codename Crusoe E6320 G80

Clock frequency 1.86 GHz 575 MHz

Memory speed 2 × 333 MHz 2 × 900 MHz

Bus width 64 bits 384 bits

Max. bandwidth 5.3 GB/s 86.4 GB/s

Memory 1024 MB DDR2 768 MB GDDR3

Bus PCI Express x16 (4 GB/s)

Table 1. Description of the hardware used in

our experimental study.

The Linux implementations of CUDA and CUBLAS

version 1.0 were used in the evaluation of the GPU together

with the compiler nvcc release 1.0, version 0.2.1221. The

implementation of BLAS in GotoBLAS [4] version 1.19

was used on the CPU and code in this platform was com-

piled using gcc version 4.1.2.

All the results on the GPU hereafter include the time re-

quired to transfer the data from the main memory to the

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=n=k)

SGEMM

A*B

A
T
*B

A*B
T

A
T
*B

T

Figure 1. Performance evaluation for the im­
plementation of SGEMM in CUBLAS

GPU memory and retrieve the results back. The kernels

all operate on single-precision real data and results are re-

ported in terms of GFLOPS (109 floating-point arithmetic

operations per second). A single core of the Intel processor

was employed in the experiments.

4.1 Evaluation of SGEMM

The SGEMM kernel in BLAS can be used to compute any

of the following four matrix multiplications

C := β · C + α · op(A) · op(B),

where op(X) = X or XT , and α, β are both scalars. C is

m × n, op(A) is m × k, and op(B) is k × n.

Our first experiment evaluates the performance of the im-

plementation of the SGEMM kernel in CUBLAS for square

matrices A, B, and C (i.e., m = n = k), and all trans-

pose combinations of the operands. The results in Figure 1

shows that the layout in memory of the matrices has little

effect in the performance of the kernel. It is also interest-

ing to note the much higher performance of the kernel when

m = 4000. Further experiments revelated that all Level 3

CUBLAS kernels share this behaviour on the GeForce 8800

Ultra when the dimensions of the matrices are a multiple of

32. These particular values are likely to allow the kernel

to present an optimal memory access pattern by correctly

aligning data in memory, as suggested in [9]. “Optimal” di-

mensions will probably vary with the specific GPU model.

This insight leads to our proposal to improve the perfor-

mance of the SGEMM kernel, as well as other kernels such

as SSYRK or STRSM, described in subsection 5.1.

Following the characterization of the matrix multiplica-

tion in [5], we next analyze the performance of this oper-

ation when one of the matrix dimensions (m, n, or k) is

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

m

SGEPM

n=k=1000
n=k=2000
n=k=3000
n=k=4000
n=k=5000

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

n

SGEMP

m=k=1000
m=k=2000
m=k=3000
m=k=4000
m=k=5000

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

k

SGEPP

m=n=1000
m=n=2000
m=n=3000
m=n=4000
m=n=5000

Figure 2. Performance evaluation for the “im­
plementations” of SGEPM (top), SGEMP (mid­

dle), and SGEPP (bottom) in CUBLAS, used
to compute the matrix multiplication C :=
C + AB; two dimensions fixed

small with respect to the other two. This gives us three dif-

ferent kernels: SGEPM (m is small), SGEMP (n is small),

and SGEPP (k is small). Figure 2 shows that the difference

in performance among the three kernels is not significant.

(Strictly speaking, in the experiment two of the dimensions

are fixed and the other one varies, outgrowing the other two;

this does not correspond exactly to the definition of the pre-

vious kernels). We note again the performance boost in all

three kernels when operating with matrices of dimensions

that are a multiple of 32.

4.2 Evaluation of SSYRK

The SSYRK kernel computes

C := β · C + α · A · AT , or

C := β · C + α · AT · A,

where C is an m×m symmetric matrix, A is m×k (k×m
if transposed in the operation), and α, β are scalars. Given

the symmetry of the result, only the lower or upper triangu-

lar part of C is computed. The performance of this kernel

is specially relevant due to its impact on other procedures,

such as Cholesky factorization.

Figure 3 reports the results for the CUBLAS implemen-

tation of SSYRK when used to update the lower or upper

triangular part of C adding A ·AT or AT ·A to it, and with

m = k. As was the case for SGEMM, differences between

the different variants are negligible. Note the much lower

performance of the SSYRK implementation when compared

to that of SGEMM (at most, 40 GFLOPS for SSYRK com-

pared with 120 GFLOPS for SGEMM). In subsection 5.3,

we improve this performance by building SSYRK on top of

SGEMM.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=k)

SYRK - Detailed performance evaluation

A^T*A - Upper
A*A^T - Upper
A^T*A - Lower
A*A^T - Lower

Figure 3. Performance evaluation for the im­

plementation of SSYRK in CUBLAS

Figure 4 illustrates the performance of SSYRK for vari-

ous dimensions of m and varying values for k. Again, there

is a significant increase in performance for matrix dimen-

sions that are a multiple of 32 (m=4000).

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

k

SSYRK

m=1000
m=2000
m=3000
m=4000
m=5000

Figure 4. Performance evaluation for the im­
plementation of SSYRK in CUBLAS, used to

compute the upper triangular part of the re­
sults of the symmetric rank­k update, C :=
C + AAT ; m fixed

4.3 Evaluation of STRSM

The last kernel that is included in this study, STRSM, can

be used to solve the triangular linear systems:

op(A) · X = α · B, or

X · op(A) = α · B,

where op(A) = A or op(A) = AT . The unknown matrix

X and B are m×n, and the (upper/lower) triangular matrix

op(A) is m×m or n×n depending, respectively, on whether

it appears to the left or the right of the unkwown matrix. On

completion, the solution X overwrites B.

Figure 5 shows the performance of the CUBLAS imple-

mentation of the kernel when solving the equations with

the two possible combinations of memory layouts of matrix

A (transpose/no transpose), shapes (upper/lower triangular)

and m = n. The results are very similar for the majority of

the combinations, with the exception of the case in which A
is a lower triangular matrix and it is not transposed. In this

case, performance is significantly lower.

5 Tuning of CUBLAS

This section introduces some improvements to the ker-

nels in CUBLAS. We can distinguish three types of opti-

mizations: application of padding, implementation of Level

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=n)

STRSM; A on the Left-hand side

Upper - No transpose
Upper - Transpose

Lower - No transpose
Lower - Transpose

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=n)

STRSM; A on the right-hand side

Upper - No transpose
Upper - Transpose

Lower - No transpose
Lower - Transpose

Figure 5. Performance evaluation for the im­

plementation of STRSM in CUBLAS with A to
the left­hand (top) or right­hand (bottom) side

of the unknown matrix

3 BLAS kernels on top of SGEMM, and hybrid approaches

that split computations between the CPU and GPU.

5.1 Padding for SGEMM and SSYRK

One of the observations from the initial evaluation of the

kernels in CUBLAS was the superior performance when

these operate on matrices that are a multiple of 32. Ac-

cording to this, the first improvement introduced is padding.

Thus, our proposal for SGEMM and SSYRK is to pad with

zeros the input matrices, transforming their dimensions into

the next multiple of 32. With this transformation, we intro-

duce a very small overhead in the computation of the kernel,

negligible for large matrices, as the dimensions are most in-

creased in 31 columns/rows.

The implementation creates and sets to zeros a padded

matrix in GPU memory for each operand matrix, and then

transfers the data from main memory to the correct position

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000

G
F

L
O

P
S

Matrix dimension (m=n=k)

SGEMM

W/out padding
With padding

Figure 6. Performance evaluation for the im­
plementation of SGEMM in CUBLAS with and

without padding

in GPU memory.

In Figure 6 we compare the performances of the origi-

nal CUBLAS SGEMM kernel and the modified kernel with

padding applied on matrices. Results are reported for ma-

trices of dimension m = n = k = 2i and 2i − 1,

i = 7, 8, . . . , 12. As a result of the application of padding,

the performance attained by the kernel with padding is uni-

form for all matrix sizes, hiding the irregular performance

of original CUBLAS implementation. There is some over-

head associated with the cost of the padding process and the

non-contiguous store of the data in GPU memory during the

transference of the matrices; however, its impact over the

whole process is small, and the improvement when operat-

ing with non-multiple of 32 dimensions is important.

5.2 Partitioning for larger matrices

Transfer times between GPU memory and main mem-

ory is one of the bottlenecks of current GPUs. Therefore,

overlapping computation and transfers could imply better

performance. We have implemented a blocked version of

SGEMM that allows to overlap the computation of the partial

multiplication Ap ·Bp (with Ap and Bp being, respectively,

a block of columns of A and a block of rows of B) and the

transference of the next pair of blocks Ap+1 and Bp+1.

Unfortunately, the current version of CUDA is unable to

overlap computation and communication. The benefits of

this approach, however, will be exploited with future ver-

sions of CUDA and Nvidia hardware, that will allow simul-

taneous transfers and computation on the GPU.

An orthogonal (independent) benefit of this approach is

that the amount of GPU memory needed to compute the

matrix multiplication is more reduced (mn+mb+bn num-

bers, with b the column/row size of blocks Ap/Bp, com-

pared with mn + mk + kn). This enables the computation

with larger matrices that do not fit in GPU memory.

5.3 SSYRK built on top of SGEMM

The evaluation of the SSYRK kernel in CUBLAS in sub-

section 4.2 shows a poor performance compared with that of

the SGEMM implementation. Following the idea from [6], it

is possible to transform part of the computations performed

by SSYRK into SGEMM calls, as we describe next. Consider,

e.g., the partitioning of the matrices in Figure 7, where C11

is b × b and A1 consists of b rows. Assuming that the first

block of columns of C has already been computed, in the

column-oriented version of the algorithm, we proceed by

computing the following operations in the current iteration:

C11 := β · C11 + α · A1 · A
T
1 SSYRK

C21 := β · C21 + α · A2 · A
T
1 SGEMM

or, in the row-oriented version, considering updated the first

block of rows of C:

C11 := β · C11 + α · A1 · A
T
1 SSYRK

C10 := β · C10 + α · A1 · A
T
0 SGEMM

After these operations, the computation proceeds by updat-

ing the next block of columns (or rows) of C. By computing

C by blocks of b columns (or rows), where at each step the

diagonal b × b block is computed using the SSYRK kernel

and the off-diagonal block is computed using the SGEMM

kernel, it is possible to exploit the higher performance of the

CUBLAS kernel for the matrix multiplication, and speed up

the computation of the SSYRK operation.

+:= *

C

C 00

10C
11C

2120 22CC 22C

 00C

10C

20C 21C

11C

0A

1A

2A

T
0A 1AT

2AT

Figure 7. Decomposition of the SSYRK opera­

tion to build it on top of SGEMM

Figure 8 shows a comparison between the SSYRK im-

plementation in CUBLAS and our column-oriented blocked

implementation built on top of SGEMM, with and without

padding. The row-oriented implementation presents simi-

lar behavior, so it is not shown in the figure. The perfor-

mance of the blocked implementation is still limited by the

CUBLAS SSYRK implementation that is employed to com-

pute the diagonal blocks, but results are closer to those of

SGEMM.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=k)

SSYRK

CUBLAS
Blocked w/out padding
Blocked with padding

Figure 8. Performance evaluation for the im­
plementation of SSYRK built on top of SGEMM

5.4 STRSM built on top of SGEMM

A blocked algorithm can also be derived for the solution

of A ·X = α ·B, with A lower triangular, as follows. Con-

sider the partitioning of the operation in Figure 9, where

A11 is b × b and both X1 and B1 consist of b rows, and

assume that X0 has already been computed and the corre-

sponding updates of B1 and B2 have been performed. Then,

during the current iteration, in the column-oriented version

of forward-substitution we proceed by computing:

A11 · X1 = α · B1 STRSM

B2 := B2 − A21 · X1 SGEMM

while, in the row-oriented version (assuming that X0 has

been computed) we need to compute:

B1 := B1 − A10 · X0 SGEMM

A11 · X1 = α · B1 STRSM

The computation proceeds with the next b × b diagonal

block in A and block of b rows in X/B.

* =

A20

A10

A 00

A11

A21 22
X2

X1

X0 B0

B1

B2A

Figure 9. Decomposition of the STRSM opera­
tion to build it on top of SGEMM

We have implemented both versions of the STRSM kernel

built on top of SGEMM. Figure 10 shows the performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=n)

STRSM; column-oriented version

CUBLAS
Blocked w/out padding
Blocked with padding

Figure 10. Performance evaluation of the

column­oriented implementation of STRSM

built on top of SGEMM

observed for our column-oriented blocked implementation.

The row-oriented implementation presents a similar behav-

ior. The figure also includes the results attained by applying

padding to the SGEMM suboperations. Again there is a re-

markable increase in performance by utilizing the SGEMM

to compute the STRSM operation.

5.5 Hybrid implementation for SGEMM

It is possible to design an implementation in which CPU

and GPU collaborate to obtain a common result. To as-

sess the benefits of this, we have implemented a hybrid im-

plementation to compute the matrix multiplication C :=
αA·B, but the technique is easily ported to other variants of

the matrix multiplication or other kernels like, e.g., SSYRK

or TRSM.

Consider the partitioning in Figure 11. There, matrix B
is splitted into two column blocks, B1 (M × N ′) and B2

(M×N ′′). Block B1, together with matrix A, is transferred

to GPU memory and the GPU performs the operation C1 :=
α·A·B1, while CPU performs the operation C2 := α·A·B2.

When GPU finishes, submatrix C1 is transferred back to

main memory, and the operation is complete.

Our implementation executes in parallel these two op-

erations, improving the performance of the overall SGEMM

kernel. Values for N ′ and N ′′ must be selected carefully in

order to balance the load in a proper way between the GPU

and CPU.

For our hardware configuration, experimental results de-

termine that N ′ should be 7 times larger than N ′′. This fac-

tor has a direct impact on the performance that is possible

to achieve. As illustrated in Figure 12, the results improve

CPU GPU CPU

A

M

N’ N’’

+= *

C1

GPU

C2
B1 B2

Figure 11. Decomposition of matrix multipli­
cation for a hybrid CPU­GPU approach

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=n=k)

Hybrid SGEMM. Factor analysis

Factor 2
Factor 4
Factor 6
Factor 7
Factor 8

Factor 10

Figure 12. Impact of the partition sizes over

the performance of the hybrid SGEMM

when the factor is increased, until it reaches the factor 7.

For smaller factors, the CPU takes too long to perform its

calculation, and the load is not well balanced. For larger

factors, the performance obtained is also suboptimal, as the

CPU stays idle while the GPU is still working. However,

the decrease in performance in this case is not as important,

since the CPU is less powerful, and its impact is less impor-

tant over the whole process.

The use of GPU as a coprocessor with a hybrid approach

leads to a significant improvement in performance. Fig-

ure 13 compares the performance of the hybrid implemen-

tation (including padding), the original CUBLAS SGEMM

kernel, and the CUBLAS SGEMM kernel with padding. The

figure summarizes the results which can be achieved with

relatively simple transformations over default CUBLAS im-

plementations.

5.5.1 Variants of the hybrid algorithm

We have implemented two variants of the hybrid algorithm.

The first option creates a thread before the transfer of ma-

trices A and B1 begins. Thus, CPU computation overlaps

not only with GPU computation, but also with transfers be-

tween GPU memory and main memory. The second option

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

G
F

L
O

P
S

Matrix dimension (m=n=k)

SGEMM

Hybrid SGEMM with padding
CUBLAS with padding

CUBLAS w/out padding

Figure 13. Performance evaluation for the im­
plementation of SGEMM in CUBLAS, the imple­

mentation of SGEMM with padding, and the hy­

brid implementation of SGEMM (with padding)

is slightly different: in the first place, there is an initial trans-

fer of matrices A and B1; after finishing the transfer, a new

thread is created, and GPU and CPU perform their part of

the matrix multiplication. Only when both processors have

finished, the transfer of C1 back to main memory can take

place. Figure 14 illustrates both algorithms.

However, the current version of CUDA does not allow

to overlap transfers and computation in both CPU or GPU.

This limitation yields the second variant the most suitable

one in order to attain the best performance. The above re-

sults for the hybrid algorithm are thus based on this variant.

6. Conclusions

Graphics processors are becoming a cheap and efficient

alternative to solve general-purpose compute-intensive ap-

plications. The appeal of these platforms is considerably in-

creased by the development of high-level APIs for their use.

In this paper we have evaluate one of these APIs, CUBLAS,

which faciliates the computation of dense linear algebra op-

erations on NVIDIA GPUs. Our study reveals that not all

kernels in the Level 3 CUBLAS are equally optimized, and

that a much higher performance can be extracted from the

hardware by using a simple technique such as padding or

building the kernels around the GEMM operations. Our ex-

periments also demonstrate that hybrid algorithms, which

split the computation between the CPU and the GPU, can

increase the performance of an “pure” GPU implementa-

tion. Two major drawbacks still remain for GPUs: the lack

of support for double-precision arithmetic and the subtle

differences between GPU and IEEE arithmetics.

C1=A*B1
C2=A*B2 C1=A*B1 C2=A*B2

TX. C 1TX. C 1

 1TX. A, B 1TX. A, B

Th. 0 Th. 1 Th. 0 Th. 1

GEMM GEMM GEMM GEMM

Figure 14. Two thread schemes implemented

for hybrid SGEMM

Acknowledgments

This research was sponsored by the CICYT project

TIN2005-09037-C02-02 and FEDER, and project No.

P1B2007-32 of the Fundación Caixa-Castellón/Bancaixa

and UJI. Francisco D. Igual is supported as well by a re-

search fellowship from the UJI (PREDOC/2006/02).

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-

mel, J. J. Dongarra, J. D. Croz, S. Hammarling, A. Green-

baum, A. McKenney, and D. Sorensen. LAPACK Users’

guide (third ed.). Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 1999.
[2] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-

Ortı́, and R. A. van de Geijn. The science of deriving dense

linear algebra algorithms. ACM Transactions on Mathemat-

ical Software, 31(1):1–26, Mar. 2005.
[3] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding

the efficiency of GPU algorithms for matrix-matrix multipli-

cation. Graphics Hardware, 2004.
[4] K. Goto. Goto BLAS implementation, 2005.
[5] K. Goto and R. A. Van de Geijn. Anatomy of high-

performance matrix multiplication. ACM Transactions on

Mathematical Software, 2006.
[6] B. Kågström, P. Ling, and C. V. Loan. GEMM-based level 3

BLAS: high-performance model implementations and per-

formance evaluation benchmark. ACM Transactions on

Mathematical Software, 24(3):268–302, Sept. 1998.
[7] E. Larsen and D. McAllister. Fast matrix multiplies using

graphics hardware. In Supercomputing, ACM/IEEE 2001

Conference, pages 43 – 43, Nov. 2001.
[8] A. Moravánszky. Dense matrix algebra on the GPU. 2003.
[9] NVIDIA. CUBLAS Library. 2007.

[10] NVIDIA. Nvidia CUDA Compute Unified Device Architec-

ture. Programming Guide. 2007.

