
Informe Técnico ICC 01-02-2008

GLAME@lab: An M-script API for Linear Algebra Operations on Graphics
Processors

Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Ortı́

Febrero de 2008

Departamento de Ingenierı́a y Ciencia de Computadores

Correo electrónico: {barrachi, castillo, figual, mayo, quintana}@icc.uji.es

Universidad Jaime I
Campus de Riu Sec, s/n

12.071 - Castellón
España

1

GLAME@lab: An M-script API for Linear Algebra Operations on Graphics
Processors

Sergio Barrachina1,
Maribel Castillo2,

Francisco D. Igual3,
Rafael Mayo4,

Enrique S. Quintana-Ortı́5,

Abstract:

We propose two high-level application programming interfaces (APIs) to use a graphics processing unit (GPU) as a co-
processor for dense linear algebra operations. Combined with an extension of the FLAME API and an implementation on
top of NVIDIA CUBLAS, the result is an efficient and user-friendly tool to design, implement, and execute dense linear
algebra operations on the current generation of NVIDIA graphics processors, of wide-appeal to scientists and engineers. As
an application of the developed APIs, we implement and evaluate the performance of three different variants of the Cholesky
factorization.

Keywords:
Graphics processors (GPUs), general purpose computing on GPU, linear algebra, BLAS, high performance.

1Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: barrachi@icc.uji.es.

2Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: castillo@icc.uji.es.

3Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

4Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

5Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.

2

GLAME@lab: Interfaz de Programación M-script para Operaciones de Álgebra
Lineal Densa sobre Procesadores Gráficos

Sergio Barrachina6,
Maribel Castillo7,

Francisco D. Igual8,
Rafael Mayo9,

Enrique S. Quintana-Ortı́10,

Resumen:

El artı́culo presenta dos interfaces de programación (APIs) de alto nivel para el uso de unidades de procesamiento gráfico
(GPU) como coprocesadores para la realización de operaciones de álgebra lineal densa. En combinación con una extensión
de la interfaz de FLAME y una implementación basada en la biblioteca CUBLAS de NVIDIA, el resultado es una herramienta
eficiente y de fácil uso para diseñar, implementar y ejecutar operaciones de álgebra lineal densa sobre la última generación
de procesadores gráficos de NVIDIA. Como aplicación de la interfaz desarrollada, se implementa y evalúa el rendimiento de
tres variantes de la factorización de Cholesky.

Palabras clave:
Procesadores gráficos (GPUs), procesamiento de carácter general sobre GPUs, álgebra lineal, BLAS, altas prestaciones.

6Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: barrachi@icc.uji.es.

7Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: castillo@icc.uji.es.

8Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: figual@icc.uji.es.

9Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: mayo@icc.uji.es.

10Departamento de Ingenierı́a y Ciencia de los Computadores
E-mail: quintana@icc.uji.es.

3

GLAME@lab: An M-script API for Linear Algebra Operations on Graphics
Processors

Sergio Barrachina Maribel Castillo Francisco D. Igual Rafael Mayo
Enrique S. Quintana-Ortı́

Depto. de Ingenierı́a y Ciencia de Computadores
Universidad Jaume I

12.071–Castellón, Spain
{barrachi,castillo,figual,mayo,quintana}@icc.uji.es

Abstract

We propose two high-level application programming interfaces (APIs) to use a graphics processing unit (GPU) as a co-
processor for dense linear algebra operations. Combined with an extension of the FLAME API and an implementation on top
of NVIDIA CUBLAS, the result is an efficient and user-friendly tool to design, implement, and execute dense linear algebra
operations on the current generation of NVIDIA graphics processors, of wide-appeal to scientists and engineers. As an
application of the developed APIs, we implement and evaluate the performance of three different variants of the Cholesky
factorization.

Keywords: M-script languages, graphics processors, linear algebra, BLAS, high performance.

1 Introduction

The improvements in performance, functionality, and programmability of the current generation of graphics processors
(GPUs) have attracted interest in exploring the use of this class of hardware for general–purpose computation and, particu-
larly, for linear algebra operations [9, 12, 2, 3]. In this line, the development of the CUDA [14] Application Programming
Interface (API) is a positive step towards presenting NVIDIA graphics hardware as a general–purpose co–processor. Nev-
ertheless, we believe this class of interfaces still falls a step too short as a vast majority of scientists and engineers employ
user–friendly environments like MATLAB, OCTAVE, or LABVIEW to perform complex analysis, modeling, and simulations.

In response to this situation, in this paper we present two high-level APIs to execute the BLAS (Basic Linear Algebra
Subprograms) functionality [13, 8, 7] on graphics processors from user-friendly environments. Both APIs are based on the
popular M-script language that is used in MATLAB/OCTAVE (M-code) and LABVIEW (MATHSCRIPT) but, while the first API
leaves the user in control of transferring the data to the GPU memory, the second API transparently takes care of this process
at the cost of a certain overhead.

The Formal Linear Algebra Methods Environment (FLAME) encompasses a methodology for deriving provably correct
algorithms for dense linear algebra operations as well as an approach to represent (and code) the resulting algorithms [11, 4].
A key observation to FLAME is that in reasoning about algorithms intricate indexing is typically avoided and it is with the
introduction of complex indexing that programming errors are often introduced and confidence in code is diminished. Thus,
a carefully designed API should avoid explicit indexing whenever possible. FLAME@lab and FLAME/C are examples of
such APIs for the M-script and C programming languages [5]. As a second contribution of this paper, we naturally extend
FLAME to cover graphics hardware. Using this extension, the design and development of high-performance dense linear
algebra codes for this class of hardware results in a significant reduction in effort compared with more traditional approaches
to such library development [1, 6].

Our prototype implementation of these APIs on top of NVIDIA CUBLAS offers a measure of the efficacy of this approach
(in terms of ease-of-use), and an experimental evaluation on a G80 processor reports on its performance.

4

The rest of the paper is structured as follows. In Sections 2 and 3 we describe the proposed high-level APIs. In Section 4 we
illustrate how these APIs allow easy migration of high-performance linear algebra operations coded using the FLAME@lab
API to GPUs. In Section 5 we give some hints on the implementation of the APIs on top of NVIDIA CUBLAS interface.
In Section 6 we employ the factorization of a symmetric positive definite matrix to evaluate the performance of the APIs in
combination with FLAME. Finally, in Section 7 we give some concluding remarks.

2 An Advanced Interface for Linear Algebra Operations

In this section we present the interface to GLAME@lab, a Graphics Linear Algebra Methods Environment for MATLAB
and LABVIEW-like environments. The interface allows the user to initialize and terminate the execution environment, transfer
data between main memory and the graphics device memory, and execute the functionality of BLAS on the graphics hardware.

The following attributes describe a matrix as it is stored in the memory of a computer:

1. the datatype of the entries in the matrix,

2. the row and column dimensions of the matrix,

3. the address where the data is stored, and

4. the mapping that describes how the two-dimensional array is mapped to one-dimensional memory.

We note that the memory of a computer includes, among others, main memory and GPU memory space. Hereafter object
denotes a descriptor of a matrix that is physically stored in the latter space.

2.1 Initializing and finalizing the GLAME@lab API

Before using the environment one must initialize it with a call to

GLA_Init()

Purpose: Initialize GLAME@lab.

If no more GLAME@lab calls are to be made, the environment is exited by calling

GLA_Finalize()

Purpose: Finalize GLAME@lab.

2.2 Linear algebra objects

The following call creates an object (descriptor or handle) for a matrix and allocates space to store the entries of the matrix
in the GPU memory:

A = GLA_Obj_create(datatype, m, n)

Purpose: Create an object that describes an m × n matrix A, with entries of type datatype, and create the
associated storage array in the GPU memory space.

Here datatype is a string that can take on the values ’GLA FLOAT’ and ’GLA COMPLEX’ for the obvious (single-
precision) real and complex datatypes that are commonly encountered. (No support is provided yet for double-precision
numbers as current hardware in general does not operate with this type of data.) The leading dimension of the array that is
used to store the matrix is determined inside of this call; GLAME@lab treats vectors as special cases of matrices: an n × 1
matrix or a 1× n matrix.

If an object is created with GLA Obj create, a call to GLA Obj free is required to ensure that all space associated
with the object in the GPU memory is properly released:

GLA_Obj_free(A)

Purpose: Free all space allocated to store data associated with A in the GPU memory.

5

2.3 Inquiry routines

A number of inquiry routines can be used to access information about an object. The datatype and row and column
dimensions of the matrix can be extracted by calling

datatype = GLA_Obj_datatype(A)
m = GLA_Obj_length (A)
n = GLA_Obj_width (A)

Purpose: Extract datatype, row, or column dimension of matrix A, respectively.

2.4 Matrix contents

The contents of an object can be initialized to a certain scalar value with the call:

GLA_Obj_set(A, value)

Purpose: Initialize all entries of matrix A in the GPU memory space to equal value.

Filling the contents of an object (transferring data from main memory to GPU memory space) can be done using

GLA_Axpy_matrix_to_object(alpha, B, A, i, j)

Purpose: Fill the entries of the matrix A in the GPU memory space with the result of the product alpha·B.

Given a matrix B with m rows and n columns and a scalar alpha, both in main memory, the previous call is equivalent to

A(i:i+m-1, j:j+n-1) = alpha * B + A(i:i+m-1, j:j+n-1);

where A is an object in GPU memory space.
The call with the opposite purpose (transferring data from GPU memory space to main memory) is

B = GLA_object_to_matrix(m, n, A, i, j)

Purpose: Retrieve the entries of the matrix A in the GPU memory space.

Upon execution of this call, matrix B in main memory is set as

B = A(i:i+m-1, j:j+n-1);

2.5 A most useful utility routine

Likely one of the more useful tools in the GLAME@lab library, which is particularly helpful for testing, is

GLA_Obj_show(A);

Purpose: Print the contents of A.

In particular, the result of

GLA_Obj_show(A);

produces the usual MATLAB-like output:

A = [
< entries_of_A >

];

6

2.6 Views

In GLAME@lab we deal with blocks of a matrix that resides in the GPU memory space by introducing the notion of a
view, which is a reference into an existing matrix or vector. Given an object A describing a matrix in the GPU memory space,
the following call creates a view of the object:

Aview = GLA_Obj_view(A, m, n, i, j)

Purpose: Create the view Aview consisting of the m×n submatrix (block) of A starting at coordinate (i,j).

Thus, after the call

Aview = GLA_Obj_view(A, m, n, i, j);

Aview and A(i:i+m-1, j:j+n-1) refer to the same positions in the GPU memory space. Subsequent modifications
of the contents of the view affect the original contents of the matrix.

2.7 Computational kernels

There exists a GLAME@lab routine for each subprogram defined in the BLAS interface, organized following the usual
Level 1, 2, and 3 structure. Below we give a short specification of these routines.

2.7.1 Level 1 BLAS

In the following list of calls, x and y are vectors in the GPU memory space while alpha is a scalar. The functionality of the
routine is obvious from the relation between the name of the Level 1 GLAME@lab routine and the BLAS.

GLA_Swap (x, y)
GLA_Scal (alpha, x)
GLA_Copy (x, y)
GLA_Axpy (alpha, x, y)

alpha = GLA_dot (x, y)
alpha = GLA_nrm2 (x)
alpha = GLA_asum (x)
iota = GLA_iamax(x)

With this interface the dimensions of the objects the routine operates on are not specified. If only a part of a vector is
involved in an operation, this can be accomplished using a view of the object. Also, there is no need to use different calls
depending on the datatypes of the entries as this information is embedded in the object.

2.7.2 Level 2 BLAS

In the following Level 2 calls, x and y are vectors and A is a matrix, all in the GPU memory space; alpha and beta are
scalars.

GLA_Gemv(trans, alpha, A, x, beta, y)
GLA_Symv(uplo, alpha, A, x, beta, y)
GLA_Trmv(uplo, trans, diag, A, x)
GLA_Trsv(uplo, trans, diag, A, x)

GLA_Ger (alpha, x, y, A)
GLA_Syr (uplo, alpha, x, A)
GLA_Syr2(uplo, alpha, x, y, A)

There are three mode parameters (options), in the Level 2 calls which can take on values from the following lists of strings.

1. trans: ’GLA NO TRANSPOSE’, ’GLA TRANSPOSE’ (also ’GLA CONJ TRANSPOSE’ for complex matrices);

2. uplo: ’GLA UPPER TRIANGULAR’, ’GLA LOWER TRIANGULAR’;

3. diag: ’GLA NONUNIT DIAG’, ’GLA UNIG DIAG’.

These parameters will reappear next, in the Level 3 calls, where they can take on the same values.

7

2.7.3 Level 3 BLAS

The list of Level 3 calls involves matrices in the GPU memory space as A, B, C; and scalars like alpha and beta.

GLA_Gemm(transA, transB, alpha, A, B, beta, C)
GLA_Symm(transA, transB, alpha, A, B, beta, C)
GLA_Syrk(uplo, trans, alpha, A, beta, C)
GLA_Trmm(side, uplo, transA, diag, alpha, A, B)
GLA_Trsm(side, uplo, transA, diag, alpha, A, B)

A new mode parameter appears here, side, which can take on the strings ’GLA LEFT’, ’GLA RIGHT’.

2.8 Putting it all together: a basic code to multiply two matrices

Figure 1 gives a fragment of M-script code that uses the routines in the GLAME@lab interface to compute the product
C := AT ·B, where A, B and C are matrices with real entries of dimension k ×m, k × n and m× n, respectively.

1 A = read_matrix(k, m); % ’Read’ input matrices A,B
2 B = read_matrix(k, n); % user-supplied read_matrix
3
4 GLA_Init(); % Initialize environment
5
6 Aobj = GLA_Obj_create(’GLA_FLOAT’, k, m); % Create space for
7 Bobj = GLA_Obj_create(’GLA_FLOAT’, k, n); % objects A,B,C
8 Cobj = GLA_Obj_create(’GLA_FLOAT’, m, n); % in the GPU
9

10 GLA_Axpy_matrix_to_object(1.0, A, Aobj, 1, 1); % Set contents of
11 GLA_Axpy_matrix_to_object(1.0, B, Bobj, 1, 1); % objects A,B,C
12 GLA_Obj_set(Cobj, 0.0); % in the GPU
13
14 GLA_Gemm(’GLA_TRANSPOSE’,...
15 ’GLA_NO_TRANSPOSE’,...
16 1.0, Aobj, Bobj, 0.0, Cobj); % Compute C:=AˆT B
17
18 GLA_Obj_show(Cobj); % Print out results
19
20 GLA_Obj_free(Aobj); % Free objects A,B,C
21 GLA_Obj_free(Bobj); % in the GPU
22 GLA_Obj_free(Cobj);
23
24 GLA_Finalize(); % Free environment

Figure 1. GLAME@lab code to compute the product C := AT B.

3 A Simple Interface for Linear Algebra Operations

For users who do not want to deal with the management and transference of objects between main memory and GPU
memory space, we propose a simplified interface, built on top of GLAME@lab, which hides this process.

This interface only provides access to the BLAS kernels, receiving as input parameters matrices that are stored in the main
memory. Each time one of the routines in this interface is invoked, the entries of the input matrices are transfered to the GPU
memory space, operation proceeds there, and the results are returned to the main memory in the form of output parameters.
We note that this interface, while being easier to use, introduces a considerable overhead when the purpose is to use the GPU
to perform multiple operations on a matrix, as the data will need to be transfered once for each operation that is performed
on it.

The routine names of this simplified interface only differ from those of the previous API in the prefix, which corresponds
now to “GLAS ”; thus, e.g., the routines that compute the matrix multiplication C := β ·C + α ·A ·B using both interfaces
are:

8

GLA_Gemm(transA, transB, GLAS_Gemm(transA, transB,
alpha, A, B, alpha, A, B,
beta, C) beta, C)

While the appearance is similar we note that in the call to GLA Gemm, A, B and C are objects for matrices in the GPU memory
space, while in the call to GLAS Gemm these refer to matrices in the main memory.

The code that calculates the product C := AT ·B, with A, B and C real matrices of dimension k×m, k× n and m× n,
respectively, is given in Figure 2.

1 A = read_matrix(k, m); % ’Read’ input matrices A,B
2 B = read_matrix(k, n); % user-supplied read_matrix
3 C = zeros(m, n);
4
5 GLAS_Init(); % Initialize environment
6
7 GLAS_Gemm(’GLA_TRANSPOSE’,...
8 ’GLA_NO_TRANSPOSE’,...
9 1.0, A, B, 0.0, C); % Compute C:=AˆT B

10
11 disp(C); % Print out results
12
13 GLAS_Finalize(); % Free environment

Figure 2. GLASME@lab code to compute the product C := AT B.

4 Porting FLAME to Graphics Processors

FLAME avoids complicate indexing by embedding the notion of a view, which is a reference into an existing matrix
or vector, into a partitioning operation. Figure 3 illustrates the use of the FLAME@lab API to code a blocked algorithm
that computes the Cholesky factorization of a (symmetric positive definite) matrix A [10]. In this operation, the matrix is
decomposed into the product A = LLT , where the lower triangular matrix L is known as the Cholesky factor of A. Upon
completion of the code, the entries of the Cholesky factor overwrites the corresponding entries of the lower triangular part
of A.

In this section we follow this successful approach extending FLAME to graphics processors. The partitioning and reparti-
tionings in the code are just indexing operations that do not modify the contents of the matrix. The specific behaviour of these
operations is explained in detail in [5], but will also become evident from the presentation of the GLAME@lab interface that
is given next.

Given a descriptor A of a matrix in the GPU memory space, the following call creates descriptors (or views) of the four
quadrants:

[ATL, ATR,...
ABL, ABR] = GLA_Part_2x2(A, mb, nb, quadrant)

Purpose: Partition matrix A into four quadrants where the quadrant indicated by quadrant is mb× nb.

Here quadrant is a string that can take on the values ’GLA TL’, ’GLA TR’, ’GLA BL’, and ’GLA BR’ to indicate that
mb and nb specify the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respectively.

Thus, invocation of the operation

[ATL, ATR,...
ABL, ABR] = GLA_Part_2x2(A, mb, nb, ’GLA_TL’);

in GLAME@lab creates four views, one for each quadrant. Subsequent modifications of the contents of a view affect the
original contents of the matrix in the GPU memory space.

A 2× 2 partitioning can be further divided into a 3× 3 partitioning using the call

9

1 function [A_out] = FLA_Cholesky_blk(A, nb_alg)
2
3 [ATL, ATR, ...
4 ABL, ABR] = FLA_Part_2x2(A, 0, 0, ’FLA_TL’);
5
6 while (size(ATL, 1) < size(A, 1))
7
8 b = min(size(ABR, 1), nb_alg);
9

10 [A00, A01, A02, ...
11 A10, A11, A12, ...
12 A20, A21, A22] = FLA_Repart_2x2_to_3x3(ATL, ATR, ...
13 ABL, ABR, ...
14 b, b, ’FLA_BR’);
15
16 %--%
17 A11 = FLA_Cholesky_unb(A11);
18 A21 = A21 * inv(tril(A11))’;
19 A22 = A22 - tril(A21 * A21’);
20 %--%
21
22 [ATL, ATR, ...
23 ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...
24 A10, A11, A12, ...
25 A20, A21, A22, ...
26 ’FLA_TL’);
27
28 end
29
30 A_out = [ATL, ATR
31 ABL, ABR];
32
33 return

Figure 3. FLAME@lab blocked code to compute the Cholesky factorization.

[A00, A01, A02,...
A10, A11, A12,...
A20, A21, A22] = GLA_Repart_2x2_to_3x3(ATL, ATR,...

ABL, ABR,...
mb, nb,...
quadrant)

Purpose: Repartition a 2× 2 partitioning of matrix A into a 3× 3 partitioning where the mb× nb submatrix A11
is split from the quadrant indicated by quadrant.

Here quadrant can again take on the values ’FLA TL’, ’FLA TR’, ’FLA BL’, and ’FLA BR’ to indicate that the
mb× nb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respectively.

Once the contents of the so-identified submatrices have been updated, the blocks of the 3× 3 partitioning can be merged
back into a 2× 2 partitioning by a call to

[ATL, ATR,...
ABL, ABR] = FLA_Cont_with_3x3_to_2x2(A00, A01, A02,...

A10, A11, A12,...
A20, A21, A22,...
quadrant)

Purpose: Update the 2 × 2 partitioning of matrix A by moving the boundaries so that A11 is joined to the
quadrant indicated by quadrant.

This time the value of quadrant (’FLA TL’, ’FLA TR’, ’FLA BL’, or ’FLA BR’) indicates to which quadrant the
submatrix A11 is to be joined.

Using these routines, we can easily implement a code to compute the Cholesky factorization using the GLAME@lab, as
illustrated in Figure 4.

10

1 function [A] = GLA_Cholesky_blk(A, nb_alg)
2
3 [ATL, ATR, ...
4 ABL, ABR] = GLA_Part_2x2(A, 0, 0, ’GLA_TL’);
5
6 while (GLA_Obj_length(ATL, 1) < GLA_Obj_length(A, 1))
7
8 b = min(GLA_Obj_length(ABR, 1), nb_alg);
9

10 [A00, A01, A02, ...
11 A10, A11, A12, ...
12 A20, A21, A22] = GLA_Repart_2x2_to_3x3(ATL, ATR, ...
13 ABL, ABR, ...
14 b, b, ’GLA_BR’);
15
16 %--%
17 GLA_Cholesky_unb(A11);
18 % A21 = A21 * inv(tril(A11))’;
19 GLA_Trsm(’GLA_RIGHT’, ’GLA_LOWER_TRIANGULAR’,
20 ’GLA_TRANSPOSE’, ’GLA_NONUNIT_DIAG’,
21 1.0, A11, A21);
22 % A22 = A22 - tril(A21 * A21’);
23 GLA_Syrk(’GLA_LOWER_TRIANGULAR’, ’GLA_NO_TRANSPOSE’,
24 -1.0, A21, 1.0, A22);
25 %--%
26
27 [ATL, ATR, ...
28 ABL, ABR] = GLA_Cont_with_3x3_to_2x2(A00, A01, A02, ...
29 A10, A11, A12, ...
30 A20, A21, A22, ...
31 ’GLA_TL’);
32
33 end
34
35 return

Figure 4. GLAME@lab blocked code to compute the Cholesky factorization.

We note two subtle differences between the FLAME@lab and GLAME@lab codes for the Cholesky factorization (Fig-
ures 3 and 4). First, the GLAME@lab code operates on a matrix which already resides on the GPU memory space; this
implies that the environment has been initialized, space for this matrix has been allocated in the GPU memory, and the data
has been already transferred to this space (see, e.g., Figure 1). For the FLAME@lab code, the only requirement before
calling the routine is the initialization of the matrix entries with the appropriate values. Second, updates on submatrices like
ATL in the FLAME@lab code do not modify the contents of the original matrix A. This is a fundamental difference with
GLAME@lab where ATL is a view into A and, therefore, any modification of the two objects affects the other (sub)matrix.

Similar routines exist that provide 2 × 1 and 1 × 2 partitionings, repartition these into 3 × 1 and 1 × 3 partitionings and
merge them back. The following two subsections provides a summarized list of these routines. For more details, see [5].

4.1 Horizontal and vertical partitionings

In addition to the routines listed above, GLAME@lab completes its FLAME compatibility with a set of horizontal parti-
tioning routines:

11

[AT,...
AB] = FLA_Part_2x1 (A,...

mb, side)
[A0,...
A1,...
A2] = FLA_Repart_2x1_to_3x1 (AT,...

AB,...
mb, side)

[AT,...
AB] = FLA_Cont_with_3x1_to_2x1(A0,...

A1,...
A2,...

side)

Here, side can take on the values ’GLA TOP’, ’GLA BOTTOM’.
Similar routines are implemented for vertical partitioning schemes:

[AL, AR] = FLA_Part_1x2 (A,...
nb, side)

[A0, A1, A2] = FLA_Repart_1x2_to_1x3 (AL, AR,...
nb, side)

[AL, AR] = FLA_Cont_with_1x3_to_1x2(A0, A1, A2,...
side)

Here, side can take on the values ’GLA LEFT’, ’GLA RIGHT’.

5 Implementation of GLAME@lab on top of CUBLAS

We have developed a prototype implementation of the previous interface on top of NVIDIA CUBLAS. This API provides
wrappers to help writing Fortran programs that use the library. To illustrate the Fortran API, Figure 5 shows a fragment of
Fortran code that uses this interface to compute C := AT ·B, with A, B and C real matrices of dimension k×m, k×n and
m× n, respectively.

While there are strong similarities between our advanced GLAME@lab API and the CUBLAS API (compare Figures 1
and 5), we believe our interface to be much more intuitive when developing codes for complex linear algebra operations like,
e.g., the Cholesky factorization (compare Figures 4 and 6).

6 Exploring the Performance of the APIs

We next evaluate the performance of several alternatives to compute the Cholesky factorization of a symmetric definite
positive matrix using a CPU and a graphics processor. Our purpose is to combine the ease of use of FLAME and the high
performance characteristic of the modern graphics processors. Three different implementations of the Cholesky factorization
have been implemented ([10]). Unblocked and blocked algorithms for the different variants are given in Figure 7 in a notation
that has been developed as part of the FLAME project [11, 4].

Each variant has been implemented in three ways:

• Using NVIDIA CUBLAS library from a Fortran program, as in Figure 6.

• Using the advanced interface GLAME@lab from an OCTAVE M-script program, as in Figure 4.

• Using the simplified interface GLAME@lab from an OCTAVE M-script program.

In addition, we propose a hybrid approach, in which CPU and GPU work together to compute the result, and also evaluate
the performance of the Cholesky routine implementation in MATLAB/OCTAVE.

The implementations have been tested on an Intel Core2 Duo processor (codename Crusoe E6320) on the CPU side,
and a Nvidia Geforce 8800 Ultra (G80 processor) on the GPU side. We have developed Fortran 77 implementations of

12

1 #define SIZEOF_REAL 4
2
3 * ’Read’ input matrices A,B; user-supplied read_matrix
4 CALL READ_MATRIX(K, M, A, LDA)
5 CALL READ_MATRIX(K, N, B, LDB)
6
7 * Initialize environent
8 CALL CUBLAS_INIT
9

10 * Create space for objects A,B,C in the GPU
11 STAT = CUBLAS_ALLOC(K*M, SIZEOF_REAL, AOBJ)
12 STAT = CUBLAS_ALLOC(K*N, SIZEOF_REAL, BOBJ)
13 STAT = CUBLAS_ALLOC(M*N, SIZEOF_REAL, COBJ)
14
15 * Set contents of objects A,B,C in the GPU
16 CALL CUBLAS_SET_MATRIX(K, M, SIZEOF_REAL, A, LDA, AOBJ, K)
17 CALL CUBLAS_SET_MATRIX(K, N, SIZEOF_REAL, B, LDB, BOBJ, K)
18
19 * Compute C:=AˆT B
20 CALL CUBLAS_GEMM(’Transpose’, ’No Transpose’,
21 M, N, K, 1.0, AOBJ, K, BOBJ, K,
22 0.0, COBJ, M)
23
24 * Print out results, user-supplied print_matrix
25 CALL CUBLAS_GET_MATRIX(M, N, SIZEOF_REAL, COBJ, M, C, LDC)
26 CALL PRINT_MATRIX(M, N, C, LDC)
27
28 * Free objects A,B,C in the GPU
29 CALL CUBLAS_FREE(AOBJ)
30 CALL CUBLAS_FREE(BOBJ)
31 CALL CUBLAS_FREE(COBJ)
32
33 * Free environment
34 CALL CUBLAS_SUTDOWN

Figure 5. CUBLAS code to compute the product C := AT B.

the unblocked and blocked algorithms linked with CUDA 1.1 (with the same version of CUBLAS library) for the GPU. In
the CPU, we employed LAPACK version 3.0 and GotoBLAS version 1.19. The compilers include GNU Fortran Compiler
version 3.3.5 and NVCC (NVIDIA compiler) release 1.0, version 0.2.1221. All codes have been tested on OCTAVE version
2.9.19.

All the results on the GPU presented hereafter include the time required to transfer the data from the main memory to the
GPU memory and retrieve the results back. Results are reported in terms of GFLOPS (109 flops per second). A single core
of the Intel processor was employed in the experiments.

Figure 8 (left-side) presents a comparison between the three implemented variants of the Cholesky factorization using
the advanced GLAME@lab interface, including also the performance obtained for the MATLAB/OCTAVE implementation
of the factorization routine (function chol). All three GLAME@lab implementations deliver higher performance than the
OCTAVE CPU based implementation. It is also important to note how the performance of the GPU implementations is higher
when matrix sizes are large; on the other side, the CPU implementation keeps the performance constant for all matrix sizes,
attaining higher performance than the GPU for small matrices.

When using the simple implementation (GLAS), transfer times between main and video memory play a determinant
role on the final performance results. Figure 8 (right-side) show the performance of the three implemented variants for the
Cholesky factorization, comparing them with the FLAME@lab implementations of the same routines. The results show that
GPU implementations obtain better performance than CPU/FLAME based implmementations, and even obtain similar results
than the MATLAB/OCTAVE implmementations shown in Figure 8 (left-side).

GPU implementations work better when they process big amounts of data. For small matrices, Figure 8 (left-side) shows
a higher performance when the factorization process is performed on the CPU. Therefore, we introduce a hybrid algorithm
that computes the small factorizations of the diagonal blocks on the CPU, avoiding the overhead introduced by extra transfers
and operations that do not match easily the GPU architecture (basically, the square root calculation). Figure 9 shows the

13

1 #define SIZEOF_REAL 4
2 #define IDX2F(I,J,LDA) ((((J)-1)*(LDA))+((I)-1))*SIZEOF_REAL
3 #define AOBJ(I,J) DEVPTRA+IDX2F(I,J,LDA)
4
5 *
6 * Compute the Cholesky factorization A = L*L’.
7 *
8 DO 20 J = 1, N, NB
9 *

10 * Update and factorize the current diagonal block and test
11 * for non-positive-definiteness.
12 *
13 JB = MIN(NB, N-J+1)
14 CALL SPOTF2(’Lower’, JB,
15 $ AOBJ(J,J), LDA, INFO)
16 IF(INFO.NE.0)
17 $ GO TO 30
18 IF(J+JB.LE.N) THEN
19 *
20 * Compute the current block column.
21 *
22 CALL CUBLAS_STRSM(’Right’, ’Lower’,
23 $ ’Transpose’, ’Non-unit’,
24 $ N-J-JB+1, JB,
25 $ ONE, AOBJ(J,J), LDA,
26 $ AOBJ(J+JB, J), LDA)
27 CALL CUBLAS_SSYRK(’Lower’, ’No transpose’,
28 $ N-J-JB+1, JB,
29 $ -ONE, AOBJ(J+JB,J), LDA,
30 $ ONE, AOBJ(J+JB,J+JB), LDA)
31 END IF
32 20 CONTINUE
33

Figure 6. CUBLAS blocked code to compute the Cholesky factorization.

performance of this hybrid approach for the first variant of the Cholesky implementation.
As the results attained for the hybrid implementation are better than those obtained for the “pure” GPU implementations,

we use them to compare the GLAME@lab performance with the CUBLAS Fortran implementations. The low performance
obtained by GLAME@lab implementations compared with that of the CUBLAS Fortran implementations, see Figure 9, can
be explained in two ways:

1. The interpreted nature of the M-script is presented as one of the main bottlenecks when trying to achieve high perfor-
mance on these type of implementations. Although there are no memory copies when the GLAME@lab repartition
routines are invoked, the high amount of calls that have to be interpreted is a key factor that limits the final performance
of the implementations. As shown in Figure 10 (left-side), the repartition overhead on the overall execution time is
considerable for these type of blocked implementation.

2. In addition to transfer times, there exists another source of inefficiency in GLAME@lab BLAS implementations.
Figure 10 (right-side) shows the difference in performance between CUBLAS TRSM implementation and the same
routine executed through GLAME@lab. Two facts limit the final performance:

• The internal implementation of the MEX-files interface of the tested version of OCTAVE introduces a considerable
overhead when invoking and returning from a MEX routine.

• The internal double-precision data representation of OCTAVE must be converted into single-precision before
operating with it on GPU, and transformed back into double-precision before the final transfer to main memory.
This implies an important penalty on the overall performance of this type of routines.

A more detailed analysis of the performance of Fortran implementations for the Cholesky factorization on top of CUBLAS
is given in [3].

14

Algorithm: A := CHOL UNB(A)

Partition A→
„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition

„
ATL ATR

ABL ABR

«
→
0
@

A00 a01 A02

aT
10 α11 aT

12
A20 a21 A22

1
A

where α11 is 1× 1

Variant 1:
α11 :=

√
α11

a21 := a21/α11

A22 := A22 − a21aT
21

Variant 2:
aT
10 := aT

10TRIL (A00)
−T

α11 := α11 − aT
10a10

α11 :=
√

α11

Variant 3:
α11 := α11 − aT

10a10

α11 :=
√

α11

a21 := a21 −A20a10

a21 := a21/α11

Continue with

„
ATL ATR

ABL ABR

«
←
0
@

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

1
A

endwhile

Algorithm: A := CHOL BLK(A)

Partition A→
„

ATL ATR

ABL ABR

«

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size nb

Repartition

„
ATL ATR

ABL ABR

«
→
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

where A11 is nb × nb

Variant 1:
A11 := CHOL UNB(A11)

A21 := A21TRIL (A11)−T

A22 := A22 −A21AT
21

Variant 2:
A10 := A10TRIL (A00)−T

A11 := A11 −A10AT
10

A11 := CHOL UNB(A11)
Variant 3:
A11 := A11 −A10AT

10
A11 := CHOL UNB(A11)
A21 := A21 −A20AT

10

A21 := A21TRIL (A11)−T

Continue with

„
ATL ATR

ABL ABR

«
←
0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A

endwhile

Figure 7. Multiple variants of the unblocked (left) and blocked (right) algorithms for the Cholesky
factorization implemented on top of GLAME@lab.

7 Concluding Remarks

This paper makes the following contributions and observations:

• We have proposed two API to assist in the development of M-script codes for complex dense linear algebra operations,
targeting performance and ease-of-use. The advanced APIs in GLAME@lab requires more intervention from the user
but pays off in terms of performance when the API is used to implement a code that performs multiple operations on a
matrix (or parts of it, as in blocked algorithms).

• We have also described an extension of FLAME that enables a straight-forward translation of codes written using
FLAME@lab to graphics processors. Thus, our approach inherits the advantages of FLAME, which include a cleaner
notation, a formal derivation procedure of provably correct algorithms, and the existence of a library of codes for more
complex dense linear algebra operations than those provided by BLAS.

• We have developed a prototype implementation of the proposed APIs on top of NVIDIA CUBLAS to show the validity
of this approach.

• Our experimental evaluation on the NVIDIA G80 graphics processor shows that the advanced interface is an interesting
approach to achieve high performance on MATLAB/OCTAVE code for linear algebra operations while simultaneously
taking benefit from the advantadges of FLAME.

15

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500 3000 3500 4000 4500

G
F

LO
P

S

Matrix dimension (m=n)

GLAME@lab Cholesky implementations

GLA_Cholesky_Var1
GLA_Cholesky_Var2
GLA_Cholesky_Var3

Octave chol()

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 500 1000 1500 2000 2500 3000 3500 4000 4500

G
F

LO
P

S

Matrix dimension (m=n)

GLAS/FLAME Cholesky implementations

FLAME@lab_Cholesky_Var1
FLAME@lab_Cholesky_Var2
FLAME@lab_Cholesky_Var3

GLAS_Cholesky_Var1
GLAS_Cholesky_Var2
GLAS_Cholesky_Var3

Figure 8. Comparison between the Cholesky factorization implementations in OCTAVE and three dif-
ferent implementations of the same routine accelerated through GLAME@lab (left-side). Comparison
between the performance of the simplified GLAME@lab interface (GLAS) and the same implementa-
tions using only the CPU through the FLAME@lab API (right-side).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 500 1000 1500 2000 2500 3000 3500 4000 4500

G
F

LO
P

S

Matrix dimension (m=n)

CUBLAS - GLAME@lab comparison. Cholesky factorization

CUBLAS. Cholesky Var. 1
CUBLAS. Cholesky Var. 1 (Hybrid)

GLAME. Cholesky Var. 1
GLAME. Cholesky Var. 1 (Hybrid)

Figure 9. Comparison between the performance attained for a CUBLAS implementation of Variant 1 of
the Cholesky factorization, and the same implementation based on GLAME@lab. Both are executed
exclusively on GPU and symultaneously on CPU and GPU (hybrid approach).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

)

Matrix dimension (m=n)

Overhead of repartitioning time (Cholesky Variant 1)

Total time
Repartitioning time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

G
F

LO
P

S

Matrix dimension (m=n)

Octave Implementation Overhead - Trsm (Right Side - Lower Triangular)

GLAME Trsm
CUBLAS Trsm

Figure 10. On the left side, overhead introduced by the repartitioning procedures characteristic
of FLAME@lab/GLAME@lab. On the right side, difference in performance between a basic BLAS
execution based on Fortran CUBLAS and GLAME@lab implementation based on MEX-files.

16

• Although the reported performance is not comparable with that of CUBLAS native implementations, GLAME@lab
is presented as a competitive approach that combines a user-friendly environment with a high performance computing
platform.

Our proposal is a first step towards the introduction of graphics processors into FLAME in order to achieve high per-
formance with low cost hardware and an easy environment. Future work will include the adaptation of the FLAME/C API
to graphics processors, trying to achieve all the performance that a modern GPU can offer, without the penalties of the
interpreted languages.

Acknowledgments

This research was partially supported by the CICYT project TIN2005-09037-C02-02 and FEDER, and project No. P1-
1B2007-32 of the Fundación Caixa-Castellón/Bancaixa and UJI. Francisco D. Igual is supported as well by a research
fellowship from the Universidad Jaume I of Castellón (PREDOC/2006/02).

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Hammarling, A. Green-
baum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 1999.

[2] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ortı́. Evaluation and tuning of the level 3 CUBLAS
for graphics processors. To appear in proceedings of PDSEC08, 2008.

[3] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Ortı́. Solving dense linear systems on graphics
processors. Technical report, Universitat Jaume I, 2008.

[4] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. The
science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 31(1):1–26, March 2005.

[5] Paolo Bientinesi, Enrique S. Quintana-Ortı́, and Robert A. van de Geijn. Representing linear algebra algorithms in
code: The FLAME application programming interfaces. ACM Trans. Math. Soft., 31(1):27–59, March 2005.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

[7] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[9] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha. LU-GPU: Efficient algorithms for solving
dense linear systems on graphics hardware. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercom-
puting, page 3, Washington, DC, USA, 2005. IEEE Computer Society.

[10] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 2nd
edition, 1989.

[11] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal Linear Algebra
Methods Environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[12] Jin Hyuk Junk and Dianne P. O’Leary. Cholesky decomposition and linear programming on a GPU. Master’s thesis,
University of Maryland, College Park.

[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for Fortran usage. ACM
Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[14] NVIDIA. Nvidia CUDA Compute Unified Device Architecture. Programming Guide. 2007.

17

