o

H

Proceedings of the 15th JASTED International Conference

PARALLEL AND DISTRIBUTED COMPUTING AND SYSTEMS

November 3-5, 2003, Marina Del Rey, CA, USA

. Parallel design of multichannel inverse filters for audio reproduction*

P Alonsof J M. Badiat

ABSTRACT
In this paper, we present an efficient and portable parallel

algorithm for multichannel inverse filter design in sound re-

procduction systems. The actual matrix used to specify the
electroacoustic ansmission paths is the matrix of causal
finite impulse response filters An array of finite impulse
response filters is designed in a way that best approximates
a given time domain response in the least squarss sense
We exploit the non-symmetiic block-Toeplitz structure of
the multichannel system matrix in order to develop a fast
parallel algorithmn to solve the arising least squares prob-
lem Experimental results, obtained on a cluster of personal
computers and oz a bi—processor board, show the perfor-
mance of cur approach to the inverse filtering problem.

KEY WORDS
Block-Toeplitz, Multichannel deconvointion, Inverse fil-
ters, Audio reproduction, Parallel least squares

1 Introduction

Inverse filtering and equalization of multichannel systemns
is a field of growing interest. This fact is mainly due to
the wpcoming applications of multichannel systems such
as digital communication (mainly new generation digital
mobile communications that incorporates ar1ay processing
at the base stations) and the modern multichannel audio
1epreduction systems such as three-dimensional (3-D) au-
dio [1], or active noise contiol, and the availability of new
technology resources which make possible the implemen-
tation of more complex signal processing algorithms.

The mathematical model of inverse filtering and
equalization multichannel systems are standing for large-
scale matrix problems with structure. The major challenge
in this area is to design fast and numerically 1eliable al-
gorithms for large-scale structured linear matrix equations
and the least squares matrix problem. For small-size prob-
lems, there 1s often not much else to do except to use one
of the already standard methods of solution such as Gaus-
sian elimination or the QR decomposition. However, as the
problem size increases it is important to identify special
structures in order to reduce the computational burden. A
very extensive work have been made in this way and, as a

*Supported by Spanish CICY I. Project 11C 2000-1683-C03-01-03.

t {palonso avidal}@dsic.u?.es, Dept. Sistemas Informdticos y Com-
putacidn Universidad Politéctfica de Valencia.

tbadia @icc uji es. Dept. de Ingenierda y Ciencia de los Computadores
Universidad Jaime I.

8agonzal@dcom upves. Dept
Politécnica de Valencia.

Comunicaciones, Universidad

392.066

719

A Gonzélez?

A. M. Vidal®

result of, many algorithms have been developed exploiting
the special structure.

Several algorithms have been taditionally used to
solve systems of equations or the linear least squares prob-
lem of [oeplitz—like matrices exploiting its special struc-
ture 10 get & computational cost an order of magnitude
lower than other classical algorithms for non—structured
matrices These are the well-known fast algorithms For
example, the Levinson-Durbin recuzsion has been proved
to be very useful m several cases {2] A generalized biock
processing version of the Levinson—Dhurbin algorithm [3]
was used in [4] and [5], to design inverse filters for cross—
talk cancellation. Other algorithm can be found in [6].

Several problems in signal processing like inverse fil-
tering have strong time constraints. This fact leads us to
develop parailel algorithms for getting improved perfor-
mance. But, the lower cost and the data coupling of fast
algorithms makes it difficult to get efficient parallel algo-
rithms In this work, we have design an efficient parallel
fast algorithm to solve the structure matrix problem aris-
ing in multichannel systems Furthermore, our aim is to
get good results in general purpose parallel architectures,
that is, in clusters of personal computers We have made
a hard effort minimizing the communication cost on these
distributed architectures characterized for a large relation
between communication and computation speed.

We have used linear algebra subroutines of BLAS and
LAPACK [7] for sequential computations optimized for the
machine target platform. For parallel processing, linear al-
gebra subroutines in the Scal. APACK and PBLAS libraries
have been used, including BL ACS subroutines for send-
ing/receiving arrays [8]. MPI environment has been used
for message—passing. These libraties provides portability
for our code on very different paralle! environments Also,
MPI can be run in shared memory machines. Thus, our
algorithm can be vsed on bi- or tetra—processor boards of
isolated workstations. Also, our parallel algorithm is suit-
abie for DSP’s or another dedicated architectures.

This paperis set out as follows: firstly, a brief desctip-
tion of multichannel sound reproduction systems is pre-
sented. Secondly, we propose a sequential algorithm, and,
in section 4, we describe a parallel algorithm based on the
sequential one. In the following section, we comment the
experimenta] results obtained on a cluster of personal com-
puters. In the experimental results section we also show a
timing analysis of our parallel algorithm running on a bi—
processor board for selving a common problem in sound
reproduction systems: the cross talk cancellation problem
Finally, we include some concluding remarks.

2 The Multichannel Sound Reproduction
System

Figure I shows a block diagram of a multichannel sound re-
production system. The configuration showed in Figure 1 is
typical in multichannel sound reproduction systems, where
inverse filters are usually calculated using the least squares
method in the time domain [9]. The reproduction system
renders K input signals into the listening space. A block
labeled H filters these input signals prior to feeding the
electroacoustic system. As illustrated in Figure 1, each in-
put signal is filtered through an array of filters whose im-
pulse 1esponses are denoted by h; ;[n], where { indicates
which source is reproducing the filter output and § which
input signal is filtered by this filter. A different set of fil-
ters is chosen depending on the desired application Cross—
talk cancellation, inverse filtering, equalization and virtual
source positioning represent some examples of these appli-
cations. Regardless of the selection of the desired applica-
tion, physical and computational boundaries will constrain
the filter design. Therefore, efficient and practical compu-
tational methods are needed to carry out this design task.

Inverse

Hllers Electroacoustic system

‘ Source 1
HHHH T |
Input ; ; ’Eﬂ
signal 1 | | N
B .. 7

Cutput

a
7 sigral 1

Source |
Output

h L \‘/ L
] [n_i]‘ //\ . a P signal M
/ Listem‘—'ung,—;oinls

s
5'13,._.[‘/] c

l m Bullial
Source L

Input
signal K

FLer

Figure 1. Multichannel sound reproduciion system.

The inverse filiering problem in practical multichan-
nel audio reproduction systems basically consists of build-
ing a matrix of digital finite duration filters (a different filter
vector for each signal to be rendered), whose convolutions
with the signal transmission channels best approximate a
desired response.

The filter matrix is calculated using the electroacous-
tic system (or transmission channels) actual responses,
which were previously measured, and the desired signals
at the listening or reproduction points. Electroacoustic sys-
tem responses are also usually modeled as finite duration
filters. From a mathematical point of view, the multichan-
nel inverse filtering problem is usually resolved using a lin-
ear set of equations that results from the linear convolu-

720

tions of the filter matrix and the electroacoustic system re-
sponses. However, it may not be possible in practice to ob-
tain a squared linear set of equations, hence a least squared
error solution is preferred.

The electroacoustic system responses will be mod-
eled as FIR filters of n, coefficients, and ¢; (%) will be the
{k + 1)th coefficient of the channel between the jth source
{loudspeaker) and the ith listening point (microphone). Ev-
ery inverse filter will have 1S coeﬁimems and be denoted
byh;; = [hi;(0), ki (ns — 1)]7; thisfilter processes
the jth input signal to feed the ith]oudspeaker By apply-
ing the superposition principle, each input signal can be
separately considered. Thus, each input signal has its cor-
responding desired signal at every listening point. These
desired signals will be vectors of (n.,+mny ~ 1) coefficients,
ai; = [2:;(0), . ya;j(n. + ny — 2)]7, where subscript
1 corresponds to the listening point and subscript j cor-
responds to the input signal Each input signal is filtered
through a different set of filters. Therefore, the set of filters
that processes a given input signal can be independently
calculated without any loss of generality. A single input
signal is usvally assumed throughout this paper

A reproduction system with L loudspeakers and M
microphones can be expressed as

[E] (Retnp—1)Mx1 =

[C](nc+nh—1)MxnhL [h]nthl (1)

—1a {(netnp—1}Mx1?
where B = b,], a7 = ok,]
e’ = [ef,, . ,e};;]. and matrix C is composed by

M x L blocks C; ; of the form

Cifj =
T e,5(0) 0 0]
¢;,5(1) ¢1,3(0)
' cii (1}
cij(ne — 1) : ci;(0)
0 cij{ne — 1) ¢i,3(1)
| 0 Cz,;-(. - 1)

Expression (1) represents a system of equations where
matrix C is a nonsquare matrix composed by nonsquare
Toeplitz blocks. -A least squares error criteria is commonly
used to caleulate the array of inverse filters. Thus, the array
ofinverse filiers in (1), b, is chosen to minimize the squared
error,

min{je|3} = min{{Ch—al}}. @

3 The Sequential Algorithm

In this work, we solve the least squares linear problem (2)
by means of the associated normal equations:

cIch=C'2

The above normal equations are solved by computing

the triangular decomposition of the product C” C in order

to get the following seminormal equations

L7Lh = (Ta, 3
where L is a lower triangular factor.

In our exposition, we will use the following represen-
tation for the displacement of matrix C* C with regard to
the displacement matrix F,

Ve=CIC-FCICF! = GIGT, 4
where F = Z, & ... ® Zy, and Zp ¢ R™X™ | =
1, L, is the down shift matrix,

0
1 0
Zyp =

10

The rank of Vp is 2L Since Vy has a considerably
lower rank than CT'C, the matrix C” C is said to have dis-
placement structure with respect to the displacement ma-
trix . Matrix G € R™L*2L j5 called the generator, and
J € R¥*2L is a signature matrix.

The Generalized Schur Algorithm (GSA)is a fas¢ pro-
cess that exploits the displacement structure of a matrix in
order to perform a given triangular decomposition. In this
paper, we use the GSA to obtain the Cholesky factor of the
product CTC The sequential algorithm to solve (1) can be
divided in the three main steps shown in Algorithm 3 1.

Algorithm 3.1 Given matrix C and vector a, this algo-
vithm returns a vector h that minimizes (1)

1. Compute the generator G of (4)
2. Compute the triangular facior L (3) with the GSA,
3 Solve the seminormal equations (3).

At the first step, the generator matrix G have to be
computed. This can be accomplished as follows. Firstly,
we define a permutation matrix P such that

CP=C=[& & &l |

where column &;, § = 1, .. ., nxl, is the ith column of C
with the following connection between indexes 7 and 7,

i=[(j—1)mod Lin, + (j —1)divL+1

Then, given matrix H = CT CPy.z, where Py.z is
the matrix formed by the first L columns of P, a matrix H
1s computed as
A X
—PpT -1 _
f-PHR = [] ©
Matrices X € RI*T and Y € RP 1%L gefine a parti-
tien of H, where matrix X is lower triangular, The matrix

721

R is the triangvlar factor of the QR decomposition of the
matrix U € R*M*Z which is composed by the first n,
coefficients of the first column of each cne of the M x L
blacks (C;;) of matrix C (1),

U=
er1{0) c12(0) e1{0)
c11(1) c12{1) e1r(1)

clx(n; -1) 612(7%:: - 1) CiL(n; —1)
c21(0) C22(D) c2r(0)
c21(1) c22(1) car (1)

czl(n; -1) ng(n‘c -1 car (nC -1
an®) eara(0) a2 (0)
eart(1) eara(1) enmr(l)

| can (TLC - 1) CM2(n‘c -1) CML (?’;C -1) |

Then, the generator G and signature matix J have
the following form

c=r[a [y]]

I 0
I= [0 -I } :

where I; is the identity matrix of order L

At the step 2 of Algorithm 3 1, the GSA is used to
obtain the lower triangular factor L. The GSA is described
in Algorithm 3.2 The step 3 of Algorithm 3 1 involves a
block—Toeplitz matrix—vector product and the solution of
two triangular systems that can be carried out by using the
standard routines of the BL AS library

Algorithm 3.2 (Generalized Schur Algorithm (GSA))
Given the generator G of the displacement equation (4)
and the displacement matrix ¥, this algorithm refurns the
lower triangular factor L such that CTC = LLT.

fori=1,.. . ,n,L

Let be g; the ith rvow of G, g the first column of G
and l; the ith column of L

1. Compute a transformation ©; so that

F39i=[91 gi2 Gizr |©: =
={g, 0 0].

2. Update generator, G — GO,

3. Update factor L, l; +— g.

4. Shift the first column of G, G «— | Fg G |,
where G denotes the last 21, — 1 columns of G

and

Transformation ©;, computed at the first step of Algo-
tithm 3 2, is a J-unitary transformation, that is, 67 J®; =
J We have used the method proposed in [10] for comput-
ing and applying ©; in steps 2 and 3 1espectively of Algo-
tithm 32. In [10, 11] can be found a proof of the above
algorithm.

4 The Parallel Algorithm

For the parallel algorithm, we have used the Scal APACK
model to distribute and manage data on the different pro-
cessors. IThe software tools included in Scal APACK li-
brary let us to map the concurrent processes in a two di-
mensional logical grid of p x ¢ processors where each pro-
cessor is denoted by F; ;. In our case, the choice of a one
dimensional grid with a “column™ of p processors {g = 1)
is the most adequate to solve the problem Then, proces-
sors in the logical column wili simply be denoted by Py,
k:o, . ,p—l
The generator Gz is partitioned in L blocks,

Gy
G,
G=| .) ®)

G
where G € R™*2L These blocks are cyclically dis-

tributed over the “logical column™ of p processors so that

block G, belongs to processor P{ k—1) mod p-
Let be the following partition of factor L in L x L

square blocks of size ny x np,

Lrg
Lzi Lap

L= : :) Q)
Lrp Lr: Ly

where L;;,t =1,. , L, are lower triangnlar The parallel
algorithm computes factor I. distributed in such a way so
sach block L; j—3, bf:longs to proc?s_sor P_(z‘-l) mod p

The parallel algorithm can be divided into the same
three steps as the sequential Algorithm 3.1. At the first step
of the parallel algorithm, the generator is computed. Com-
puting the generator G is a concurrent process petformed
without communication cost. This procedure involves, as
a basic computational kernels, [matrix—vector products,
a QR factorization and the solution of a triangular syster.
The part of the result of the matrix—vector products belong-
ing to a processor is computed only by that processor. The
computation of the factor R (5) is performed by calling the
appropriate LAPACK subroutine and it is repeated by all
processors. This choice increases the overhead with respect
to the sequential algorithm, but this overhead is smaller
than the overhead caused by the broadcast of R. once it has
been computed by one processor Afterwards, each proces-
sor solves the triangnlar system AR ~? in order to obtain
factor H, and so, the generator G distributed as it have been
shown in (6).

In the second step of the parallel algorithm, the trian-
gular factorization of CT'C is performed by means of the
GSA. Algorithm 4.1 describes the Parallel GSA.

Algorithm 4.1 (Parallel Generalized Schur Algorithm)
Given the generator G of the displacement equation (4)

722

distributed as it Is described in (6), this algorithm returns
the lower triangular factor L distributed as it is described
in (7), so that CTC = LLY Each processor P,
k=0, ,p—1, performs
fori=1,. . npL
Let be g; the ith vow of G

g€ P

1. Compute a transformation ©; so that

Gi9i=| g1 92 gior | O =
=[g, 0 0]

2 lg gy

3 Broadcast ©; to the rest of processors.
else

1. Receive Q.
end if

fOF'j=i+1,.‘. LnpL
Let be §; the jthrow of G
ig; e Py
1 §;+ §;0:
2 i g
#gi—1 € By
951 — b1,
else
gipx 0
end if
end if
end for
end for

In Figure 2 we can see two adjacent blocks of the
generator on processors Py and Py, tespectively. The
first row of the second block is represented by j (§ =
(i +nn — 1) /np)nn + 1).

G
84,1 gi,2 gi,2L
Py git1,1 Gi+1,2 Gi+1,21
Ji+2,1 Gi+2,2 Ji+2,2L
g1 84,2 44,2L
g5+1,1 Gi+1,2 g5+1,2L
-Pk+1 I 3 7

g542,1 G422 g4+2,21

Figure 2. Two adjacent blocks of G in processors P and
P41 respectively before iteration 1.

At the ith iteration, processor having the ith row com-
putes ©; and broadcasts it to the rest of processors. Fig-
ure 3 represents the generator G and the ith column of
L (I.;) after the inner loop of the ith iteration of Algo-
rithm 4.1 have been executed

In Figure 3 symbol / represents modified entries by
the product G©;. At each step of the inner loop of Algo-

G l.;

0] 0 0 i1
Py gii Gi12 Fi1L Jis11
.92-;-1,1 9‘~f+2,2 9;-5—2,2[, 9:!:+2,1

0 952 9oL i1
Prst ;‘?;1 9;.‘+1,2 .9§+1,2L 9‘;'-;-1,1
Fir1,1 Fi+2,2 42,21 Fi+2.1

Figure 3. This figure represents Figure 2 with the ith col-
umn of L after the iteration ith have been carried out.

rithm 4 1, the transformation © ; is applied to each row > i,
the first entry of such row is an entry of the ith column of
L, and such first entry is shifted one position down within
the block. Due to the form of the displacement matrix F
and the distribution used for G, no data is need to send to
the adjacent processor in the shift process.

It is important to note that, in our algorithm, the only
communication cost is composed by n; L broadcasts, This
fact makes more efficient our algorithm than other ones.
For example, the Block Schur Algorithm presented in [12]
petforms a lot of point-to—point communications caused
by the displacement process Furthermore, our method for
computing the J-unitary transformations has better numer-
ical properties [13] than the method used in [12].

We have used another technique to reduce even more
the communication cost In Algorithm 4.1, a group of v J-
unitary transformations are computed and packed in each
message. Thus, the amount of broadcasts is reduced by the
blocking factor v. This blocking factor is machine depen-
dent. With this modification of the basic process, we min-
imize the effect of the time spent in sending the messages,
maximize the overlapping between coinputations and com-
munications and achieve better performance within each
processor.

In the implementation of Algorithm 4.1, we actually
work with G7 distributed over a “logical row” of proces-
sors. Because of the arrays are stored by columns, the algo-
rithm access to the entries of G stored in adjacent positions
of the local memory. However, L is distributed on 2 col-
umn of processors and its entries are stored with a pattern
access of 1 too. We get a great reduction in the execution
time with this modification. This fact implies the utilization
of two different processor grids: a logical row and a logical
column of processors. The usage of ScalLAPACK confexts
lets to perform this switch between logical grids during the
execution time easily

At the third step of the overall algorithm, the solu-
tion of the seminormal equations (3} is obtained in paraliel
by calling some parallel routines provided by the PBLAS
library.

723

5 Experimental Results

The target platform used for running the experiments is a
cluster of personal computers with 12 nodes (IBM xSeries
330 SMP), running under the Linux operating system.
Each personal computer has two 866MHz Intel Pentium HI
with 512 MBytes of memory The interconnection network
is a Gigabit Bthernet. The latency time of the network is
122usec, and 0.030usec is the time needed to transmit each
double precision scalar of a message. The time for a flop,
obtained with an optimized version of the DGEMM routine
in BLAS for the product of two general sgnare matrices, is
around 1 55 x 1073 msec.

Figure 4 shows the great reduction achieved in the ex-
ecution time with the increase of the number of processors
for an acoustic system composed by 8 microphones and 8
loudspeakers. In that figure, we have used a n, = 300
coefficients sample for the channels. This is a good result
taking into account that with the rise of the number of co-
efficients of the inverse filters {n;,) we can expect a lower
squared error of (2}.

1, = 300
1R 1 | | IR RSO
16— i procs. n
4l —— 2procs. 1/ 0
12 - - 4procs. A #
—_— 8 procs.
6 — i b e AU N o S
4 - i //" |
2= e ____.-/ |
G

300 400 500 600 7060 800

Tth

Figure 4. Time in seconds varying the mmber of coefficients
na of each inverse filter for M = 8 microphones and L = 8
Toudspeakers with a sample size of n. = 300.

We have obtained similar results with different sizes
of the sample (Table 1) For a fixed size of the parameter
np, and varying parameter n ., the efficiency of the parallel
algorithm also increases with the number of processors, but
pot as much efficiency as we can see in Figure 4. This is
because only the computation of the generator and the last
matrix-vector product of the parallel algorithm depends on
the sample length. Besides, the triangularization process is
by far the most costly step, and it does not depend on the
number of coefficients of the sample (n¢)

InFigure 5, we show the execution time of the parallel
algorithm in a node of the cluster, that is, in a bi-processor
board using shared memory We take advantage of the
availability of a shared memory version of the MP1 pack-
age for running our parallel algorithm without any imple-
mentation change. Specifically, we have solved a cross talk

Table 1. Efficiency varying the size of n.. for ny, = 800

fie 2 procs. 4procs. 8 procs.
300 999% 873% 68.0%
500 97.3% 860% 668%
700 973% 843% 668%
900 973% 864% 67.0%

cancellation problem. This problem invelves two micro-
phones and two loudspeakers in the acoustic system. The
goal of the inverse filters designed for this problem is to
cancel the effect of the output signal of the left londspeaker
into the right microphone and the output signal of the right
loudspeaker into the left microphone. Matrices used in the
test have been built sampling experimental signals obtained
in a listening room.

n. = 4000
4 T T
—_—— 1 procs
3L —— 2procs) |-
Tl e
P
0

1000 1200 1400 1600 1800 2000

L

Figure 5. Time in seconds of the parallel algorithm running on a
bi—processor board varying the number of coefficients . of each
inverse filter for the cross talk cancellation problem, with a sample
length of n. = 4000.

It can be see in Figure 5 that the execution time is re-
duced using the two processors of the bi—processor board
for only two loudspeakers and two microphones. The effi-
ciency obtained with two processors is around 65%.

The relative ertor of the algorithm for a vector h in (2)
with all its components equal to one has also been mea-
sured The resulting relative errors are around 10 14,

6 Concluding Remarks

The parallel algorithm designed is useful in multipie appli-
cations which can be formmlated as a multichannel decon-
volution problem. The parallel algorithm is efficient and
portable, and it computes an accurate solution if it exists
for the minimization problem formmlated in (2). The main
limitation is due to the fact that the maximum number of
processors that it can be used is restricted by the number
of sources of the multichannel system. However, it can be
used with good results on bi~ and tetra-processors. There-
fore, it can be useful for the upcoming applications like

724

leisure, video—conference or the new generation of digital
wireless communications

References

[1] C Kyriakakis, P. Tsakalides and T Holman, Sur-
rounded by sound, IEEE Signal Processing Magazine,
16(1), 1999, 55-66

[2] H. Irisawa, S Shimada, H. Hokari and S. Hosoya,
Study of a fast method to calculate inverse filters, J Au-
dio Eng. Soc., 46(7/8), 1998, 611-619

[3] 1 J. Lopez and A. Gonzalez, Two steps Levinson al-
gorithm for time domain multichanne! deconvolution,
Electronic Letters, 36(7), 2000, 686—688.

[4] 1. J. Lopez, A. Gonzilez and F. Ordufia—Bustamante,
Measurement of cross-talk cancellation and equaliza-
tion zones in 3-I) sound reproduction under real listen-
ing conditions, Proceedings of AES 16th International
Conference on Spatial Sound Reproduction, Rovanierni,
Finland, 1999.

[3] J. J. Lopez, A Gonzalez and F. Ordufia—Bustamante,
Equatization zones for cross talk cancellation as a func-
tion of loudspeaker position and room acoustics, Pro-
ceedings of ACTIVE 99, Ford Lauderdale, Florida, 1999,

[6] Ake Bjérck, Numerical Methods for Least Squares
Problems (North-Holland, 1996).

[7] E. Anderson et al,, LAPACK Users’ Guide (SIAM,
Philadelphia, 1995},

[8] L. S. Blackford et al. ScalAPACK Users’ Guide
(SLAM, Philadelphia, 1997).

[91 P. A Nelson, F Ordufia—Bustamante and H. Hamada,
Multichannel signal processing technigues in the repro-
duction of sound,.J. Audio Eng. Soc , 44(11),1996,973—
989.

[10] S Chandrasekaran and Ali H. Sayed. A Fast Stable
Solver for Nonsymmetric Toeplitz and Quasi-Toeplitz
Systems of Lincar Equations. SIAM Jowrnal on Matrix
Analysis and Applications, 19(1), 1998, 107-139.

[11] T Kailath and A. H. Sayed, editors. Fast Reliable Al-
gorithms for Matrices with Structure (SIAM, Philadel-
phia, PA, 1999).

[12] K. Gallivan, S. Thirumalai and P. Van Dooren, On
solving block toeplitz systems using a block schur algo-
rithm, Proceedings of the 23rd International Conference
on Parallel Processing, Boca Raton, FE, USA, 1994,
Volume 3: Algorithms and Applications, 274-281.

[13] A. W. Bojanczyk, R. P. Brent, F. R. de Hoog and
D. R. Sweet, On the stability of the Bareiss and related
Toeplitz factorization algorithms. SIAM Journal on Ma-
trix Analysis and Applications, 16(1), 1995, 40-57.

